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Abstract: In order to solve the problems of wheel locking and loss of vehicle control due to under-
steering or oversteering during the braking energy-recovery process of the hydraulic regenerative
braking system (HRBS), aiming at the characteristics of chassis domain control that can realize co-
ordinated work among various chassis systems, a cooperative control strategy of HRBS based on
chassis domain control was proposed. Firstly, a HRBS test bench was built, and the accuracy of the
simulation model was verified by comparing it with the test. Next, the proposed cooperative control
strategy was designed, which coordinates the wheel anti-lock actuation system (WAAS) to adjust
the wheel cylinder pressure to solve the wheel locking problem of HRBS in the process of braking
energy recovery and coordinate the vehicle anti-loss control actuation system (VACAS) to generate a
yaw compensation moment to solve the vehicle loss of the control problem of HRBS in the process of
braking energy recovery by detecting the wheel slip ratio, yaw rate and sideslip angle. Finally, the
established control strategy was verified through the co-simulation of Carsim and Matlab software,
and the results showed that the control strategy proposed in this paper could not only avoid wheel
locking and loss of vehicle control during turning braking on low-adhesion roads, but also improve
the energy-recovery efficiency by 29.64% compared with a vehicle that only controls the slip ratio.

Keywords: hydraulic regenerative braking; chassis domain control; cooperative control; vehicle
state estimation

1. Introduction

Relevant studies have shown that approximately 1/3 to 1/2 of energy that is used to
directly drive vehicles under urban driving conditions will be dissipated in the process
of braking, leading to energy waste by emission to the atmosphere in the form of heat
energy [1,2]. HRBS can be used to recover the kinetic energy of vehicles and convert it into
hydraulic energy in order to store it in the accumulator. When a vehicle starts or accelerates,
the stored hydraulic energy is released in the form of kinetic energy to provide auxiliary
power for the vehicle; thereby, the energy is fully utilized and the energy-utilization rate of
the vehicle is effectively improved [3,4]. HRBS has been favored over the years due to high
power density and high energy-recovery efficiency.

HRBS, in the process of braking-energy recovery, will produce additional torque
on the wheels [5–7], which will affect the braking performance of the vehicle and may
even lead to wheel locking or cause the vehicle to lose control due to understeering or
oversteering [8–10]. Therefore, how to effectively and fully recover braking energy while
solving the problem of wheel locking and the loss of vehicle control during braking is an
urgent problem to be solved in the research process.

Kim et al. [11] proposed a compound braking torque-distribution method based
on fuzzy control theory, and designed a control strategy for the coordination between
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compound braking torque and ABS. Through verification, it was concluded that this
strategy could make the vehicle show better stability and energy-recovery efficiency.
Krueger et al. [12] established a cooperative control strategy of regenerative braking and
ABS to control the output of regenerative braking force and mechanical braking force by
analyzing the wheel slip ratio; the simulation results showed that the strategy had good
braking stability and energy-recovery efficiency. By estimating the longitudinal friction of
road and tire, Le Solliec et al. [13] implemented distributions of electro-hydraulic composite
braking torque through the wheel slip ratio so that the regenerative braking and ABS could
work in harmony and effectively improve the braking stability of vehicles. Savitski et al. [9]
proposed a strategy of feedforward gain scheduling and proportional-integral feedback for
pure-electric dual-axle vehicles to continuously control the regenerative braking system
and ABS system to shorten the oscillation time of braking deceleration and improve the
braking stability. Aksjonov et al. [14] proposed using the fuzzy logic controller to adjust
the regenerative braking torque generated by the motor to achieve accurate control of
the wheel slip ratio and maximize the recovered energy on the basis of the longitudinal
deceleration of the vehicle. Zheng et al. [15] proposed a strategy model of regenerative
braking and ABS cooperative control, in which the brake-pedal displacement and battery
SOC were considered as inputs, and the ratio of the electrical mechanism force and the
total demand braking force were considered as outputs; modeling and simulation were
performed and validated under the road conditions of low-, medium- and high-adhesion
coefficients. Mao et al. [16] established a regenerative braking force distribution strategy
of anti-lock braking prediction in order to retain the maximum energy-recovery efficiency
when the wheel had no locking trend. Once a wheel was locked, the regenerative braking
torque was actively switched to delay the intervention time of ABS, and the control strategy
was verified by simulation. The abovementioned discussions mainly focus on the control
strategy between ABS and the regenerative braking system, in which ABS only prevents
the wheel locking during the braking process, but when the vehicle is out of control due
to understeering or oversteering, ABS is unable to control it; at this time, ESP needs to
intervene. At present, there is relatively little research on the control between ESP and the
regenerative braking system, so it is important to study the cooperative control strategy of
the regenerative braking system considering wheel locking and the loss of vehicle control.

