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Abstract: A deep learning approach for the efficient electromagnetic analysis of an on-chip inductor
with dummy metal fillings (DMFs) is proposed. By comparing different activation functions and
loss functions, a deep neural network for DMF modeling is built using a smooth maximum unit
activation function and log-cosh loss function. The parasitic capacitive effect of DMFs is quickly and
accurately extracted though this model, and the effective permittivity can be obtained subsequently.
An on-chip inductor containing DMFs with different filling densities is analyzed using this proposed
method and compared with the electromagnetic simulation of entire structures. The results validate
the accuracy and efficiency of this proposed method.

Keywords: activation function; capacitance; dummy metal fills (DMFs); deep learning

1. Introduction

Chemical mechanical polishing (CMP), a key step in modern integrated circuit (IC) pro-
cesses, allows for the homogenization and flattening of metal and dielectric thicknesses [1,2].
In order to meet the CMP process requirements and achieve a uniform metal density, it is
necessary to fill the areas of lower metal density with additional dummy metal. However,
DMFs introduce additional parasitic capacitances and resistances [3,4], which increase the
coupling with the on-chip structures and degrade the chip performance. The accurate
modeling of the DMF effect using an electromagnetic (EM) solver can lead to the huge
consumption of computational resources such as CPU time and memory requirements,
which is unacceptable in IC designs.

Typically, the effect of DMF is simulated through an equivalent circuit of on-chip
passive components or by using numerical methods to equate the DMF to an effective
dielectric constant to avoid the significant time and resources spent in calculating the DMF
directly using EM simulation. In [5], the parasitic parameters of DMFs were extracted
based on the measured data to construct an equivalent circuit, and then predict the in-
ductor characteristics containing DMFs. In [6], the parasitic parameters of DMFs were
extracted based on the PEEC modeling method [7], and then an equivalent circuit model
was constructed for the analysis of the inductors containing DMFs. However, the method
proposed in [5,6] was only applicable to a fixed metal filling density. In [8], on-chip induc-
tors containing DMFs were modeled by using a single π-circuit model, but the method
used a simple formula to extract the parasitic capacitance of DMFs, and the model accuracy
was low. In [9], the on-chip inductor containing DMFs was modeled by using a double-π
circuit model, but this method requires a separate calculation of the S-parameters of the
inductor containing and not containing DMFs, which is a very tedious modeling process.
A simple capacitance extraction formula was proposed in [10,11], but the formula is only
applicable for the signal line modeling. An empirical formula was proposed in [12], which
is applicable to floating metal filling between flat plates, and the key parameters of this
empirical formula were obtained by least-squares fitting by the measured data, so this
formula does not have good generality.
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In this work, a method for constructing an equivalent model containing DMFs using
deep neural networks (DNNs) is proposed. By comparing the performance of different
activation and loss functions, the smooth maximum unit (SMU) activation function and
log-cosh loss function are used in the proposed method, because this combination performs
better than the traditional Rectified Linear Unit (Relu) [13] activation function and mean
squared error (MSE) [14] loss function. After constructing a DNN capacitance extraction
model containing DMF (DNN-DMF model), the capacitance increments introduced by
different densities of DMFs can be quickly and accurately evaluated, and then DMFs
can be equated to the effective permittivity of the surrounding medium, which can get
rid of the time-consuming dummy simulation while ensuring accuracy. This equivalent
modeling method is only related to the filling density of DMFs and can be applied to IC
simulation, e.g., inductors containing DMFs. Finally, the effectiveness of the proposed
modeling approach is verified using full-wave calculations of inductors containing DMFs
and is compared with the single-π circuit modeling approach in [8].

2. Neural Network Equivalent Model
2.1. Equivalent Relative Permittivity

As shown in Figure 1, if the metal dummy fill is located at layers M2, M3 and M4, the
permittivity of the corresponding layered dielectric medium can be replaced by an effective
permittivity, and the influence of the metal fill is contained in the effective permittivity.
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The effective relative permittivity can be obtained by calculating the capacitance values
before and after the virtual metal filling [15]:

εr,e f f =
CMF

CNoMF
·εr,ILD (1)

where εr,e f f is the effective relative permittivity, εr,ILD is the relative permittivity of the
surrounding inter-layer dielectric (ILD), CMF is the unit cell capacitance with metal fill and
CNoMF is the unit cell capacitance without metal fill.

