B% electronics

Article

FPSNET: An Architecture for Neural-Network-Based Feature
Point Extraction for SLAM

Fasih Ud Din Farrukh

check for
updates

Citation: Farrukh, EU.D.; Zhang, W.;
Zhang, C.; Wang, Z.; Jiang, H.
FPSNET: An Architecture for
Neural-Network-Based Feature Point
Extraction for SLAM. Electronics 2022,
11,4168. https://doi.org/10.3390/
electronics11244168

Academic Editor: Valeri Mladenov

Received: 26 October 2022
Accepted: 8 December 2022
Published: 13 December 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Weiyi Zhang, Chun Zhang, Zhihua Wang and Hanjun Jiang *

School of Integrated Circuits, Tsinghua University, Haidian District, Beijing 100084, China
* Correspondence: jianghanjun@tsinghua.edu.cn

Abstract: The hardware architecture of a deep-neural-network-based feature point extraction method
is proposed for the simultaneous localization and mapping (SLAM) in robotic applications, which
is named the Feature Point based SLAM Network (FPSNET). Some key techniques are deployed
to improve the hardware and power efficiency. The data path is devised to reduce overall off-chip
memory accesses. The intermediate data and partial sums resulting in the convolution process are
stored in available on-chip memories, and optimized hardware is employed to compute the one-point
activation function. Meanwhile, address generation units are used to avoid data overlapping in
memories. The proposed FPSNET has been designed in 65 nm CMOS technology with a core area
of 8.3 mm?. This work reduces the memory overhead by 50% compared to traditional data storage
for activation and overall by 35% for on-chip memories. The synthesis and simulation results show
that it achieved a 2.0x higher performance compared with the previous design while achieving a
power efficiency of 1.0 TOPS/W, which is 2.4 x better than previous work. Compared to other ASIC
designs with close peak throughput and power efficiency performance, the presented FPSNET has
the smallest chip area (at least 42.4% reduction).

Keywords: SLAM; SuperPoint; convolutional neural network; ReLU; ASIC

1. Introduction

Simultaneous localization and mapping (SLAM) has become one of the major research
topics with the fast development of robotics. SLAM is the technology enabling the robot to
locate itself and construct the map of the surrounding environment [1,2]. For the SLAM
algorithms based on feature points, the extraction of feature points and the corresponding
descriptors is a vital procedure that largely influences the performance of the whole sys-
tem [3]. Different feature points and descriptors have been proposed, including SURF [4],
ORB [5], and SIFT [6]. Various SLAM systems are based on these traditional feature point
extraction algorithms. However, they may fail to provide consistent feature detection
and associated results in complex environments. In comparison, feature extraction based
on deep convolutional neural networks (CNNs) has replaced the hand-crafted features
for SLAM-related research and applications. Recently, SuperPoint based on CNN was
proposed for feature point extraction and it outperformed the traditional algorithms in
both accuracy and stability [7]. It is suggested as an alternative for patch-based neural net-
works that work on a fully convolutional model on full-sized images and jointly compute
pixel-level interest point locations and associated descriptors. Other CNN-based methods
also present a significant improvement in feature extraction and descriptor generation
such as DeepDesc [8] and GeM [9]. However, CNN has a much higher computational
complexity and it requires more memory footprint. The computation of SuperPoint is
time- and resource-consuming, making it hard to implement on mobile devices such as
robots and unmanned aerial vehicles (UAVs). Considering these constraints, an area- and
power-efficient hardware accelerator architecture with a reduced memory footprint toward
the ASIC (application-specific integrated circuit) implementation is proposed in this work,
which we call FPSNET. It supports SuperPoint for feature point extraction in SLAM.
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Various neural-network-based accelerators have been presented in recent years aiming
for robotics and vision [10-12]. In the hardware aspect, an FPGA-based accelerator for
SuperPoint was given in [13], which tried to optimize the activation function and nor-
malization. In other work, based on the SuperPoint, an FPGA-based real-time keypoint
extraction hardware accelerator through algorithm-hardware co-design for mobile VSLAM
applications is proposed, which improves the processing speed while maintaining high
accuracy [14]. The design of Ref. [15] achieved a fast and energy-efficient FPGA implemen-
tation of the feature extraction algorithm with effective local search. Over the years, some
ASIC-based CNN accelerators have been presented in the literature [16-22]. However, to
the best of our knowledge, we are the first to design ASIC for deep-neural-network-based
feature point extraction for SLAM.

To implement the neural-network-based feature point extraction for SLAM, a few
implementation problems require solutions in terms of hardware optimizations. The data
path optimization is critical due to the large neural network size (~46 GOPS for image
resolution of 480 x 640) of SuperPoint. There is a large transmission of data between
off-chip and on-chip memories. In [23-27], the CNN accelerators optimized the data path
using loop unrolling and tiling for the enhanced performance of the convolution layer.
Meanwhile, they managed to store intermediate results and partial sums, resulting in a
process of convolution in extra memory registers, line buffers, or on-chip memories to
reduce the off-chip data movement. The input size to every convolution layer is large, and
therefore the memory constraint is strict and it is hard to store all the data in on-chip memory.
Therefore, a pipelined architecture with reduced hardware resources is required to optimize
the data path to restrict off-chip movement and extra on-chip storage. Considering the
data storage, the traditional ping-pong buffer technique is an overhead in terms of memory
consumption because it uses disjunctive memory space [28]. On-chip static random access
memory (SRAM) is dominant for CNN accelerator designs [29]. Therefore, the reduction
of memory size ultimately reduces the chip area and, consequently, chip cost. Meanwhile,
due to large memory size, static power and energy consumption increase by a factor of 25 x
times due to the processing of fetched data [30,31]. The work in [28] advised the overlapped
method for activation layers’ data rather than the traditional ping-pong buffering technique.
However, it still requires extra memory to store overlapped data.