In this paper, the working principles of HRBS, ABS and ESP were studied, and it was
pointed out that the current HRBS, only considering the wheel slip ratio, can only prevent
wheel lock during braking; when encountering complex working conditions, the vehicle
has a tendency to understeer or oversteer, leading to the loss of control. In order to solve the
abovementioned problems, the authors proposed a cooperative control strategy of HRBS
based on chassis-domain control, which coordinates the work of each system by detecting
the wheel slip ratio, yaw rate and sideslip angle to solve the problems of wheel locking and
loss of vehicle control in the process of braking-energy recovery.

2. Establishment HRBS Simulation Model
2.1. Working Principle of HRBS

The HRBS is mainly composed of a motor, transmission, clutch, torque coupler, hy-
draulic pump/motor, low-pressure accumulator, high-pressure accumulator and controller,
etc. It is a kind of parallel structure, that is, on the basis of the original power of the
vehicle, achieved through the torque coupler’s parallel set of hydraulic power systems; two
sets of power systems can work together and can work independently of each other. The
working principle is shown in Figure 1. When it works, the secondary element (hydraulic
pump/motor) is switched to the motor condition and the oil stored in the high-pressure
accumulator is released. The high-pressure oil drives the hydraulic pump/motor to rotate
and transmits the power to the torque coupling through clutch 2 and couples with the
power transmitted from the engine to the front axle, thus driving the vehicle. When clutch
1 is disconnected, the vehicle is driven by the HRBS alone. When braking, the secondary
element switches to the hydraulic pump condition, and the front wheels drive the hy-
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draulic pump/motor through the torque coupler and clutch 2, pumping the oil from the
low-pressure accumulator to the high-pressure accumulator and storing it, thus realizing
the conversion and storage of kinetic energy to hydraulic energy of the vehicle. At the
same time, in the process of recovering braking energy, the HRBS generates braking torque,
which acts as a deceleration mechanism for the vehicle.
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2.2. Mathematical Model of Hydraulic Pump/Motor

During the braking/driving process, the torque provided by the secondary element
(hydraulic pump/motor) is calculated as follows [4]:

Tp =
pq

2πηm × 106 (1)

where Tp is the torque generated by the secondary element, N·m; ηm is the mechanical
efficiency of the secondary element; p is the work pressure of the secondary element, MPa;
and q is the secondary element displacement, mL/r.

The torque of the secondary element is transmitted to the wheel through the torque
coupler, differential and reducer, and the final wheel speed and torque are as follows [4,17]:

Treb = Tpi0i1 (2)

nw =
np

i0i1
(3)

where Treb is the wheel torque supplied by the secondary element, N·m; i0 is the torque
coupler transmission ratio; i1 is the differential transmission ratio; np is the angular speed
of the secondary element, r/min; and nw is the angular speed of the wheel, r/min.

2.3. Mathematical Model of Hydraulic Accumulator

According to Boyle’s law, the hydraulic accumulator pressure and volume have the
following relationship [4,17]:

p0V0
n = p2V2

n = pVn = cons tan t (4)
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In the process of braking energy recovery, the energy stored in the hydraulic accumu-
lator is obtained by the following equation:

Eacc =
p0V0

n− 1

[(
p0

p2

) 1−n
n
− 1

]
(5)

where p0 is the hydraulic accumulator initial pressure, Pa; p2 is the hydraulic accumulator
maximum working pressure, Pa; V0 is the hydraulic accumulator initial volume, m3; n is the
gas variability index, and if it represents the isothermal process, then n = 1. Otherwise, it
equals 1.4 for an adiabatic process; Eacc is the energy stored in the hydraulic accumulator, J.

