
Citation: Zhang, Q.; Liu, L.; Yuan, Y.;

Zhang, Z.; He, J.; Gao, Y.; Li, Y.; Guo,

X.; Zhao, Y. A Gate-Level Information

Leakage Detection Framework of

Sequential Circuit Using Z3.

Electronics 2022, 11, 4216. https://

doi.org/10.3390/electronics11244216

Academic Editor: Yue Wu

Received: 9 November 2022

Accepted: 12 December 2022

Published: 16 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Gate-Level Information Leakage Detection Framework of
Sequential Circuit Using Z3
Qizhi Zhang 1 , Liang Liu 2, Yidong Yuan 2, Zhe Zhang 2, Jiaji He 1,* , Ya Gao 1, Yao Li 1, Xiaolong Guo 3

and Yiqiang Zhao 1,*

1 School of Microelectronics, Tianjin University, Tianjin 300072, China
2 Beijing Smart-Chip Microelectronics Technology Co., Ltd., Beijing 100192, China
3 Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS 66506, USA
* Correspondence: dochejj@tju.edu.cn (J.H.); yq_zhao@tju.edu.cn (Y.Z.)

Abstract: Hardware intellectual property (IP) cores from untrusted vendors are widely used, raising
security concerns for system designers. Although formal methods provide powerful solutions for
detecting malicious behaviors in hardware, the participation of manual work prevents the methods
from reaching practical applications. For example, Information Flow Tracking (IFT) represents a
powerful approach to preventing leakage of sensitive information. However, existing IFT solutions
either introduce hardware overheads or lack practical automatic working procedures, especially
for hardware sequential logic. To alleviate these challenges, we propose a framework that fully
automates information leakage detection at the gate level of hardware. This framework introduces Z3,
an SMT solver, to automatically check the violation of confidentiality. On the other hand, an automatic
tool is developed to remove the manual workload further. In this tool, the gate level hardware is
converted to the formal model firstly, and the integrity of the model is assessed. Along with the
model converting step, the property for leakage detection is generated as well. The proposed solution
is tested on 25 gate-level netlist benchmarks, where sequential designs are included to validate the
effectiveness. As a result, Trojans leaking information from circuit outputs can be automatically
detected. The measured time consumption of the entire working procedure validates the efficiency of
the proposed approach.

Keywords: information flow tracking; formal verification; information leakage detection; Z3

1. Introduction

The demand for intellectual property (IP) cores has significantly increased owing the
changing landscape of the semiconductor industry. The proliferation of the IP market is
affected by various factors such as lowered design cost, shortened time-to-market (TTM),
etc. In the meantime, the credibility of third-party vendors is threatened by the hardware
Trojan and design flaws, which also places high-security uncertainties on the IP end-users
and customers. In a system-on-chip (SoC), a malicious IP core can bypass many existing
hardware Trojan detection methods [1,2].

In detecting hardware Trojans and vulnerabilities, formal methods have been most
effective among all the existing techniques [3–11]. However, very few current formal
verification approaches are scalable and practical for hardware Trojan detection in the
industry due to the lack of automatic and efficient tools. For instance, model checking is a
popularly used malicious logic detection method for protecting third-party IP cores [10].
In the model checking, security properties are formalized as traces, and all possible traces
generated by the system are checked. The system is said to satisfy the security property if
all the traces pass the checking [12]. However, checking the very large system, the model
checker always runs into the state space explosion issue.