In this article, FPSNET handles the complex data flow by allowing the reuse of data
efficiently. Memory architecture and data storage techniques are employed to reduce
memory size and storage devices. ReLU operation is implemented to avoid the partial sum
storage to off-chip memory. Therefore, the FPSNET accelerator mainly has the following
four key innovations.

1. A new convolution layer data flow is implemented to manage the streaming data
using a row-based feature processing.

2. An individual state controller (SC) and the bus arbiter and decoder module are
deployed.

3. A multi-bank memory system employing feature and synapse parallelism is designed
to meet the data access demand, which avoids the traditional ping-pong buffer.

4. Hardware implementation of the ReLU activation function is optimized.

The FPSNET design achieved a 1.0 TOPS/W of power efficiency which is 2.4 x higher
compared to previous ASIC design [32]. Moreover, it reduces an overall 35% of memory
consumption and the area is improved by 1.9 x to implement the feature point extraction
for the SLAM algorithm.

The rest of the paper is organized as follows. In Section 2, a background of SLAM,
SuperPoint neural network, and parallelism employed in this work is explained. FPSNET
architecture and data path flow are presented in Section 3, followed by proposed optimiza-
tion techniques in Section 4. Experimental and simulation results are explained in Section 5,
and the conclusion is given in Section 6.
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2. SLAM Based on SuperPoint Neural Network

Figure 1 shows the key elements of an algorithm in our neural-network-based SLAM
system. It shows that keypoint extraction using a SuperPoint neural network is implemented.
The following section gives a brief overview of CNN-based SLAM and its architecture.

Semantic The semantic information is used for
(Segement) loop closure

Keypoint

Extraction SuperPoint (CNN)
Keypoint
Matching SuperGlue Neural Network
/
Pose bost p .
Estimation ost Processing

Figure 1. SuperPoint-based feature point extraction.

2.1. CNN-Based SLAM

SLAM has become a major research topic in robotics. It is an algorithm to make the
robot aware of the surrounding environment and the position of itself, which is a basic
ability of humans. Currently, the basic framework of SLAM has been well-developed
with some widely applied algorithms such as ORB-SLAM [33], LSD-SLAM [34], and DF-
SLAM [35]. Generally, a SLAM system includes three threads: tracking, local mapping,
and closure detection. There are different algorithms for tracking thread, such as feature-
point-based and optical-flow-based algorithms. The feature-point-based algorithms are
the major method due to the high robustness in different illumination conditions. The
first step of feature-point-based algorithms is to extract the feature points from the input
frame. Then, by matching the feature points between different frames, the relative rotation
and translation can be estimated. In previous research, different hand-crafted extraction
methods have been applied. Although sufficient works based on those algorithms have
proved their efficiency and reliability, there still exist different shortcomings of different
algorithms. With the fast development of deep neural networks, convolutional neural
networks are promising in the field of interest point extraction. SuperPoint based on CNN
outperforms the previous works significantly [7].

2.2. SuperPoint Architecture

The architecture of the feature point extraction method using the SuperPoint convo-
lutional neural network is presented in [7]. It works on full-sized images and generates
interest point detections with fixed-length descriptors in a single forward pass. This is
where the complexity of neural network lies. It is working on a full-sized image and an
encoder is shared and used to reduce the image dimensions, as shown in Figure 2.

The encoder part uses a VGG-style [36] to downsample the input image. It consists
of convolution layers, max-pooling, and nonlinear activation function, i.e., ReLU. The
three max-pooling layers reduce the input image size of H;, x Wj, to Hoyt = H;, /8 and
Wout = Wi, /8. The encoder maps the input image I € RF"*Wir to an intermediate tensor
of X € RHoutxWoutxF yith smaller spatial dimensions but with greater channel depth F.
The input image size to this architecture is H;;, x Wj,, = 480 x 640. The architecture consists
of eight convolution layers and a kernel size (K) of 3 x 3 with three max-pooling layers after
every two convolution layers (group of two convolution layers Convla, Convlb, etc.). The
features are changing as 64-64—-64—64-128-128-128-128 with a window stride (S) of one.
Therefore, considering an input image of 480 x 640 resolution, the network size becomes
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too large as ~46 GOPS and it is hard to run on CPU and even on GPU/FPGA due to large
power consumption. To use fewer hardware resources, the whole network is quantized (Q
bits) to a 16-bit fixed point to achieve the required performance without any significant loss
in accuracy [37].
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Figure 2. SuperPoint network model.

2.3. Parallelism in Convolutional Neural Network

The basic computation in the encoder part of the SuperPoint neural network is the
convolution of input feature maps with kernel weights. It is required to optimize the
data path because it requires a huge amount of data transfer from off-chip to on-chip
memories. Moreover, parallelism is also critical to acquire high throughput and use the
limited hardware resources efficiently. Therefore, a data path is optimized in this work and
it is explained in Section 3. The convolution layer can be unrolled and tiled as presented
in [23,26]. Therefore, loop unrolling and tiling are performed in this work as shown in
pseudocode of Figure 3, where T =< Ty, Tm, Tr, T¢, T, T; > is a set of unrolling factors.
The loops which are marked by the inner box are unrolled to operate in parallel and the
loops outside the inner box execute sequentially. Three types of parallelism can be achieved
to different unrolling factors, which are as follows [19,26]:

1.  The loops related to the feature map can be unrolled to Ty and Ty < Tn, Ty >
factors. Ty are input feature maps processed at the same time while generating Ty
output feature maps. This is called feature map parallelism (FP).

2. Theloops for neurons are also unrolled with factors of < T, T. >, where T; x T. of one
output feature map are processed at the same time. It is called neuron parallelism (NP).