The SOC of accumulator pressure is SOC = P−P0
P2−P0

, and P is the current pressure of the
accumulator, Pa.

2.4. Validation of HRBS Model

In order to validate the accuracy of the established HRBS simulation model, a flywheel
was used to simulate the inertial kinetic energy of the vehicle during braking. A HRBS sim-
ulation model consisting of the hydraulic pump/motor, flywheel, hydraulic accumulator,
etc., was established in Matlab software, and the simulation comparisons were carried out.
The movement of the flywheel equation is as follows:

TM − Tf = J f
dϕ f

dt
(6)

where TM is the rotating moment of the flywheel, N·m; Tf is the frictional resistance
moment during the rotation of the flywheel, N·m; J f is the rotational inertia of the flywheel
as it rotates around the bearing, kg·m2; and ϕ f is the angular speed of the flywheel, rad/s.

Figure 2 is the braking energy-recovery test bench, and the relevant parameters are as
follows: the hydraulic pump/motor displacement is 60 mL/r; the hydraulic accumulator
maximum volume is 25 L, the nominal pressure is 10 MPa and the maximum pressure is
31.5 MPa; the flywheel’s rotational inertia is 45.3 kg·m2, respectively. The braking energy-
recovery test was carried out at the flywheel rotational speed of 750 r/min. Figures 3 and 4
show the comparison between the simulation and test of the accumulator pressure and
flywheel rotational speed in the braking energy-recovery process, respectively. It can
be seen that the simulation results are basically consistent with the test, thus verifying
the correctness of the simulation model. Among them, there is a difference between the
accumulator pressure simulation value and the test value at the starting point, because
the pressure sensor measures the pressure at the interface between the oil pipe and the
accumulator; due to the relatively long hydraulic pipeline in the testbed, the fluid output
from the hydraulic pump/motor is delayed from reach the accumulator and changes the
system pressure, so the time starting point of the accumulator pressure-change curve in
the experiment is nonzero. At the same time, because the pressure of the system increases
instantaneously from near 0 to 10 MPa, the pressure change is very large and the change
time is very short, resulting in overshoot in the process of pressure change.
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Figure 2. The HRBS test bench. 1—Motor, 2—Electromagnetic clutch No.1, 3—Magnetic pow-
der brake, 4—Flywheel, 5—Revolution speed transducer, 6—Commutator, 7—Electromagnetic
clutch No.2, 8—Hydraulic pump/motor, 9—Tank, 10—Relief valve, 11—Hydraulic pressure sensor,
12—Hydraulic accumulator, 13—Hub motor, 14—Proportional amplifier, 15—Oil discharge valve.
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3. The Design of a Cooperative Control Strategy for HRBS Based on Chassis
Domain Control

Chassis domain controller is the collective name of a whole system consisting of main
control hardware, operating system, algorithm and application software, etc. It is a large
computing platform, which can realize the integration of each chassis system controller
and the separation of hardware and software so as to realize the centralized control of
the vehicle’s steering, braking, suspension and power system, which is the “small brain”
of the vehicle, and is a necessary building block to realize intelligent driving, and the
structural block diagram is shown in Figure 5. Its main functions are as follows: (1) receive
instructions from the upper sensing layer and decision layer; (2) establish a unified vehicle-
dynamics model to achieve optimal cooperative control of multiple execution systems;
(3) transmit upper-level decision commands to the four ECUs of the wire-controlled chassis
subsystems to achieve motion control. The four wire-controlled chassis subsystems refer
to the suspension, steering, brake and power systems, respectively; among them, the
suspension system mainly realizes the control of the vehicle handling performance and
ride comfort through air springs, CDC dampers and active stabilizer bars; the steering
module mainly realizes the vehicle steering control through steer-by-wire (R-EPS,DP-EPS);
the brake module, through brake-by-wire (EHB,EMB), achieves the vehicle’s braking and
energy recovery; the power module through the line controls the throttle and motor to
achieve vehicle torque control. At present, the energy recovery during braking is mainly
achieved through the coordination of EHB and the motor; in order to improve the recovery
efficiency of braking energy, this paper added the HRBS system into EHB to achieve efficient
energy recovery during braking through chassis domain control.
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3.1. Vehicle Anti-Loss Control Strategy