2.2. Equivalent Flat Capacitance Model with DMFs

If the capacitance with and without (multilayer-) DMF is calculated according to the
actual structure of IC, and then obtains the overall equivalent permittivity, it is not universal
because if the structure changes, the capacitance needs to be recalculated. The effective
permittivity is calculated layer by layer. For each DMF layer, a flat capacitor is added to
cover the DMF region. Since the additional parasitic capacitance is introduced by the DMFs,
the incremental capacitance can be calculated equivalently using a flat capacitor containing
the same DMF process. After evaluating the effective permittivity, the simulation of the
IC devices can be simulated without containing the geometry of DMFs, and thus the
simulation is very highly efficient.

A schematic diagram for constructing an equivalent flat capacitor model based on
the original inductor containing DMFs is shown in Figure 2. The equivalent flat capacitor
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covers the DMFs with the original surrounding interlayer dielectric. The length and width
of the top and bottom metal plates equal the total length and width of the DMF array.
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Figure 2. Schematic diagram of the equivalent flat capacitor model, with the original inductor
containing DMFs on the left and the equivalent flat capacitance containing the same DMF process on
the right.

2.3. Construction of DNN Capacitance Extraction Model Containing DMF (DNN-DMF Model)

Figure 3 shows the flow chart of the DNN-DMF training model. A flat capacitor
model is built for each DMF layer. After building the parameterized DMF structures, some
typical DMFs with the sampling filling density are chosen, and the capacitance with the
DMFs is calculated. The calculated capacitance with the corresponding filling density of
DMFs and the original permittivity are the training and testing data of the DNN. Once the
DNN-DFM model is built, the capacitance for the different filling densities of the DMFs and
the surrounding permittivity is quickly obtained. Compared with the capacitance without
DMF, the effective permittivity is evaluated using (1).
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2.3.1. Deep Neural Network Model

In the DNN, the neurons are used as components of the neural network and the
mathematical expression is:

Y = ϕ

(
n

∑
i

aiXi + b

)
(2)

where Xi denotes the i-th element of the input matrix; ai represents the weight factor of the
i-th element; b is the offset.

The deep neural network model is made up of multiple layers of neurons connected in
pairs between adjacent layers. The mathematical expression of a complete neural network
can be expressed as:

Y = ϕ
(

An · · · ϕ
(

A2
(

ϕ
(

A1X + b1
))

+ b2
)
· · ·+ bn

)
(3)
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where ϕ represents the activation function, which can introduce nonlinear factors into
neurons and be used to fit various nonlinear models, X denotes the geometric parameters of
the DMF layer (inputs to the neural network) and Y denotes the corresponding capacitance
value of the equivalent flat capacitor model containing DMF (outputs to the neural network).
In the field of deep learning, the Relu function is the mostly used activation function due to
its simplicity and good convergence. However, the output of Relu is not zero centered, and
it is easy to have neuron death failure during the training process. As the recently proposed
activation functions, the ELU [16], Mish [17] and SMU [18] activation functions have some
advantages in modeling. The definitions of these functions are shown in (4)–(7).

ELU(x) =
{

ex − 1, x < 0
x, x ≥ 0

(4)

Mish(x) = x·tan h(ln(1 + ex)) (5)

SMU(x, αx; µ) =
(1 + α)x + (1− α)x·er f (µ(1− α)x)

2
(6)

In the expression of SMU, α and µ can be hyperparameters or trainable parameters,
and in this paper we set α and µ as 0.01 and 2.5, respectively. er f is the Gaussian error
function defined as follows:

er f (x) =
2√
π

∫ x

0
e−t2

dt (7)

In this work, the Relu, ELU, Mish and SMU activation functions are used for the
training of DNN-DMF equivalent flat capacitance models, and the performance of these
activation functions will be compared later.