3. Synapse-related loops are also unrolled with factors < T;, T; > where T; x Tj synapses
of one kernel weight are computed in one processing step and called synapse paral-
lelism (SP).

It is an ideal architecture that can support all of the abovementioned processing
styles. However, it is not easy to utilize all of these parallelisms due to the different data
flow in these processing styles. Therefore, in FPSNET, a multiple feature map, a single
neuron, and multiple synapses (MFSNMS) are implemented with feature map and synapse
parallelism. The feature map and synapse parallelism-related loops are unrolled with
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factors < Ty =16, Ty =8 >and < T; = 3, Ti=1>, respectively, and neuron parallelism
istakenas < T, = 1, T, = 1 >. The final architecture on the basis of the abovementioned
loops is shown in Figure 3. Therefore, at each clock cycle, Ty input feature maps are
convolved to generate Ty output feature maps.

The pseudocode for a Loop Unrolling

for (n=0; n<NY; n+=16) {
for (m=0; m<M?; m+=8){
for (r=0; r<R®; r+=1) {
for (c=0; c<C* c+=1) {
for (i=0; i<K; i+=3)  {
for (j=0; j<K; j+=1) {
Lo:

T,

for (tn=n; tn<n+16; tn++) {
for (tm=m; tm<m-+8; tm++){
for (tr=r; tr<r+1; tr++) {
for (tc=c; tc<c+1; tc++)  {
for (ti=i; ti<i+3; ti++)
for (tj=j; tj<j+1; tj++)

{

Loop Unrolling

{

Tw,

Tw,

Li:

33333}

(n) — 1 (m)
O(tr,tc) + I

1@

(n,m)
xWej) s

 (tr+ite+j)

133333,

IN: Output feature maps; 2M: Input feature maps; °R: Output neuron rows; “C: Output neuron columns

Figure 3. Loop unrolling and parallel architecture.

3. FPSNET Architecture and Data Path
3.1. Data Path Optimization for Pipelined Architecture

In [26], algorithm 1 shows the original loop computation to perform convolution
in the convolution layer. To perform convolution efficiently, loop reordering and tiling
have already been implemented by many researchers [23,25-27]. There is a problem with
storing the entire intermediate results in on-chip or off-chip memories. Meanwhile, a
doubled buffer scheme in [25,27] helped to pipeline the computation. However, there
are problems of consuming a large number of on-chip RAMs when a network becomes
deeper. Refs. [24,38-41] utilized off-chip storage for intermediate results to reduce the size
of on-chip memories. Therefore, off-chip memory access slows the computation and also
consumes more power.

In this design, the target is to eliminate the off-chip memory accesses for intermediate
data and partial sum while reducing the on-chip SRAM. Similarly, pipelined architecture is
applied to accommodate the streaming nature of data. Kernel weights are stored to on-chip
SRAMs and are fully reused while activation data are changing at each clock cycle. The
partial sum is stored to on-chip memories and fully reused partial sum to perform the
ReLU activation function to generate output feature maps. Therefore, ReLU hardware
optimization is implemented to efficiently reuse the partial sum. In this architecture,
weights are fully reused by storing all the weights required for generating Tx output
feature maps, and input feature maps are partially reused for Tys convolution. While
shifting the convolution window towards Fyy features, the next input feature maps (Ty)
are fetched from external memory to on-chip memory. Therefore, this operation repeats
Itr = Fin/ Ty a number of times till the computations of all Fyy features are completed.

The data flow implemented in this work is shown in Figure 4. The sliding cube of size
(K x 1 x Tp) from the input image slides along the width of an input image and it is called
a row-based feature processing operation. This input sliding cube is convolved with Ty
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number of weights every time to generate temporary Ty output values. These weights are
reused in a row-based feature processing operation till the columns reach a width of input
image Wj,,. The input sliding cube then shifts Tj; channels and reaches towards the end
of Fiy features. These Ty computations are performed in parallel and their partial sum
is saved to on-chip memories to perform single-point ReLU operation after completion
of all Fyy features convolution. This process continues for the next change in a row till it
completes the convolution of Hj, input image. Optimized address generation logic in the
output module is employed to efficiently perform the ReLU activation function by reusing
the partial sum.

Considering the hardware resources, memory banks are required to provide the
parallel data to Ty number of processing elements (PEs). The memory size for the input
image and kernel weights is dependent on the convolution layer number. However, the bit-
width of each memory is of fixed size K x Q, where K is kernel size and Q is quantization
bits of input image and weights. The depth of memory is dependent on the convolution
layer number.

| o L
Win . =" . 0 --Wout - /
® ity e
B o -
Sliding
Hin cube Input Hout
Weights
FlN FOUT
e — Output feature maps

Figure 4. Streaming convolution layer data flow.

3.2. Architecture Qverview

Figure 5 shows the FPSNET accelerator architecture for the SuperPoint neural network.
It consists of registers for configuration, control, and status data. Bus arbitration is imple-
mented for data bus handling and the decoder part is configured on the input address for
the selection of memory banks and generation of required control signals. In this design,
loop unrolling and tiling are employed with the factor of < Ty = 16, Tj; = 8 >. Input
buffers consist of Ty number of memories in a bank and they also consist of a finite-state
controller to configure and manage the writing and reading of data from memories. The
address generation unit (AGU) is designed to generate a reading address to efficiently
manage the overlapped data. Similarly, weight buffers consist of Ty memory banks and
each memory bank contains Ty number of memories. AGU manages to fully reuse kernel
weights. Output buffers have Ty number of memories and they store partial sums to
memories that come from PE units. Optimized ReLU hardware is implemented to perform
the activation function without sending intermediate data back to external memory. The
overall architecture is designed for 16-bit fixed-point data.