In order to solve the problem of the loss of vehicle control, the vehicle is controlled
by ESP in traditional vehicles, in which ESP works as an independent system and does
not require external input control commands. Since each system of the chassis works
independently, it leads to a great difficulty in coordination and control between each
system. In intelligent driving vehicles, because there are many control systems involved,
in order to solve the coordination control problem between the systems in the vehicle,



Electronics 2022, 11, 4212 7 of 19

each execution system of the chassis has realized the separation of software and hardware;
the control is unified and coordinated by the chassis domain controller, and each system
only retains the hardware part and executes relevant actions based on the input of the
chassis domain controller. In order to distinguish the ESP in the chassis domain from the
traditional ESP, the ESP in the chassis domain that only retains the hardware part is called
VACAS. For vehicle destabilization control, the chassis domain controller outputs control
commands to the VACAS based on the detected wheel slip ratio, yaw rate and sideslip
angle, and the VACAS controls the wheel-cylinder pressure based on the input commands.

3.1.1. 2-DOF Vehicle Model

In this paper, the stability of the vehicle was judged based on the yaw rate and sideslip
angle. In order to calculate the ideal yaw rate and sideslip angle, a 2-DOF vehicle model
was established, see Figure 6, and we made the following simplification:

(1) Ignore the influence of the steering system and directly take the front wheel angle as
the input parameter.

(2) Ignore the influence of suspension kinematic characteristics; it is assumed that the
vehicle body only moves in a plane parallel to the ground, and we neglect the upward
and downward motions along the z-axis, the pitching motion around the y-axis and
the roll motion around the x-axis.

(3) The forward speed of the vehicle is the constant.
(4) The tire cornering characteristics are treated as linear characteristics.
(5) Ignore the aerodynamic effects.
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The differential equation of the 2-DOF vehicle model is given as follows [18–20]:
(

k f + kr

)
β + 1

u (akf − bkr)ω− k f δ = m(
.
v + uω)(

ak f − bkr

)
β + 1

u (a2k f + b2kr)ω− ak f δ = Iz
.

ω
(7)

where kf, kr are the cornering stiffness of the front and rear wheels, N/rad, respectively; β
is the sideslip angle, deg; m is the vehicle mass, kg; u, v are the speed of vehicle along the
X and Y axes, m/s, respectively; a, b are the distance from the front and rear axles to the
vehicle’s center of mass, m; δ is the steer wheel angle, deg; ω is the yaw rate, deg/s; Iz is
the rotational moment of inertia of the vehicle around the Z-axis, kg·m2.
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The ideal value of yaw rate under the steady-state response can be obtained based on
Equation (8):

ωr =
u/L

1 + K · u2 δ (8)

where K = m
L2 · ( a

kr
− b

k f
), L is the wheel base, m; generally, the lateral acceleration ay of

vehicle is smaller than that of the lateral acceleration that calculated by the road adhesion
coefficient µ, it is ay ≤ µ · g; otherwise, sideslip will occur. Since ay = u2/R = (R · ω) ·
u/R = ω · u, R is the turning radius of the car, m. Therefore, it can reach the maximum
yaw rate ωmax, which is as follows:

ωmax = µ · g/u (9)

Finally, the ideal yaw rate is as follows:

ωr = min
{∣∣∣∣µg

u

∣∣∣∣, ∣∣∣∣ u/L
1 + K · u2 δ

∣∣∣∣} (10)

By using a similar method, the ideal value of the sideslip angle is derived as follows:

βr = ωµ(
b
u2 +

ma
krL

) (11)

In addition, the ideal sideslip angle is required to be less than the sideslip angle that is
generated by its maximum yaw rate.