Information flow tracking (IFT) [13] is a scalable approach for detecting leakage/sneaky
path of sensitive information. In IFT, data or operations are assigned by labels standing

Electronics 2022, 11, 4216. https://doi.org/10.3390/electronics11244216 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11244216
https://doi.org/10.3390/electronics11244216
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9111-119X
https://orcid.org/0000-0003-1443-9279
https://doi.org/10.3390/electronics11244216
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11244216?type=check_update&version=2

Electronics 2022, 11, 4216 2 of 14

for the trust levels. The labels are propagated or updated to other data relying on the
information flow policy. In general, data with labels are accessed or propagated to the trust
portion in the system. Some IFT-based solutions on assuring hardware security are pro-
posed such as SecVerilog [14,15], Caisson [16], Sapper [17], QIF-Verilog [18], CELLIFT [19],
gate-level information flow tracking (GLIFT) [20], etc. However, there is a lack of IFT
solutions in detecting sneaky paths in the gate-level net-list. Theorem provers such as Coq
are utilized in proving the gate-level information flow property [21]. However, as a theorem
proving method, a significant manual effort is required for constructing machine proofs.
SecChisel [22] applies an automated formal verification checking using the Z3 solver [23],
but it only provides protections during high-level synthesis.

We propose a framework for formalizing and checking gate-level hardware design
for security purposes to solve those problems. In the framework, gate-level net-list data
files are parsed to the formal model in the form of constraints. Then sensitive labels are
introduced to denote secrets in the hardware design. If outputs are tainted by the labels, the
information leakage is detected. Satisfiability modulo theories (SMT) solver is utilized as
the checking engine to propagate the information flow and automatically check IFT policies.

The main contributions of this paper are as follows.

• We introduce an automated formal verification framework detecting vulnerabilities in
the gate-level net-list. The net-list data is formalized into a circuit model, and then
security properties are designed based on the model. Confidentiality is enforced on
the input hardware design by applying an automatic checking engine.

• GLIFT is, for the first time, statically applied in the gate-level hardware with a fully
automated working procedure. The information leakage is addressed and localized
by tracking sensitive information.

• An automatic tool, including a parser and a SMT Solver, is designed and demonstrated
based on the developed framework. The parser for translating net-list files to formal
models can support multiple net-list process libraries such as generic gate Verilog and
180nm CMOS library. An algorithm is developed to support analyzing the properties
in sequential circuits using an SMT solver.

• The proposed framework can accurately analyze the sequential information flow, and
its effectiveness is proven in 25 benchmarks, including combinational circuits and
sequential circuits.

The rest of the paper is organized as follows. In Section 2, we introduce the threat
model and discuss previous work on malicious logic detection using IFT based solutions
and then present a gate-level IFT model. We explain our automated framework involving
the SMT solver and code parser in Section 3. Section 4 introduces the tool we designed
for the automatic framework. Section 5 presents demonstrations of our approach. The
limitations of this work are discussed in Section 6. Finally, conclusions are drawn in
Section 7.

2. Background
2.1. Attack Model

This paper assumes that information leakage paths are created by either intended
hardware Trojan or unintentional design errors. An adversary can insert malicious logic at
the design or testing stage in the supply chain. We assume that the rogue agent at the third-
party IP vendor can access the Register-transfer Level (RTL) design or the gate-level netlist
files and then insert a hardware Trojan or backdoor to create a sneaky path in the design.
Lacking security knowledge, the hardware developers could produce vulnerabilities, such
as leakage paths, in the design stage. On the other hand, we assume that attackers can
access inputs and outputs ports of the manufactured hardware and have knowledge of the
hardware functionality. Therefore, by triggering the Trojan or observing the input-output
patterns, the attacker can exploit such information leakage paths to infer the sensitive/secret
information of the design.

Electronics 2022, 11, 4216 3 of 14

2.2. Related Work

Formal methods have been proven that it is the most effective and complete method
in ensuring the security of integrated circuits. However, because of the lack of automated
and security-oriented tools, very few formal methods are applied to hardware security ver-
ification. Moreover, some of these works are manual and dynamic, making the verification
process time-consuming. The related works are summarized in Table 1.

Table 1. Summary of formal methods in hardware security.