Electronics 2022, 11, 4168 7 of 21

Input Image Buffers

Control word

Configuration [ AGU & State Controller
64b Param. Register A
o Arbiter 48b address ldata -

it ]
Control & Status | | 64b sipacadel
Register a3 | BON [N ---------

y
Input Weight Buffers lTM x 48b
Bank_0

~ — Tmx Ty - -
n « 48b Computational Engine

PE PE PE PE
Bank _Tal

n. .. PE| |PE| |PE| | PE

Output Buffers

PE [ PE [ PE [ PE

64b ReLU Optimization T” x 160 PE PE PE PE

addressl I data

H “ ﬂ E I On-chip Memory

Figure 5. Architecture overview.

AGU & State Controller

3.3. Configuration Parameters

The configuration word is transferred to the chip from the external interface to the
local register on a 64-bit data bus. The control register receives the control word which
also includes the configuration information and commands. The configuration word
information is shown in Table 1. The control register receives the configuration parameters
as mentioned in Table 1 and transfers them to the configuration register. SpL. command
is reserved for the special convolution layer of the first input image of size 480 x 640 x 1
(one input feature).

Table 1. Configuration word information.

Signal Name  Register Bit(s) Information

Conv 1 Cio) Convolution start command

SpL Cry Special command for 1st Convla input feature

Lo Cizz) Convolution layer group number

Ttry, Cls.4) Iteration number for input features (Itryn, = Fin/ (Fe X Ta))
F. Ci0:) Stored number of input features in each memory

ConvP Cy Convolution done pulse

1 C: 64-bit control register.

3.4. Arbiter and Decoder

The arbiter executes the bus arbitration to manage the data flow from the output
interface to internal on-chip memories and registers. Input data are received on a 64-
bit data bus and memories are designed to store K x Q pixels at each memory location.
Therefore, it requires 48 bits out of the 64-bit bus where the arbiter is handling the data and
address bus. There is a 21-bit address (A[.o)) bus and the decoder decodes and generates
required control signals for AGUs in input, weights, and output buffer modules.

The lower 11 bits (A[1q,]) of the address bus are reserved for writing and reading of
data to all memories. From A .11}, number of bits generate control signals for AGUs and
the selection of each memory in independent module. The details about the individual
address decoding are presented in Table 2.
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Table 2 illustrates the address decoding for the decoder and it also shows the address
range required for different memories and banks. For example, for each weight memory
bank selection, the valid address A[;7.14) range is 0000 to 1111, and within each memory
bank, Aj13.19] bits can select any memory out of a total Ty memories.

Table 2. Address decoding.

Mode ! Apoas) A17:14) A13:11]
Image Mem. WR 2 001 XXXX 000-111
Weights Mem. WR 010 0000-1111 000-111
Output Mem. RD 3 011 XXXX 000-011

Control Reg. WR 100 XXXX XXX
Status Reg. RD 101 XXXX XXX

L A: 21-bit address bus. 2 WR: write. 3 RD: read.

3.5. Processing Element (PE) Design

The processing element design is shown in Figure 6a. As discussed, the two feature-
map-related loops are unrolled with a factor of < Ty, Tps >. At each clock cycle, this design
handles the Ty input to each PE unit and generates data for Ty output feature maps in
parallel. The number of PE units depends on the value of Ty, and the input of each PE unit
is based on T}y, as shown in Figure 6a. Each PE unit design consists of (K x Tys) multipliers
and ((K x Typ;) — 1) adders. After initial latency, at every cycle, (K x Ty) neurons and
(Tn % K x Ty) synapses data are loaded. In each PE unit, they are multiplied and locally
summed up to generate a partial sum. This output of partial sum is then saved into output
on-chip memories and waits for the next data to come for further summation. Therefore, the
number of clock cycles to complete Ty neurons are equal to the size of K. This whole data
flow to each PE unit is explained in Figure 6b. The PE unit is designed to have pipelined
architecture, and the critical path is reduced to a delay of one multiplier and two adders. In
each PE unit, there is a sub-PE unit to multiply the input of K inputs and sum the results
for further addition to the top PE module. Therefore, the top PE unit receives the data from
each sub-PE unit to generate the partial sum on (K x Ty) inputs.

S PE_3x8 TN-1
o
|
PE_3x8 O
1p[47:0]
P 0
W,[47:0] Add
ﬁ pSUM7y.;
; - + -
' ] psumg

Im-1[47:0]

Win.1[47:0] Adc

Figure 6. Cont.
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: Q) ==mzi

Im1[47:0] | 21311

—14]2]s

weight_1 619/ 0
Wn.1[47:0]

fm_1
- (b) C = Clock cycle

Figure 6. (a) Processing element (PE) unit design. (b) Processing element data flow.

3.6. On-Chip Memory Architecture

On-chip memory architecture is based on the unroll factor of < Ty, Ty >, as shown in
Figure 5. Similarly, the memories are arranged to provide parallel data of (K x Tys) neurons
and (Ty x K x Tyy) synapses to processing elements. Effective input image memory size
is (K x Q x (Wj;, +2P) x F, x Tp1), where P = number of zero padding and total memory
size is 96 kB, because memory size depends on the number of address bits 2* (x = number
of address bits). Similarly, the weight memories are organized into Ty memory banks
and each memory bank contains Tj; number of memories. Therefore, the usable memory
size for input weights is (K x K x Q x F; x Itry, X Ty X Tp). The actual memory size is
48 kB; output memory is arranged based on Ty value, and memory size is (Q x Wy, x Ty).
Therefore, total output memories consist of 32 kB size. A total size of 176 kB is utilized as
on-chip memory in this chip design.