βr ≤ βmax = ωmax · u(
b

u2 +
ma
krL

) = µ · g( b
u2 +

ma
krL

) (12)

Finally, the ideal sideslip angle is as follows:

βr = min
{∣∣∣∣ωµ(

b
u2 +

ma
KrL

)

∣∣∣∣, ∣∣∣∣µ · g( b
u2 +

ma
KrL

)

∣∣∣∣} (13)

3.1.2. Calculation of Compensation Torque

The compensated yaw moment is generated by applying braking to the front and
rear wheels of one side. Specifically, when the vehicle has a tendency toward oversteering,
the braking of the outside wheels is controlled to generate the opposite yaw moment to
compensate and prevent the vehicle from destabilizing. Conversely, when the vehicle has a
tendency toward understeering, the braking of the inside wheel is controlled to generate
the opposite yaw moment to compensate and prevent the vehicle from destabilizing, and
the compensating torque is calculated as follows:

∆M = Ff ·
B f

2
+ Fr ·

Br

2
(14)

where Ff , Fr are the front- and rear-wheel braking forces, N; B f , Br are the front and rear
wheel track, m, respectively. The braking force of the front and rear wheels can be allocated
according to the ratio of the vertical load on the front and rear wheels, as follows: Ff =

Ff z
Ff z+Frz

· ∆M
(B f +Br)/4

Fr =
Frz

Ff z+Frz
· ∆M
(B f +Br)/4

(15)

{
Ff z =

b
a+b ·mg

Frz =
a

a+b ·mg
(16)

where, Ff z, Frz are the vertical loads on the front and rear wheels, N, respectively.
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3.1.3. Determination of Whether the Vehicle Is Out of Control

Whether VACAS is involved or not is determined according to the quasi-stable tol-
erance zone formula of yaw rate and quasi-stable tolerance zone formula of the sideslip
angle, namely:

|∆ω| ≤ |cωr| (17)∣∣∣C1β + C2
.
β
∣∣∣ ≤ 1 (18)

where ∆ω = ωd − ωr is yaw rate deviation, deg/s; ωd is actual yaw rate, deg/s; c, C1
and C2 are constant. As long as the vehicle driving state does not meet either of the two
inequalities in Equations (17) and (18), it means the vehicle is in a state of instability and
needs VACAS intervention.

3.1.4. Vehicle Anti-Loss Control Strategy

The control logic diagram of the vehicle anti-loss control strategy in the chassis domain
controller is shown in Figure 7, where the input variables of the fuzzy controller are the
deviation ∆ω between the ideal value and the actual value of the yaw rate, and the deviation
∆β between the ideal value and the actual value of the sideslip angle are shown. The output
variable is the yaw compensation torque ∆M. Input and output variables were set to five
fuzzy levels named NB, NS, Z, PS, PB, representing the negative large, negative small, zero,
positive small and positive large, respectively. Fuzzy rules are shown in Table 1.
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Table 1. The fuzzy rules of vehicle anti-loss control strategy.

K∆ω

K∆β NB NS Z PS PB

NB NS NS NM NB NB
NS NS NS NS NM NB
Z PM PS Z NS NM
PS PB PM PM PS PS
PB PB PB PM PS PS

3.2. Wheel Anti-Lock Control Strategy

In traditional vehicles, ABS is an independent system to control the vehicle, with-
out external input control command. In intelligent driving vehicles, the chassis domain
controller outputs control commands to ABS based on the input vehicle speed and wheel
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speed, and the ABS hardware actuator controls the wheel cylinder pressure based on the
input commands. Similarly, in order to distinguish traditional ABS and ABS in the chassis
domain, the hardware part of ABS in the chassis domain is called WAAS.