Work Target Static or Dynamic Automatic

[24] Gate level HW design Dynamic Y
[25] RTL HW design Dynamic Y
[26] Gate level HW design Dynamic Y
[27] RTL HW design Dynamic N
[28] Gate level HW design Dynamic Y
[29] HW/SW interactions Dynamic Y

This work Gate level HW design Static Y

Recently, IFT based security approaches for protecting confidentiality are delivered in
the form of a language-based solution. Caisson [16] and Sapper [17] realize IFT isolation and
separation properties and in the synthesized secure circuits. In Caisson or Sapper, wires and
registers are duplicated in generated hardware, which introduce considerable hardware
overheads at the circuit level. SecVerilog avoids the hardware overheads by detecting
information leakage in the compilation stage [15]. It extends the type system of standard
Verilog to enforce noninterference in the design. However, a complex security label system
is needed by SecVerilog to increase precision. Only with sufficient knowledge of security,
the circuit designers can specify information flow policies in SecVerilog. In contrast, QIF-
Verilog only extends one simple security label from the standard Verilog to reduce the cost
of learning from the developers’ side [18]. It quantifies the information leakage by applying
the quantitative information flow tracking in the design stage. However, the QIF-Verilog is
not capable of supporting IFT analysis in the gate-level netlist. CELLIFT [30] provides a
dynamic information flow tracking method for hardware. It leverages the logical macrocell
abstraction to achieve scalability, precision and completeness in RTL design. However, its
performance is limited by the amount of logic cell types.

In [31], GLIFT is proposed to detect malicious logic by tracking the information flow
in the runtime hardware. It models logic gates and labels individual bit at the gate-level.
The information flow propagation logic is realized in hardware along with the original
functional circuit, though with high hardware overheads [19]. A static GLIFT approach is
proposed in [21] which checks security property in the gate-level netlist. It translates the
property and the netlist to theorems and formal circuits, respectively. The theorem proving
is utilized to prove the satisfaction of the property against the formal circuit. Using an
interactive proving approach, developers manually construct the proofs, which increases
the time required for certifying large hardware design. SecChisel is proposed in [22] to check
the confidentiality and integrity of hardware design automatically using the SMT solver.
Based on the Chisel hardware construction language, the SecChisel verification framework
converts a higher level hardware description to the intermediate representations, FIRRTL
representations, and then parses them to Z3 inputs for the information flow checking.
Although the framework checks the IFT property automatically, it focuses on the high-level
synthesis procedure rather than the gate-level netlist, not to mention that Chisel has not
been widely adopted in industry. Refs. [24,32] propose a unified formal model which
combines IFT Taint-propagation and X-propagation to verify the security and integrity
of the hardware design. This work realize efficient model building for multiple property
verification. However, it causes a large simulation overhead because of the extra tracking
logic in RTL code.

Electronics 2022, 11, 4216 4 of 14

In our preliminary work [33], GLIFT approach is used to detect information leakage
combined with an SMT solver Z3. It translates the original circuit and extra IFT logic
from the net-list file to a static formal model. The property is designed based on the
privacy of information propagation. Specifically, the security labels of sensitive input and
output ports are set high to evaluate whether the sensitive information can be propagated
to output. Then the model and property are input into the Z3 SMT solver for tracking
information flow. This work realized an automatic framework for GLIFT model translating,
property generating, and leakage path solving. However, the framework can only handle
the combinational circuit. There is a demand for supporting sequential logic as the design
of hardware becomes more and more complex.

2.3. Modeling Gate-Level IFT

An advantage of GLIFT is that each data bit is associated with a security label, which
propagates labels more precise and reduces false-positive rates [20]. As an example, in
Equation (1), we perform and operation between the secret signal and a 32-bits zero vector,
then output the result.

Output := AND-2(Secret, 0x00000000) (1)

where AND-2 function performs as a 32 bits two-inputs AND operation and Secret has
been labelled as high sensitive. In the traditional IFT approach, the sensitive label would
be propagated to the output port and then detected as information leakage. However, as
the other signal involved in the and operation is zero, no secret is actually leaked through
this operation, which causes a false-positive.