2.3.2. Loss Function and Optimization Algorithm

The role of the loss function is to calculate the difference between the forward cal-
culation result of each iteration of the neural network and the true value to guide the
next training step in the right direction, and it will also be used to check the accuracy of
the model. As a widely used loss function, the MSE function is applied to many general
regression problems [19]. However, because MSE squares the error, it will aggravate the
error of outlier samples and lead to the slow or even non-convergence of the model. The
loss function of the log-cosh type is another loss function applied in regression problems,
which is smoother than MSE. This function combines the advantages of MSE and mean
absolute error (MAE), reduces the sensitivity to outliers, and enhances the robustness of
the neural network model to outliers. The log-cosh loss function is defined as follows:

L(y, yp) =
n

∑
i=1

log
(

cosh
(

yp
i − yi

))
(8)

where y is the actual value; yp is the predicted value. In training the DNN-DMFs model, y
represents the real capacitance in the dataset and yp represents the capacitance obtained
from the DNN-DMFs model.

Next, the loss function is minimized using the Adam [20] optimization algorithm,
and the training error of the loss function is reduced by continuously adjusting the weight
factors and offsets in the neural network with the loss function as the objective function
during the optimization process to improve the accuracy of the network model.

2.3.3. Training DNN-DMF Model

A parametric flat capacitance model containing DMFs is established as shown in
Figure 4, where WD denotes the width of each filler metal, SD denotes the spacing between
the adjacent filler metals, TD denotes the thickness of the filler metals and Tox denotes the
distance between the filler metals and the upper and lower flat plates. The aforementioned
four geometric parameters of DMF will be swept to provide the training data of the DNN-
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DMF model, and the scanning range of geometric parameters is shown in Table 1. After
training the DNN-DMF model, the corresponding capacitance increments introduced by
DMFs can be quickly obtained by inputting any geometric parameter in the range of Table 1,
and then the DMFs’ effect can be equated to the increase in surrounding permittivity. As
these four geometrical parameters are swept in Table 1, the testing final error can be
guaranteed if the DMFs do not exceed the parameter range. Although the DNN can predict
the EM parameters even outside the range of the geometrical training data, the testing final
error is not guaranteed. In other words, this model is able to apply the DMF distribution
if the WD, SD, TD and Tox are from 1 µm to 5 µm. The model may be invalid if the DMF
distribution exceeds the training range or the IC technology changes, e.g., the dielectric
layer changes or the number of dummy layers increases. Under these circumstances, the
model requires to be re-established.
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Table 1. Sweep Parameters.

Input Parameters Starting Value End Value Step

WD (µm) 1 5 1
SD (µm) 1 5 1
TD (µm) 1 5 1
Tox (µm) 1 5 1

The actual convergence performance of the DNN-DMF model using different com-
binations of the activation and loss functions is compared in Table 2. In this table, the
final test loss is set as the criterion of convergence. As can be seen from Table 2, for dif-
ferent activation functions, the log-cosh loss function always achieves a smaller test loss
compared with the MSE. That is because the log-cosh loss is smoother than the MSE, and
it will decrease the sensitivity to the outliers and consequently enhance the robustness
of the neural network to the outliers. Moreover, among the listed activation functions,
only the SMU activation function has two adjustable hyperparameters α and µ. These two
hyperparameters provide flexibility to fit the DNN-DMF problem more easily (α = 0.01 and
µ = 2.5 in this problem). As a result, even using the same log-cosh loss function, the SMU
activation function performs better than the other three functions, and can satisfy the error
threshold of 1× 10−6.
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Table 2. Comparison of the convergence of different activation functions and loss functions when
training DNN equivalent flat capacitance models containing DMFs.