If wheels are being locked in the process of braking, it is difficult for the driver to
control the direction of the vehicle, leading to the loss of control. Figure 8 shows the
relationship between road adhesion coefficient and wheel slip ratio. It can be seen that
the longitudinal adhesion coefficient increases firstly and then gradually decreases with
the change of wheel slip ratio. Moreover, lateral adhesion coefficient always decreases;
the 10~30% of the shaded area is called the stable region, in which the ideal value of
longitudinal and lateral adhesion coefficient are guaranteed, and the rest of areas can be
called the unstable regions. Therefore, in order to prevent the vehicle from losing control
when the wheel is locked during braking, the wheel slip ratio needs to be kept within the
stable region [21,22].
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Wheel slip ratio is defined as follows:

λ =
u− ϕr

u
· 100% (19)

where’ λ is the wheel slip ratio, %; ϕ is the wheel’s angular velocity, rad/s; r is the wheel’s
rolling radius, m.

The following simplifications were made to model the wheel anti-lock control strategy
in chassis domain controller:

(1) Mechanical delay of the brake and other nonlinear factors are ignored, and the brake
is simplified as an ideal model as well.

(2) Nonlinear elasticity of the return spring in the solenoid valve, transmission delay of
the brake pressure with the flow of the brake fluid, and action lag of other mechanical
components are all ignored, and flow process of the brake fluid is characterized by
the one solenoid valve link and the one integral link. The transfer function G(s) of the
simplified model is expressed by

G(s) =
k

s(Ts + 1)
(20)
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Since the response of the solenoid valve in the process of switching on and off is rapid,
the period to switch between the closed and open states is approximately 10 ms. Thus, the
inertia link T in Equation (20) is 0.01, and the proportional factor k is 100.

In order to keep the wheel slip ratio in the stable region and thus obtain greater lateral
and longitudinal ground adhesion, in this paper, the wheel anti-lock control strategy used
a logical threshold value for control, and the wheel cylinder pressure was controlled by
setting a suitable threshold value for the wheel slip ratio; when the vehicle speed is small
or the wheel has no slip, the wheel anti-lock control strategy exits and does not work;
when the vehicle speed or slip ratio does not meet the requirements, the wheel anti-lock
control strategy starts to work, and its control logic diagram is shown in Figure 9. When
the wheel slip ratio is 0~10%, WAAS start to pressurize the brake wheel cylinder and it
will remain under pressure when the wheel slip ratio is 10~30%, and when the wheel slip
ratio is greater than 30%, WAAS begins to decompress the brake wheel cylinder. The wheel
cylinder pressure and the braking torque can be calculated by the following equation.

Tµ = 2 f FµRµ (21)

Fµ = pµ A (22)

where Tµ is the brake torque generated by the brake, N·m; f is the friction coefficient
between the friction lining block and the brake disc; Fµ is the single side of the friction
lining block on the brake disc pressure, N; Rµ is the effective radius of action of the friction
lining block, m; pµ is the pipeline pressure, Pa; A is the effective action area of the friction
lining block, m2.
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3.3. Regenerative Braking Force and Mechanical Braking Force Distribution

This paper studied a front-wheel drive vehicle, and the braking force distribution
strategy is shown in Figure 10. When braking, the front and rear axles braking forces are
first distributed according to the ideal braking force distribution principle [18], and then
the calculation of the regenerative braking force distribution coefficient j is completed
according to the fuzzy rules; finally, the distribution of regenerative braking force Freb and
front and rear wheel mechanical braking force Fmf and Fmr is completed. Among them, the
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input variables of the fuzzy controller are the vehicle speed v, accumulator SOC, braking
intensity z, and the output variable is the regenerative braking force distribution coefficient
j. The control principles of the fuzzy controller are as follows:

(1) When the vehicle speed is too high, less braking energy is recovered for braking safety;
when the vehicle speed is too low, less energy can be recovered.

(2) When the accumulator SOC is high, energy-recovery efficiency is low, as little as
possible to recover braking energy; when the hydraulic accumulator SOC is low,
energy-recovery efficiency is high, as much as possible to recover energy.

(3) When the braking intensity is too high, the energy is not recovered for braking safety;
when the braking intensity is low, the braking-energy recovery shall be increased [23].
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3.4. Design of the Cooperative Control Strategy for HRBS in Chassis Domain Control

In order to ensure that each system in the braking process of the intelligent driving
vehicle is more adequate and better coordinated, a cooperative control strategy based on
HRBS, WAAS and VACAS was built in chassis-domain controller, the control logic diagram
of which is shown in Figure 11, as follows:

(1) When both the yaw rate ω and the sideslip angle β meet the requirements of
Equations (15) and (16), and the wheel slip ratio λ is within the stable region, VA-
CAS and WAAS will not work; only HRBS will work.