4. Proposed Optimization Techniques
4.1. Data Arrangement in Memories

As explained in the previous section, the accelerator is based on unroll factor of
< Tn, Ty >. Therefore, considering the input image memories, they depend on Ty, value
and weight memories are placed according to (Ty x Tps). The number of output memories
is Ty. The objective is to place activation data in memories to avoid overlapping and the
traditional ping-pong storage technique. Further, the required data arrangement will help
to compute the one-point ReLU activation function without transferring data to off-chip
memories. Since the architecture is pipelined, after initial latency, results are computed at
every clock cycle.

Each input and weight memory can store f;; number of feature maps out of a total
Fin input feature maps. In this design, a non-overlapped technique is proposed and
implemented instead of the overlapped ping-pong technique. Therefore, more input features
can be stored on-chip and it will reduce the memory transaction to off-chip memory.
Figure 7a shows the data arrangement for an input image where, out of Fjy = 64 features
maps, f = 16 number of input feature maps are stored to on-chip memories for Convlb
layer as an example. Meanwhile, in each memory, at a time, two f,,,(F. = 2) are stored as
depicted in Figure 7a. Similarly, Figure 7b shows the data arrangement for input weights.
As compared to input features, all weights of Ty numbers are stored in on-chip memories
to avoid external memory access, and weights are fully reused for the entire convolution
for Ty output features. To implement the proposed data arrangement technique, the AGU
becomes complex to manage the overlapping of data for activations.
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Figure 7. Convlb layer example for data arrangement. (a) Input image data; (b) input weights data.

Table 3 presents the parameters of the input image and weights for each convolution
layer for the SuperPoint neural network. In all convolution layers, padding (P) is true and
F. shows a total number of input features stored in each memory. Hj, and W, are the
height and width of an input image. The iteration number and memory locations required
for each memory are calculated as follows:

Lnem = (Win + ZP) x F (1)

Itrno = FIN/ (Tm X Fe) ()

Fin and Foyt are input and output feature numbers, respectively, for each convolution
layer. The iteration count Itry, shows that a maximum number of iterations is required
to complete convolution for all F;, features. The number of memory locations required to
store all input weights can be computed as follows:

Wiem = K X F. X Itry, 3)
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Table 3. Convolution layer parameters for input image and weights.

Conv. Layer No. FN Four H; Wiy P F. Lyem Itry, Winem
Convla 1 64 480 640 True 1 642 11 24
Convlb 64 64 480 640 True 2 1284 4 24
Conv2a 64 64 240 320 True 4 1288 2 24
Conv2b 64 64 240 320 True 4 1288 2 24
Conv3a 64 128 120 160 True 8 1296 1 48
Conv3b 128 128 120 160 True 8 1296 2 48
Conv4a 128 128 60 80 True 16 1312 1 48
Conv4b 128 128 60 80 True 16 1312 1 48

1 Itrn, = 1: Special case for 1st Convla layer.

4.2. Address Generation Unit (AGU)

The independent AGU helps to generate an address for reading data of input features
and weights. The AGU of the output module incorporates both read and write operations
for special ReLU hardware implementation.

An AGU for input feature maps is designed to prevent extra storage required for
overlapped data in the traditional ping-pong technique. When K x K window shifts by a
factor of stride Sy, there are overlapped data for input image and also intermediate results
which require extra on-chip storage or off-chip movement [23-27,38—41]. In Figure 8, it
can be observed that overlap data are unnecessarily written to on-chip memory to make
the address generation logic simple with extra overhead of on-chip memory. To avoid
this data arrangement, in this work, an optimized AGU logic is implemented to manage
the overlapping. The data are written normally with consecutive write without writing
overlapped data to memories, as depicted in Figure 8. However, to read the required data,
AGU logic becomes complex but a considerable amount of memory is saved.

1 0|5(1
1 11°13 9123 Overlapped
|
| 5 2[5(2 e data
| consecutive
1 0 6|12 Overlapped [ 65 [ 1 orting
Stride=1 4'/—2 9(0| 4 dat‘a' s TS
re-writing
> KA 2123
6 1|1|5 } ‘

Figure 8. Proposed data arrangement technique.

The AGU logic for reading an input image is shown in Algorithm 1. The final formula
is given below after generating the required parameters for read address.

Aj = (Sk x Ap) + Os (4)

where

0, if(Os = 2)

A — Ap+1, if(Os =2) 5)
p Os +1, otherwise

0, otherwise

,andOs:{

where A; = image read address, Sy = stride value, A, = address pointer, and O; = offset ad-
dress.
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Algorithm 1 AGU for input image reading.

Require: valid < 0,1
Require: Sy : stride

1: Os <0

2: Ap +~0

3: while valid # 0 do > Valid signal from SC
4: Os 05 +1

5: if O; = 2 then

6: O; 0

7: end if

8: end while

9: fori < 0, Lyey — 1 do
10: if O; = 2 then

11: Ap — Ap+1
12: else

13: Ap < Ay

14: end if

15: end for

16: Aj (Sk X Ap> + Os

Similarly, to provide the exact input weight for convolution with the input image,
address generation logic is required because all weights are stored in on-chip memories.
Algorithm 2 shows the address generation logic for weights. The formula to generate the
required read address is given below:

Aw = (3 X Fe x Itrn,) + (3 X Fi) + Os (6)
where

o {Fm—i-l, i#(j = (Wiem/F2)) ”

F., otherwise

where Ay = weight read address, F;; = current feature map for processing (i.e., 0,1, ..., 15),
i = {0, 1, PN (Imem_ 1)}, and] = {0, 1, e (ngm_ 1)}.
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Algorithm 2 AGU for input weights reading.