Test Loss MSE Log-Cosh

Relu 9.04× 10−6 2.49× 10−6

ELU 5.09× 10−5 1.14× 10−5

Mish 9.98× 10−6 3.06× 10−6

SMU 4.84× 10−6 8.81× 10−7

3. Validation of DNN Equivalent Model

The capacitance increments introduced by DMFs with different filling densities can
be quickly obtained using the DNN-DMF model so that the DFM can be equated to an
increase in the permittivity of the surrounding dielectric layer to avoid EM calculations for
DMFs. In Figure 5, on-chip inductors containing different DMF densities are calculated
using the equivalent permittivity method based on the DNN-DMF model, and a single
π-circuit model is constructed as shown in Figure 6, and then the effectiveness of both
methods is verified using EM simulations. In this example, the geometric parameters
are as the following: ind equals 20 µm, w equals 2 µm and d equals 2 µm. The spacing
between the DMFs layer and the on-chip inductor metal layer, i.e., Tox, is equal to 1 µm.
The DMF layer thickness TD is equal to 1.5 µm. When the dummy width and spacing (i.e.,
WD and SD) change and make the metal filling densities 20%, 50% and 80%, the ratio of
capacitance values (CMF/CNoMF) for the three metal filling densities is shown in Table 3,
and the parameters of the lumped device for the single-π circuit model are shown in Table 4,
where for the capacitance of the oxide layer containing DMF we use Equation (4) in [9]. In
calculation, the effect of the crosstalk capacitance Cs is negligible [21].
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Table 3. The ratio of capacitance before and after metal filling for different metal filling densities.

Metal Filling Densities CMF/CNoMF

20% 1.26
50% 1.46
80% 1.53

Table 4. Parameters of lumped devices for single π-circuit model at different DMF densities.

Metal Filling
Densities Rs(Ω) Ls(pH) Rsub(Ω) Csub(pF) Cox(fF)

20% 37.62 1.17 36.57 2.5 12.9
50% 32.29 1.08 30.51 2.66 19.35
80% 38.24 1.18 37.32 2.48 26.57

20% (Triple DMF) 37.62 1.17 36.57 2.5 4.3

Figure 7 gives the side view of the inductor filling one DMF layer. The capacitance
increment introduced by the DMF can be easily obtained using the DNN-DMF model,
and once the capacitance increment has been determined the DMF can be equated to the
effective permittivity using (1). The S-parameters (S21) and inductance values of the on-chip
inductors with 20%, 50% and 80% DMF densities calculated by the effective permittivity
method based on the DNN-DMF model and the single π circuit model equivalent method
were verified using direct EM simulations of the complete structure containing DMFs,
as shown in Figures 8–10, respectively. It can be seen that the results obtained using the
equivalent permittivity method based on the DNN-DMF model are very close to those
obtained using direct EM simulations, but the single-π equivalent circuit model has a
large error. This may because the capacitance Cox introduced by the DMF is calculated
using a simple numerical formula, and the mutual coupling between the DMF layers is not
considered in the equivalent circuit model.
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S-parameters (S21) and (b) shows inductance values.
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Moreover, the inductor containing three layers of DMFs with a 20% fill density, as
shown in Figure 11, was analyzed, and the accuracy of the DNN-DMF model was verified,
with a large error in the same single π equivalent circuit model method. The S-parameters
(S21) and inductance values for two methods are shown in Figure 12.
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In Table 5, the computation cost listed in the DNN-DMF model does not include the
deep learning process. To train the DNN-DMF model, it takes about 43 min and occupies
the memory of 1.4 MB. It is observed that the training time is less than the EM simulation
except in case 3 in the table. Moreover, the trained DNN-DMF model can be applied to
a category of DMF problems, e.g., cases 1 to 3 are not required to be re-trained. After
building the DNN-DMF model, it takes about 3 s to obtain the effective dielectric constant,
and the total computation cost including the EM simulation using the effective dielectric
constant is compared with the full structure EM simulation in Table 5. To further improve
the accuracy of the DNN-DMF model, the simplest and most effective way is to increase
the number of training sets by increasing the scan parameters, which can further improve
the convergence of the model, but this will also increase the training time of the DNN-DMF
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model. In addition, the development of better performance activation and loss functions is
also an effective way of improving the accuracy of the DNN model.
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Table 5. Comparison of the efficiency of the EM simulation and the method proposed in this paper.