In the GLIFT, both signal value and security labels are taken into consideration during
the label propagation. Rather than tracking the data flow in the original design only, how
the output is influenced by input values must also be accounted for. To achieve this goal,
extra logic gates are created to represent the influence along with the original circuit. We
use a two-input AND logic gate as the example. For each two-input AND gate, the extra
logic gates are inserted as shown in Figure 1. The A and B are 1-bit input while O is the
1-bit output. Accordingly, labels for A, B and O are denoted as At, Bt and Ot. Following
the structure, once the low sensitive input is 0, the output label Ot keeps 0 no matter what
the other high sensitive input value is. Only in the case that the low sensitive input is 1, the
Ot is influenced by the high sensitive input, which means that the highly sensitive label
has the potential to propagate to the output.

For sequential circuits, when the clock edge comes, the signal in circuit can be propa-
gated through sequential logic gate. The sensitive label should also be propagated at the
meanwhile. However, previous sequential information flow researches don’t always obey
the theory elaborated above. Take D-flip-flop as an example, Figure 2 shows the logic and
sensitive propagation rule of DFF cell in previous research. When the clock positive edge
comes, the signal of port D propagates to port Q. The sensitive label Dt is propagated to
port Qt without any sequential constraint. There is no problem to apply this DFF model
in dynamic information flow tracking methods. Because in dynamic information flow
tracking methods, extra circuits for IFT logic are added. The circuit implementation of IFT
logic guarantees the correctness of information propagation. However, in static information
flow tracking method, static model of IFT logic is generated directly. There is no additional
practical circuit implementation. Thus, the sequential synchronization of information
propagation must be ensured in the formal model so that the complete information leakage
path with sequential property can be detected.

Electronics 2022, 11, 4216 5 of 14

Figure 1. The AND-2 gate-level IFT model [20].

D Q

Clk

Q

Dt

Qt

Figure 2. The DFF IFT model.

2.4. SMT Solver

Satisfiability (SAT) solvers have been used in many electronic design automation
(EDA) fields such as logic synthesis, verification, and testing. The SAT solvers are originally
designed to solve the well-known Boolean Satisfiability problem, which decides whether
a propositional logic formula can be satisfied given value assignments of the variables in
the formula. Based on SAT solver, SMT solver is derived by including several first-order
theories, such as arithmetic, bit-vectors and quantifiers [23]. However, due to the high
computational complexity, there is no hardware implementation for SMT solvers, and the
software-based SMT solver is not scalable to large designs. Z3 is a popular used SMT solver
providing efficient verification and analysis applications [23]. It is assembled in the Python
environment as Z3PY, which is a convenience for developing practical tools [34].

3. Methodology

The proposed framework automates the formal verification by realizing IFT in the
gate-level net-list design. Following our preliminary work in [33], it converts the whole
hardware design to Z3 constraints and adds extra logic to track security labels. Label
checking will be performed in an SMT solver. In this paper, Z3 is utilized as the solver.
Therefore, a parser is developed to translate the net-list to its equivalent Z3 constraints
along with the extra GLIFT logic generations.

Electronics 2022, 11, 4216 6 of 14

3.1. Framework Overview

The working procedure of the proposed formal framework is shown in Figure 3. The
gate-level net-list data is input to a parser, where the original hardware design is parsed
to its formal equivalent representations, called the functional circuit representations F. In
the meantime, the parser further generates extra logic gates to introduce and track security
labels. Those logic gates are denoted as IFT circuit representations I, which compose the
GLIFT logic. Both representations F and I are in the form of Z3 constraints. Hence we
define the formal model M as Equation (2).

M := F ∧ I (2)

Figure 3. Working procedure of the proposed formal framework.

Taking the logic gates in Figure 1 as an example, signal {A, B, O} are composed
following constraints in F while signal {At,Bt,Ot} are composed based on constraints in I.
The corresponding procedure of deriving formal model M is shown as follows.