Require: valid < 0,1
Require: [try, : Iteration Number
Require: F.: Feature Count

1: O+ 0

2. Fy <0

3 P+ 1

4: while valid # 0 do
5: Os+ 0Os+1

6: if O; = 2 then
7: Os <0

8: end if

9: end while

10: forj < 0, Wyyems — 1 do
11: if j = ((Wpem/F:) X P,) then

12: F,+ F,+1

13: P, <+ P,+1

14: else if j = Wy, then
15: Fn, <0

16: P,+0

17: end if

18: end for

19: Ay = (83 X F; x Itrn,) + (3 X Fy) + Os

4.3. Memory Optimization

As discussed in the previous section, the AGU manages the overlapped data to prevent
extra storage required for the temporary storage of data. The traditional ping-pong technique
increases the memory size. Using the proposed method, there is a significant improvement
in memory utilization. It helps to reduce memory consumption, power, and area because
memory elements in ASIC are bulky and consume much power and physical area [29]. The
following equations help to understand how much memory can be reduced.

W;, +2P — K
Wno - msi +1 (8)
k
Hipem_o = Fe X K X Wy )
Hipem_n = Wiy X Fe (10)

where W, = number of windows, W;,, = width of input image, K = kernel size, Sy = stride,
Hjyem_o = total number of memory locations for overlap, and Hyen_n = total number of
memory locations for proposed technique. The percentage in memory reduction can be cal-
culated using Equations (9) and (10) while using the AGU and data flow of this architecture.

4.4. ReLU Hardware Optimization

Figure 9 shows the ReLU hardware optimization which is implemented in this architec-
ture. The AGU and SC module control the reading and writing of data to output memories.
SC generates the control signals for data selection of reading and writing to memories. For
example, considering the Convlb layer, convolution is performed on K x Ty input feature
maps with kernel weights. When computing convolution for feature maps f, =1to 8,
there is an initial partial sum, stored at each memory location, resulting in a convolution
of K x K window. During this calculation, the valid signal remains ‘0" generated from
SC, as presented in Figure 9b. However, when starting computing convolution of feature
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maps f =9 to 16, SC generates valid signal ‘1’ to the ReLU optimization block to read the
previously written partial sum data, performs addition to new incoming partial sum from
each PE unit, writes back to output memory, and waits for the next partial sum result, as in
Figure 9c. This process continues till all input features, Fin, are convolved, and then the
final sum can be used to perform a single-point ReLU operation. Since intermediate data
are not written back to external memory, off-chip data transmission is saved. While reading
the data from output memories after completing the convolution on all input features,
ReLU is performed when data read back to external memory.

K | Outry.y

. | PE_3x8_TN-1 [
[ - Outy
PE_3x8 0 RelLU Optimization

1,[47:0]
0 N E_» (Mult+Add) .

Concatenate

H ; g ¥
y ' 1T data_out
Itm.1[47:0] 39
PEtma
Wrn.1[47:0] a_» (Mult+Add) —
SC = State Controller
(a)
Output Outqu i
ReLU Optimization ReLU Optimization
data_out data_out
Output

Output

(b) (c)

Figure 9. Proposed ReLU processing design. The AGU generates the required read /write address

and SC produces the required control signals. (a) Interconnection between PEs and ReLU design
in the output module. (b) Initially, a normal partial sum writes to output memories. (c) For the
next partial sum, logic is implemented for reading, the addition of results, and writing back data
to memories.

5. ASIC Implementation and Results

FPSNET ASIC is designed using 65 nm LP CMOS technology. The chip layout picture
and specifications are shown in Figure 10. The design is implemented in Verilog HDL,
VCS is used for simulation, and Synopsys design tool flow is followed for TSMC 65 nm
technology. It achieves a power efficiency of 1.0 TOPS/W for a core area of 8.3 mm?.

5.1. ASIC Design

The FPSNET accelerator chip is based on FP and SP parallelism with the unroll factor
of < Ty = 16,Ty; = 8 >. The design is implemented in Verilog HDL, and Synopsys
design tool flow is followed on TSMC 65 nm LP technology. Synopsys Verilog Compile
Simulator (VCS) is used for simulation at each design step, i.e., pre-post synthesis and
post place-and-route (PnR) netlist simulation. Synopsys PrimeTime (PT) is employed to
estimate the power, and the IC compiler is used for PnR and final GDS-II generation.
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Technology TSMC 65-nm LP
Chip Area 4.0 mmx 3.0 mm
Core Size 3.3mmx 2.5 mm
Total SRAM 176 KB
Gates 210K
= Supply Voltage Core: 1.2V,
g 10: 3.3V
< Max. Frequency 250 MHz
Peak Performance 204 GOPS
Operation mode 16-bit

Convolution 16-bits fixed-point
Kernel size 3x3
Power consumption 203 mw

Figure 10. ASIC layout and specifications.

5.2. Network Architecture

The ASIC is designed for feature point extraction for the SLAM algorithm. The
SuperPoint neural network consists of eight convolution layers, an activation function, and
two max-pooling layers. The whole network is quantized to a 16-bit fixed point and there
is no significant loss of accuracy for targeted application. The 16-bit quantization with
<s,i,f >=<1,8,7 >, where s = sign bit, i = integer bits, f = fraction bits, is employed
in this architecture. The MS-COCO 2014 dataset [42] with 80,000 test images are used for
training of SuperPoint.