(2) When both the yaw rate ω and the sideslip angle β meet the requirements of
Equations (15) and (16), but the wheel slip ratio λ is outsider the stable region, WAAS
works, and VACAS and HRBS do not work.

(3) When the yaw rate ω and the sideslip angle β do not meet the requirements of
Equations (15) and (16), but the wheel slip ratio λ is in the stable region, VACAS and
HRBS work, and WAAS does not work.

(4) When the yaw rate ω and the sideslip angle β do not meet the requirements of
Equations (15) and (16), and the wheel slip ratio λ is outside the stable region, WAAS
works, VACAS and HRBS do not work. The requirement of the compensation yaw
moment is fulfilled by WAAS controlling, and ∆M is required to return the car to attain
to a stable state, because wheel slip ratio is not satisfied at this time. Thus, braking
torque is not necessary to the wheels by means of the VACAS system. Otherwise, the
wheel slip ratio continues to deteriorate. Hence, the braking force of the other wheels
needs to be reduced by WAAS with ∆M to compensate the yaw moment.
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4. Simulation and Analysis
4.1. Build Vehicle Simulation Model Based on Chassis Domain Control

In order to verify the rationality of the established control strategy, the vehicle simula-
tion model was built in Carsim software, the vehicle parameters are shown in Table 2, and
the braking system simulation model of the chassis domain was built in Matlab software,
see Figure 12. The vehicle model in Carsim software outputs the current steer wheel
angle, vehicle speed, yaw rate, wheel speed, sideslip angle and wheel cylinder pressure to
each module during the simulation process. The wheel anti-lock control strategy module
calculates the wheel slip ratio according to the current input vehicle speed and wheel
speed, and outputs the braking force to be applied to each wheel at the next moment
to the chassis-domain control module according to the calculation results. The 2-DOF
vehicle model in the vehicle anti-loss control strategy module calculates the ideal yaw rate
according to the current input vehicle speed and steer angle, and transmits it to the fuzzy
controller after making a difference with the actual yaw rate, and calculates the current
compensating braking torque through the fuzzy controller. Finally, the vehicle anti-loss
control strategy module calculates the required braking force for each wheel based on the
compensation torque input from the fuzzy controller and feeds it to the chassis-domain
control module. According to the current wheel speed, the HRBS module calculates the
regenerative braking energy that can be recovered and the regenerative braking force that
can be provided in the braking process, as well as the mechanical braking force that needs
to be applied to the front and rear wheels and feeds it to the chassis-domain control module.
Next, the chassis-domain control module calculates the final braking force that each wheel
needs to be applied in the next time period according to the current input and according
to the cooperative control strategy of Figure 11, which is input to the vehicle model in
Carsim software.
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Table 2. The parameters of the vehicle.

Component Parameter Quantity

Mass Kg 1700
Wheel base m 2.8

Front wheel track m 1.55
Rear wheel track m 1.55

Height of center of mass m 0.53
Distance from center of mass to front axle m 1.25
Distance from center of mass to rear axle m 1.55

Air drag coefficient / 0.28
Wheel rolling radius m 0.315
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4.2. Simulation and Analysis

During the turning braking process, the load of left and right wheels will be transferred
each other because of centrifugal force, because the braking forces required by the left and
right wheels are different. If the braking force is not properly controlled, the wheels will
lock and slip, resulting in loss of control due to understeering or oversteering. In order
to verify the rationality of the designed control strategy, a cornering braking simulation
was carried out on a bend with a radius of 40 m in Carsim software; the road surface is
a low-adhesion coefficient road with an adhesion coefficient of 0.5. The vehicle started
to accelerate around the circle first; when the speed reached 50 Km/h, the throttle was
released and the braking force was slowly increased until the vehicles stopped, as shown
in Figure 13; the red vehicle was equipped with WAAS, VACAS and HRBS, and the purple
vehicle was only equipped with WAAS and HRBS.