F := (O == A&B)

I := (Ot == (At&Bt)|(At&B)|(A&Bt))

M := F ∧ I := (O == A&B)∧
(Ot == (At&Bt)|(At&B)|(A&Bt))

where & stands for the and operation and | stands for the or operation. M is the model,
which input to the Z3 platform. IFT properties are denoted as P, indicating sensitive data
bits. Input to the Z3 solver, P is in the form of Z3 constraints as well. The constraints C,
which need to be checked in the end, are conjunctions of M and P. Taking the circuit in
Figure 1 as as example, we assume that B is of high sensitivity while A is in low sensitivity.

Electronics 2022, 11, 4216 7 of 14

It leads to label value 1 in Bt and label value 0 in At. If the output O leaks sensitive
information, then we will have Ot of label 1. We can derive the C as follows.

P := (At == 0) ∧ (Bt == 1) ∧ (Ot == 1)

C := P ∧M := (At == 0) ∧ (Bt == 1) ∧ (Ot == 1)∧
(O == A&B)∧
(Ot == (At&Bt)|(At&B)|(A&Bt))

Z3 SMT solver is then utilized to check C. If there is no solution, whatever the inputs
are, there is no path to propagate the high sensitive label to the output Ot. The design is
highly secure regarding the confidentiality property. Otherwise, the high sensitive label
can be propagated to the output port and observed by the attacker by giving the solution
as input. In this example, the solutions {A = 1, B = 0} and {A = 1, B = 1} are obtained by
the Z3. Therefore, the design in Figure 1 has information leakage paths.

3.2. Sequential Split Strategy

We propose a sequential split strategy to solve the timing synchronization problem of
the original circuit information flow and the extra circuit information flow, as mentioned in
Section 2.3. First, we analyze the RTL hardware program, named RTL code, before circuit
synthesis. Figure 4 shows an example of the result of the sequential logic synthesis (right
side) in the RTL code (left side). When the structure shown in Figure 4 appears in the
code, there will be a series of DFFs in the net-list after synthesis. To avoid the sequential
synchronization problem mentioned in Section 2.3, we split the RTL code into two parts—
before and after the sequential statement code. Each part will only contain combinational
logic code statements. After the split, every individual part will be synthesized into net-list
data. That is, there is no net-list sequential code block or logic cell inside an individual part,
as shown in Figure 4. Such individual Net-list file can be translated to the formal model in
Z3 by using our automatic parser.

Figure 4. Synthesis results of sequential block in RTL code.

Then these individual net-list files are associated together in a cascaded way. As a
pipeline, each circuit part’s input and output signals are extracted as the connection of two
cascaded modules in the adjacent clock cycles. The logical relationship between the output
of modules in the previous clock cycle and the modules’ input in the next clock cycle is
declared. At the same time, the shadow logic of the above relationship is declared either.
Then, all this connection information is added into the model to formal the model of the
whole circuit. In the end, the complete model contains several parts, where every part
represents the circuit design logic and GLIFT logic of each clock cycle.

4. Tool Design

We developed an automatic tool for security verification. It first translates the net-list
to Z3 model/constraints, then checks the model’s integrity. After that, the time label is
added to every submodel represented as individual parts in Section 3.2. Along with the
model establishment step, the property based on GLIFT theory is generated as well. The

Electronics 2022, 11, 4216 8 of 14

tool is written in Python, and the structure is shown in Figure 5. Every block in the tool
structure is introduced as follows.

Tool

Netlist to Z3 parser

Integrity checking
module

Sequential label
setting module

Property generation
module

Netlist Z3 models

Z3 model with
timing label

Z3 model of the

whole circuit

Z3 model that
can be verified

Input Output

Figure 5. Structure of the designed tool.

4.1. Net-list to Z3 Parser

We developed an automatic parser for converting and generating Z3 constraints from
the gate-level net-list. The parser is written in Python and has the structure shown in
Figure 6. There are two parts in the parser—code analysis and code generation. The
code analysis part interprets the net-list file. It generates wires and registers that are
utilized in the functional circuit. Especially, the input and output signals are extracted
from those wires/registers, which are assistant to the following property design and model
integration. Then in the code generation, the functional circuit representations F and IFT
circuit representations I are produced. As a result, rely on the extracted inputs and outputs,
F and I are integrated for the Z3 solver.