Method Number of
Layers of DMFs

Metal Filling
Density Time Memory

EM Simulation 1 20% 54 min 306 M
DNN-DMFs 1 20% 73 s 77.5 M

EM Simulation 1 50% 78 min 678 M
DNN-DMFs 1 50% 59 s 77.1 M

EM Simulation 1 80% 28 min 378 M
DNN-DMFs 1 80% 79 s 76.9 M

EM Simulation 3 20% 118 min 497 M
DNN-DMFs 3 20% 72 s 77.6 M

4. Conclusions

In this work, the deep learning network is applied to the EM analysis of on-chip
inductors containing DMFs. A DNN-DMF model considering the dummy effect of the
effective dielectric constant is proposed to approach the EM simulation, and get rid of the
time-consuming dummy simulation. Different activation and loss functions were compared
to obtain better accuracy of the DNN-DMF model, and it was found that the combination
of the SMU activation function and log-cosh loss function performs best in the accuracy
of capacitance evaluation. Using the DNN-DMF model and the further derived effective
dielectric constant, the S-parameters and inductance of the on-chip inductor containing
DMF can be efficiently calculated. Some examples of inductors containing different DMF
filling densities and numbers of layers were given to validate the accuracy and efficiency of
the proposed method.

Author Contributions: Conceptualization, X.L., Y.T. and P.Z.; Data curation, X.L.; Funding acquisi-
tion, P.Z.; Investigation, X.L. and Y.T.; Methodology, X.L.; Project administration, X.L.; Supervision,
P.Z., S.C., K.X. and G.W.; Writing—original draft, X.L.; Writing review and editing, X.L., Y.T., P.Z.,
S.C., K.X. and G.W. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the National Natural Science Foundation of China
under Grant 62141409, Grant 61971171 and 61971174 in part by the Zhejiang Provincial Key Research
& Development Project under Grant 2021C01041.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2022, 11, 4214 10 of 10

References
1. Fury, M.A. Emerging Developments in CMP for Semiconductor Planarization. Solid State Technol. 1995, 38, 81–86.
2. Stine, B.E.; Boning, D.S.; Chung, J.E.; Camilletti, L.; Kruppa, F.; Equi, E.R.; Loh, W.; Prasad, S.; Muthukrishnan, M.; Towery, D.;

et al. The Physical and Electrical Effects of Metal-Fill Patterning Practices for Oxide Chemical-Mechanical Polishing Processes.
IEEE Trans. Electron Devices 1998, 45, 665–679. [CrossRef]

3. Lee, K.H.; Park, J.K.; Yoon, Y.N.; Jung, D.H.; Shin, J.P.; Park, Y.K.; Kong, J.T. Analyzing the Effects of Floating Dummy-Fills:
From Feature Scale Analysis to Full-Chip RC Extraction. In Proceedings of the Technical Digest—International Electron Devices
Meeting, Washington, DC, USA, 2–5 December 2001.

4. Kim, Y.; Petranovic, D.; Sylvester, D. Simple and Accurate Models for Capacitance Considering Floating Metal Fill Insertion. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 2009, 17, 1166–1170. [CrossRef]

5. Hsu, H.M.; Hsieh, M.M. On-Chip Inductor above Dummy Metal Patterns. Solid-State Electron. 2008, 52, 998–1001. [CrossRef]
6. Shilimkar, V.S.; Gaskill, S.G.; Weisshaar, A. Scalable Modeling of On-Chip Spiral Inductors Including Metal Fill Parasitics. In

Proceedings of the IEEE MTT-S International Microwave Symposium Digest, San Francisco, CA, USA, 30 May 1984–1 June 1984.
7. Ruehli, A.E. Equivalent Circuit Models for Three-Dimensional Multiconductor Systems. IEEE Trans. Microwave Theory Techn.

1974, 22, 216–221. [CrossRef]
8. Wang, Y.; Chen, B.; Liu, S.; Lou, L.; Tang, K.; Zhang, Y.; Zheng, Y. Analysis and Modelling on CMOS Spiral Inductor with Impact

of Metal Dummy Fills. In Proceedings of the 14th International Symposium on Integrated Circuits, ISIC 2014, Singapore, 10–12
December 2014.