A total of 4000 pairs of images are tested on a trained SuperPoint neural network for
matching. The matching score (M. Score) is the measure to determine the effectiveness of
the matching technique. M. Score is the average ratio of the number of correct matches to
the total number of detected keypoints. Figure 11 illustrates the visual results of extraction
and matching of SuperPoint feature points. Initially, the feature points of both input images
are extracted by the SuperPoint network. Then, the feature points of the two images
are matched by the SuperGlue network [43]. Green pairs are the ones with an accurate
matching, while red ones are mismatched. Then, the translation and rotation of the two
images are estimated and compared with the ground truth. The error of estimation is very
small, showing that SuperPoint has a high M. Score. Table 4 shows the matching results of
the proposed technique using SuperPoint neural-network-based feature point extraction
and SuperGlue for matching. The simulation results show a high M. Score as compared
to the baseline of 32-bit floating-point architecture. Moreover, the M. Score of Figure 11 is
32.86, which is 1.4x better than floating-point results.

Table 4. Matching results.

Quantization 1 AUC@5° AUC@10° AUC@20° Precision M. Score
Baseline (32-bit floating point) 39.50 59.74 75.95 98.67 23.85
Our work (16-bit fixed point) 36.76 56.84 73.46 98.54 33.85

1 AUC: area under the cumulative error curve.
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SuperGlue .
AR: 0.9° -
[XE s

Figure 11. Simulation results of feature points extraction and matching.

5.3. ReLU Optimization and Simulation

As discussed in Section 4, ReLU hardware optimization is implemented without stor-
ing intermediate results and partial sum to off-chip memory. ReLU activation function is
a single-point operation and it is critical to optimize the data path for successful imple-
mentation of ReLU operation. There are only two clock cycles to generate a result of K x K
window convolution. However, the partial sum is received at every clock cycle and we
need two pipeline registers to manage the ReLU calculation, as shown in Figure 9. The
simulation results are depicted in Figure 12. It can be observed that on the first clock cycle,
the data are fetched from on-chip memory, addition is performed with incoming data from
each PE unit, and new sum data are written back to the memory at the second clock cycle.

L Group1

- sol 1 1 1 1 1 [ I OO L
o~ psum_en st1

- addr_rd_relu[9:0] 100006 000 X 001 I 002 ) 003 X
4 psum_1_r(15:0] 16hoo17 || f 009b | faa3 | Ol74 | freb | f93® | 0072 ) 0143 | fesa [ o0z7d | 0180 | frs

- psum_1_m[15:0] 16hfeb4 0000 | 00%b | fda3 | 0174 | ffeb | fe39 | o072 | 0143 )| f8sa | o027d _J 0150

r Adder_1_1_temp[15:0] 16hoosb | || fese | ffly | olsf | f924 | feab | oibs | 996 | fado )| 0408 | 955 |  fase

- Adder_1_2_temp[15:0] 16hfF0F | | feze [ ffb2 | ffoz | fase [ fose |  faee | fas | fei3 [ feéo [ fbda [ fe3e
+-r Adder_1_3_temp[15:0) 16hfde6 | | fce | fdfo [ fd40) fo9a| 530 | f42e ) f586 f4f6 | f410 | f6lb | f668, feaz) fre4 |  f810
- data_rd_L_temp[15:0] 16hfed7 fede 1 P — 1 08 1 a2

. wren_out stl [

e rden_out s | ( T —w 1 1

- addr_wr_out[9:0] 10M006 000 X \3—991/ NI 002 ) 003

- data_wr_1[15:0) 16hfdes | | fcre | fafo [fd40) f99a]  f530 |\ f42e | f586, f4f6 | f410 | f6lb ) fees, fesz ) f7a¢ | {810

rden_val 1 stl

Read previous (psum_prev + psum_new)
“psum_prev” data and write back

Figure 12. Simulation of ReLU hardware design.

5.4. Area and Power of PE unit

The PE unit of previous work [26] is synthesized using Synopsys design compiler
(DC), and the results are compared with our proposed design, as presented in Table 5.
Both architectures use the parallelism of FP and SP; therefore, each PE unit takes (K x Tyr)
pair of input features and weights at each clock cycle. To compare the PE design with
previous work, the design of the PE unit in [26] is modified to make a fair comparison with
this design in terms of area, power, and speed. Table 5 shows that both designs implement
the same number of operations. There is an area reduction of 1.5x, and 1.2x improvement
in terms of power consumption of this work. The design in [26] does not use built-in adders
and multipliers; instead, Booth-encoding multipliers with Wallace tree adders for its PE
design are implemented.
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Table 5. Comparison of PE unit.

Metrics OJCAS [26] This Work

Precision (bit) 16 16
Technology (nm) 65 65

Area (mm?) 0.0739 0.0494
Frequency (MHz) 250 300
No. of operations 48 48
No. of MACs 24 24

Power (mW) 8.725 7.115

5.5. Input Image and Weight Memories

Figure 13 shows memory utilization compared with the traditional ping-pong memory
technique. Figure 13a represents the percentage improvement of active memory locations
for each convolution layer group. It can be observed that a maximum of 67% improvement
in memory utilization is achieved, as compared to a traditional approach. Figure 13b
shows the overall memory utilization for implemented SuperPoint architecture. For the
input image, there is a considerable improvement of 50% in memory size as compared to a
traditional approach, and an overall 35% of memory size is reduced. Therefore, it shows
the effectiveness of the proposed design technique that is implemented in this work.

m Overlapped Ping-Pong WR Proposed WR

67% 66% 66% 66%
500 v 7 v v v

On-Chip Memory Locations

1 2 3 4

Convolution layer group

(a)

B Overlapped Ping-Pong Proposed Technique

200 ,

180
@ 160
% 140

50%

o o

Memory Size
=

N OO N
(=] (==l

. - -
»

Input Image (TM =8) Input Weight (TM =8 x Output (TN = 16)
TN =16)

(b)

Figure 13. On-chip memory size comparison. (a) The results are for traditional ping-pong memory

(=]

technique with proposed design. (b) The overall memory size comparison.
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5.6. Reusability of Data

The SuperPoint neural network size is very large (~46 GOPS) and it requires a large
amount of data movement from off-chip to on-chip. Therefore, as discussed in Section 4,
the architecture is designed to fully utilize the intermediate and partial sums generated in
a process of convolution without moving data to off-chip memories. As a result, it reduces
off-chip data transactions and power consumption. The architecture is also pipelined, and
after initial latency, the results are generated at every clock cycle. ReLU architecture is
designed to manage the one-point computation of the ReLU activation function. Moreover,
memory organization is arranged to manage the overlapping of data.