Figure 14 shows the wheel speed change curve of the two vehicles in the turning
braking process. It can be seen that, because the road adhesion coefficient is relatively low
and the speed is relatively high, the VACAS of the vehicle equipped with WAAS, VACAS
and HRBS intervened shortly after the braking started in 4 s, so the speed of the outside
front and rear wheels fluctuated. The vehicle equipped with WAAS and HRBS did not
have VACAS, so the rear wheels started to slip shortly after braking and WAAS intervened
at the rear wheels.
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Figures 15–18 shows the change curves of yaw rate, acceleration, sideslip angle and
accumulator pressure with time for the two vehicles during the simulation. Table 3 shows
the comparison of the accumulator pressure during the turning braking process for the two
vehicles; it can be seen that the change of yaw rate, acceleration and sideslip angle of the
vehicle equipped with WAAS, VACAS and HRBS during the turning braking process was
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more stable, and the accumulator pressure increased by 26.64% compared with another
vehicle equipped with WAAS and HRBS. Analyzing the reason, when there is a tendency
to oversteer during corner braking, VACAS in vehicles equipped with WAAS, VACAS
and HRBS intervenes in order to avoid the loss of vehicle control. However, the vehicle
equipped with WAAS and HRBS, because there is no VACAS system, experiences loss
of vehicle control in the sixth second. After the loss of vehicle control, the front wheel
speed gradually decreased to zero and did not recover braking energy, so the accumulator
pressure did not change after 7.5 s.
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Table 3. Comparison of the accumulator pressure.

Accumulator Initial
Pressure (MPa)

Accumulator Final
Pressure (MPa)

Improved
Efficiency(%)

HRBS + WAAS 10 12.74 –
HRBS + WAAS +

VACAS 10 13.47 26.64%

The simulation shows that the braking energy-recovery efficiency of the vehicle with
the control strategy built in this paper was 26.64% higher than that of the vehicle equipped
with WAAS and HRBS in the turning braking process, and there was no wheel lock and loss
of vehicle control during the simulation. This shows that the cooperative control strategy
of HRBS based on chassis-domain control designed in this paper can solve the problems of
wheel lock and loss of vehicle control well under complex braking conditions.
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5. Conclusions

In this paper, based on the fact that intelligent driving vehicles can realize coordinated
control among various systems through a chassis-domain controller, a cooperative control
strategy of HRBS based on chassis-domain control was built to coordinate WAAS, VACAS
and HRBS to work by detecting wheel slip ratio, yaw rate and side slip angle to prevent
wheel locking during braking, and when the vehicle has the tendency of understeering or
oversteering, it can compensate by generating a yaw moment to prevent the vehicle from
losing control.

A HRBS test bench was built, and the accuracy of the simulation model established
in the paper was verified by bench tests. The designed cooperative control of the HRBS
based on chassis domain control was verified through the co-simulation of Matlab and
CARSIM software, and the results showed that the strategy can not only solve the problems
of wheel locking and loss of vehicle control during braking, but also has a relatively high
energy-recovery efficiency.

The control strategy designed in this paper only considers the braking system in the
chassis domain, but does not consider the synergy with the suspension, steering and power
systems in the chassis domain. For the future intelligent driving vehicle, the chassis domain
should be considered as a whole, and how to design the HRBS to work together with other
chassis systems will be the next research direction.
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Abbreviations
List of abbreviation in dissertation.

Abbreviation Explanation
HRBS Hydraulic Regenerative Braking System
WAAS Wheel Anti-lock Actuation System
VACAS Vehicle Anti-loss Control Actuation System
ABS Antilock Braking System
SOC State of Charge
ESP Electronic Stability Program
ECU Electronic Control Unit
CDC Continuous Damping Control
EHB Electro Hydraulic Braking
EMB Electro Mechanical Braking
R-EPS Pinion- Electric Power Steering
DP-EPS Double Pinion- Electric Power Steering
2-DOF 2-Degree Of Freedom
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