9. Chen, D.; Wu, Y.; Liu, H.; Yin, W.-Y.; Kang, K. A Scalable Model of On-Chip Inductor Including Tunable Dummy Metal Density
Factor. IEEE Trans. Compon. Packag. Manufact. Technol. 2019, 9, 296–305. [CrossRef]

10. Kim, Y.; Petranovic, D.; Sylvester, D. Simple and Accurate Models for Capacitance Increment Due to Metal Fill Insertion. In
Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC, Yokohama, Japan, 23–26 January 2007.

11. Kurokawa, A.; Kanamoto, T.; Kasebe, A.; Inoue, Y.; Masuda, H. Efficient Capacitance Extraction Method for Interconnects with
Dummy Fills. In Proceedings of the Custom Integrated Circuits Conference, Orlando, FL, USA, 6 October 2004.

12. Gaskill, S.G.; Shilimkar, V.S.; Weisshaar, A. Accurate Closed-Form Capacitance Extraction Formulas for Metal Fill in RFICs. In
Proceedings of the Digest of Papers—IEEE Radio Frequency Integrated Circuits Symposium, Boston, MA, USA, 7–9 June 2009.

13. Brownlee, J. A Gentle Introduction to the Rectified Linear Unit (ReLU) for Deep Learning Neural Networks. Available online:
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/ (accessed on 15
October 2022).

14. Guan, Z.; Zhao, P.; Wang, X.; Wang, G. Modeling Radio-Frequency Devices Based on Deep Learning Technique. Electronics 2021,
10, 1710. [CrossRef]

15. Lee, W.S.; Lee, K.H.; Park, J.K.; Kim, T.K.; Park, Y.K.; Kong, J.T. Investigation of the Capacitance Deviation Due to Metal-Fills
and the Effective Interconnect Geometry Modeling. In Proceedings of the Proceedings—International Symposium on Quality
Electronic Design, ISQED, San Jose, CA, USA, 24–26 March 2003.

16. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). In
Proceedings of the 4th International Conference on Learning Representations, ICLR 2016—Conference Track Proceedings, San
Juan, Puerto Rico, 2–4 May 2016.

17. Misra, D. Mish: A Self Regularized Non-Monotonic Activation Function. In Proceedings of the 31st British Machine Vision
Conference, Manchester, UK, 7–10 September 2020. [CrossRef]

18. Biswas, K.; Kumar, S.; Banerjee, S.; Pandey, A.K. Smooth Maximum Unit: Smooth Activation Function for Deep Networks Using
Smoothing Maximum Technique. In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), New Orleans, LA, USA, 18–24 June 2022.

19. Girod, B. Psychovisual Aspects of Image Processing: What’s Wrong With Mean Squared Error. In Proceedings of the Seventh
Workshop on Multidimensional Signal Processing, Lake Placid, NY, USA, 23–25 September 1991.

20. Kingma, D.P.; Ba, J.L. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on
Learning Representations, ICLR 2015—Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015.

21. Yue, C.P.; Wong, S.S. Physical Modeling of Spiral Inductors on Silicon. IEEE Trans. Electron Devices 2000, 47, 560–568. [CrossRef]

http://doi.org/10.1109/16.661228
http://doi.org/10.1109/TVLSI.2009.2020392
http://doi.org/10.1016/j.sse.2008.03.011
http://doi.org/10.1109/TMTT.1974.1128204
http://doi.org/10.1109/TCPMT.2018.2869318
https://machinelearningmastery.com/rectified-linear-activation-function-for-deep-learning-neural-networks/
http://doi.org/10.3390/electronics10141710
http://doi.org/10.48550/arXiv.1908.08681
http://doi.org/10.1109/16.824729

	Introduction 
	Neural Network Equivalent Model 
	Equivalent Relative Permittivity 
	Equivalent Flat Capacitance Model with DMFs 
	Construction of DNN Capacitance Extraction Model Containing DMF (DNN-DMF Model) 
	Deep Neural Network Model 
	Loss Function and Optimization Algorithm 
	Training DNN-DMF Model 


	Validation of DNN Equivalent Model 
	Conclusions 
	References