The architecture also exploits the loop unrolling and tiling. It uses the FP and SP
parallelism that further relaxes the architecture to work in parallel on input feature maps
and generate output features at the same time. Further, it can be observed from Figure 13
that a considerable amount of memory is saved.

5.7. Implementation Results and Comparison
5.7.1. Overall Chip Area and Power Consumption

Figure 10 shows the chip picture, and its core area is 3.3 x 2.5 mm?. In simulation,
the chip consumes power of 203 mW with a core voltage of 1.2 V. The total number of PEs
is 16 and the number of operations is 816. Figure 14 shows the chip area and simulated
component-wise power breakdown. The power breakdown is obtained through the post-
layout simulation with actual workloads. The area breakdown is obtained using the area
report of post-place and route. The power consumption of memories remains at 11% and
the area occupied by memories is 51.61%. This is because a multi-bank memory system is

\ Memory,

employed using FP and SP to support the proposed data path.
\\'/
51.61%

Standard Cell, / ~~~———_Combinational,

(a) (b)

Figure 14. (a) Area breakdown. (b) Component-wise power breakdown.

10_PAD,

Clock Network, Clock Network,
12.48%

5.45% 7.01%

Register, 0.88%

10_PAD,
13.32%

Memorv,_/

“ 11.00%

Combinational,
21.45%

5.7.2. Comparison with other ASIC designs

FPSNET achieves a peak throughput of 204 GOPS at a working frequency of 250 MHz.
The power efficiency of 1.0 TOPS/W is achieved by the FPSNET for SuperPoint architecture.

To the best of our knowledge, this is the first ASIC design for SLAM application
for feature point extraction using a SuperPoint neural network. However, to make a
comparison, we compared the FPSNET accelerator chip with the previous ASIC designs,
which are proposed as general-purpose accelerators. Table 6 shows the comparison of
FPSNET with other neural network architectures.

FPSNET architecture is based on 16-bit fixed-point architecture, while other architec-
tures use a different number of precision bits. We tried to make a comparison for other
designs using a 16-bit design and with the same technology of 65 nm. The power efficiency
results without voltage scaling are reported and compared with FPSNET. Eyeriss achieved
a peak throughput of 84 GOPS with a power efficiency of 0.14 TOPS/W at 16 bits. However,
FPSNET performed 2.4 x better in terms of throughput and 7.1 better considering power
efficiency as compared to Eyeriss. Moreover, DNPU [44] performed 1.5x better in terms
of throughput than FPSNET but it has the same power efficiency. ENVISION [45] and
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THINKER [32] can operate on 4, 8, and 16 bits with peak throughput of 76 @ 4b and 410 @
8b GOPS, respectively. It can be observed that the FPSNET achieved a 2 x improvement
in performance with the state-of-the-art design STICKER [32]. Moreover, it also achieved
a power efficiency of 1.0 TOPS/W, which is 2.4x improved efficiency, as compared to
STICKER. Considering the efficiency concerning area, FPSNET has 1.9 x better area effi-
ciency compared to STICKER. As FPSNET is compared with other designs using the same
technology of 65 nm, compared to the DNPU [44] and THINKER [21] with close peak
throughput and power efficiency performance, the presented FPSNET has the smallest chip
area (at least 42.4% reduction).

Table 6. Comparison with previous ASIC designs.

Eyeriss DNPU ENVISION THINKER STICKER Our Work
ISSCC2016 [41] ISSCC2017 [44] ISSCC2017 [45] JSSC18 [21] JSSC19 [32] (FPSNET)
Technology 65 65 28 65 65 65
(nm)
Core Area 12.3 16.0 1.9 14.4 7.8 8.3
(mm~)
Voltage (V) 1.17 1.1 1.1 1.2 1.0 1.2
On-chip
SRAM (kB) 181.5 290 144 348 170 176
Core
Frequency 200 200 200 200 200 250
(MHz)
Number of PEs 168 776 256 512 256 16
Number of
MACs 168 768 512 1024 256 384
Peak
Performance 0.084 @ 16b 0.300 @ 16b 0.076 @ 4b 0.410 @ 8b 0.102 @ 8b 0.204 @ 16b
(TOPS)
Bit-width (bits) 16 4/8/16 4/8/16 8/16 8 16
Power (mW) 450 279 300 386 248 203
Power
Efficiency 0.14 1.0 0.26 1.06 0.411 1.0
(TOPS/W)
Efficiency w.r.t.
Area 6.83 18.75 40.0 28.47 13.08 24.73
(GOPS/mm?)

6. Conclusions

The FPSNET architecture is proposed and designed in 65 nm CMOS technology for
the feature point extraction in SLAM using SuperPoint neural network. The proposed
chip consists of 16 PE units that can achieve a peak throughput of 204 GOPS at a working
frequency of 250 MHz. To improve the power efficiency, data path optimization is deployed,
which reduces the off-chip memory access operations. FPSNET avoids data overlapping
to on-chip memories with specially designed address generation logic. Moreover, the
optimized ReLU hardware technique is implemented without transferring the partial sum
to off-chip memory. With all these optimization techniques, the presented FPSNET achieved
remarkable chip area and power efficiency improvement compared to other ASIC designs
in the literature.
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