Figure 6. Block structure of the developed parser.

4.2. Integrity Checking Module

An integrity-checking module is designed to ensure the integrity of the model. To
handle sequential circuits, we split the circuit as discussed in Section 3.2. Accordingly, the

Electronics 2022, 11, 4216 9 of 14

models are composed of separated sub-models. Therefore, the connection signals between
cascaded parts of circuits and corresponding IFT signals are declared especially. In addition,
the types of logic gates that make up the net-list are shown up. The result is compared with
the logic gate library utilized in the Net-list to Z3 parser code generation. If any type of
logic gate in net-list does not appear in the preset logic gate library, errors will be reported,
guaranteeing the model’s integrity.

4.3. Sequential Label Setting Module

We label the model with timing tags to make the model more specific and the leakage
path clearer in the sequential aspect. An ergodic algorithm is applied to label every
variation in the model timing. For example, the variation N3 at the first clock cycle is
transformed to N3T1 after this procedure. The functional circuit representations F and IFT
circuit representations I are transformed to FT and IT as the output of this module.

4.4. Property Generation Module

As one of the essential parts of formal verification, we set two property generation
methods in this part according to the GLIFT theory. The premise is that the IFT logic of
security sensitive signals is set as high. One of the two theories is to set an OR gate for
all the IFT logic of the output signals. Then it checks if a solution can result in a high
logic at the output of the OR gate. The other is to set the logic value of the IFT logic of
the suspect output port as high and then find if a solution can satisfy this condition. We
choose one of these two methods to generate property according to the characteristics of
the experimental circuit.

5. Experiments

This section demonstrates the proposed information flow tracking based automated
formal verification. The experiment is set up in Python environment and evaluates IFT
property in Verilog net-list benchmarks. Trojans are inserted into the genuine benchmarks,
while properties are designed as adding labels in IFT circuit representations.

5.1. Experimental Setup

To use the proposed framework in practical applications, a developer/user only needs
to indicate high-sensitive bits in the IFT circuit representations’ input signals and those
outputs observable by attackers. In the experiment, some specific data bits are treated as
secrets, and confidentiality is checked for those labeled secrets.

The main tool utilized for experimentation is Z3 SMT Solver. API of Z3 has been
assembled in the Python environment as Z3PY. The Z3 solver is in the same environment
as the net-list to Z3 parser, which makes the toolchain be integrated easily. We employ the
Z3 to check if the tainted label of secret information can be delivered to the IFT circuit’s
output. All the demonstrations are executed in Windows 10 on a computing machine
with Core(TM) i3-9100 CPU(manufactured in Intel Corporation, Santa Clara, CA, USA)
@3.60 GHz and 8 GB memory.

To demonstrate the practicality of our proposed framework, we evaluate 22 ISCAS’85
gate-level net-list benchmarks [35,36]. Those benchmarks are written in Verilog and have
been synthesized using Cadence Genus. They provide combinational logic circuits to let
users test different mythologies. To fit the attack model in this paper, we insert the leakage
paths to simulate hardware Trojans into the design. In addition, we choose one-round
AES circuit as the benchmark to prove our framework’s practicality in sequential circuits.
Furthermore, hardware trojans, customized based on Trojans in Trust-Hub, are inserted
to establish sneaky information-leaking paths. Then, the net-list to Z3 parser translates
the Trojan inserted benchmarks to models in Z3, while the IFT logic of the benchmark is
generated simultaneously. After that, we establish the solver and add constraints standing
for IFT properties. The model and properties are finally checked together in the Z3 platform.

Electronics 2022, 11, 4216 10 of 14

5.2. Leakage Paths Checking

In Figure 7, we show a template of inserted hardware Trojan design. All Trojans in
our ISCAS85 benchmarks follow this structure and will leak information about the circuit.
Specifically, the inserted hardware Trojans are combinational circuits composed of AND,
NAND, and NOR gates. The trigger of the Trojan is connected to the input ports and would
be activated by a specific input pattern. The Trojan payload enables an AND gate and
passes the sensitive information to the output ports.

Figure 7. Design of inserted sneaky paths in ISCAS85 benchmarks.

Figure 8 shows the trojan we design for AES-T3. Once the input matches the preset
value, the Trojan trigger outputs a high signal value. Then the Trojan payload is activated
to leak the secret information, the Key of AES.

...

128bit 1-round AES
[127:0]state

Clk
Rst

[127:0]key

Hardware trojan
Specific input trigger Pyload

... ...

[127:0]out

[63:0]load

Figure 8. Design of inserted sneaky paths in benchmark AES-T3.

For each combinational benchmark, We denote one data bit in a specific input as the
secret and set its label as high. For sequential benchmark, we consider the 128-bit key
signals as the secret information and label all the 128-bit signals as high. Output bits that
the Trojan influences are defined as vulnerable output ports. The security property is
represented as “Assigning the high sensitive label to a secret and low sensitive labels to the
rest signals, whether there exists at least one solution causing high sensitive label appeared
on vulnerable output ports”. In other words, if the Z3 finds a solution, then the Trojan is
detected. As a counter-example, the solution is the input vector that propagates secrets
to outputs.

5.3. Results and Analysis

Table 2 shows the results of our experiments. Again, Trojans are inserted into all the
benchmarks for leaking information. Among those benchmarks, the Trojans in “memetrl”
and “div” are always on, while the others are triggered by a signal. We account for the
number of logic gates from the net-list data design files in the column of the functional

Electronics 2022, 11, 4216 11 of 14

gate, and the number of GLIFT gates from the formal model in the column of IFT gate. The
gate number in IFT logic is 3− 10×more than functional gates. It indicates the huge area
overheads would be caused if we implement the GLIFT logic in real hardware circuits.

Table 2. Tests on Trojan insertion benchmarks.

Benchmarks Format Trigger Mode Functional Gate IFT Gate Model Time (ms) Detection Time (ms) Total (ms) Detected

c17 generic gate verilog signal trigger 6 24 70 24 94 Yes
c432 generic gate verilog signal trigger 160 775 77 143 220 Yes
c499 generic gate verilog signal trigger 202 888 65 130 195 Yes
c880 generic gate verilog signal trigger 383 1455 63 210 273 Yes
c1355 generic gate verilog signal trigger 546 3315 74 275 349 Yes
c1908 generic gate verilog signal trigger 880 2168 74 250 324 Yes
c2670 generic gate verilog signal trigger 1193 3290 81 509 590 Yes
c3540 generic gate verilog signal trigger 1669 4638 91 663 754 Yes
c5315 generic gate verilog signal trigger 2307 7995 116 1112 1228 Yes
c6288 generic gate verilog signal trigger 2416 9364 134 1085 1219 Yes
c7552 generic gate verilog signal trigger 3512 9809 138 1361 1499 Yes
bar generic gate verilog signal trigger 2960 15,271 1391 2553 3944 Yes
max generic gate verilog signal trigger 5065 14,216 4486 4486 8972 Yes
sin generic gate verilog signal trigger 7656 25,970 2634 2323 4957 Yes

arbiter generic gate verilog signal trigger 23,189 59,600 4605 7087 11,692 Yes
voter generic gate verilog signal trigger 25,993 69,436 9437 8805 18,242 Yes

square generic gate verilog signal trigger 35,264 91,406 7976 12,017 19,993 Yes
sqrt generic gate verilog signal trigger 36,787 122,891 34,187 38,399 72,586 Yes

multiplier generic gate verilog signal trigger 42,974 131,690 8664 19,698 28,562 Yes
log2 generic gate verilog signal trigger 46,746 155,981 27,165 26,367 53,532 Yes

memctrl generic gate verilog always on 81,588 224,428 24,932 32,611 57,543 Yes
div generic gate verilog always on 100,985 274,228 27,908 264,972 320,788 Yes

AES1-T1 180 nm CMOS library signal trigger 6956 82,182 3,185,023 25,703 3,210,726 Yes
AES1-T2 180 nm CMOS library always on 6861 81,055 3,184,493 25,608 3,210,101 Yes
AES1-T3 180 nm CMOS library signal trigger 6905 82,286 3,188,966 25,676 3,214,642 Yes

The time consumption of parsing Verilog net-list to Z3 constraints is listed as model
time. Time cost in Z3 solving is listed as the detection time. The column of total time
indicates the time consumption from taking in benchmarks to detecting hardware Trojans.
Taking the benchmark c6288 as an example, the c6288 includes 2416 gates, from which
9364 GLIFT logic gates are generated by the parser. The time consumption of code parsing
and generation is 134 ms. The Z3 solving takes 1085 ms to detect the hardware Trojan.
Assuming that the security property has already been designed, the total time cost for
detecting Trojan in c6288 is 1219 ms.

We can see that the model time of sequential benchmarks (AES1-T1, AES1-T2, and
AES1-T3) are disproportionately more than other benchmarks. Because of the difference
in process library, the functional gates of sequential benchmarks are more complex than
combinational benchmarks. Thus, the number of functional gate of original circuits is
proportionally less than that of combinational benchmarks. Moreover, for sequential
circuits, we label every variation in net-list with timing tags to observe which clock the
variation is in at the whole sneaky path. The timing tag labeling leads to much more model
time consumption in sequential circuits than in combinational circuits. As a result, all
Trojans in those benchmarks are detected successfully.

The largest benchmark in this experiment is div which includes 100, 985 functional
gates. The total time spent on the security verification is 320, 778 ms or around 5 min. From
the results, the evaluation can be finished in minutes. The proposed formal framework is
efficient for protecting the confidentiality of the gate-level net-list.

Further, leakage paths can be obtained by analyzing results, which can help developers
improve their designs. Figure 9 demonstrates the leakage paths detected in the benchmark
c432. The signal N17 is the secret input signal that is tainted and the signal Tj-payload is
the output of the Trojan. In this example, we detected 167 leakage paths in the gate-level
net-list while 3 of them are shown in the figure. Developers could improve the secure level
by adding obfuscation on those paths.

Electronics 2022, 11, 4216 12 of 14

Figure 9. Detected leakage paths of benchmark c432.

6. Limitations and Discussion

Although the proposed framework demonstrates excellent performance in detecting
sneaky paths of information leakage, there are some limitations, such as proof of a very
large-scale circuit and the need for a fully automatic sequential logic process algorithm.
SMT solving is often efficient in obtaining a result where a solution exists. However, it be-
comes an NP-hard problem once there exists no solution to the given problem/constraints.
Mapping to our framework, it demonstrates a significant performance in detecting sneaky
paths in the condition that a Trojan or vulnerability exists. The solution searching strategy
can be optimized to improve efficiency further.

In contrast, if there are no such paths leaking secrets, the solver must check all possible
cases before termination, which leads to intense computation complexity. To address this
issue, we will set a threshold according to the size of the net-list file. The SMT solving
would be terminated in the threshold and report a compromised secure checking to users.

Our parser can currently support combinational and sequential circuit logic parsing
and generation. However, the sequential logic needs to first be manually handled and then
transformed into a formal model and verified. In the future, we will perfect our framework
to be fully automatic and support large-scale circuit verification.

7. Conclusions

This paper proposes a formal framework to protect the confidentiality of hardware de-
sign at the gate-level. By designing a parser, the formal model is generated and composed
of a functional circuit and GLIFT logic circuit. The Z3 solver validates the model with an
IFT property in the end. Moreover, a sequential split algorithm is proposed to guarantee
the beingness of the verification result. The framework provides a fully automatic static
formal verification from the input net-list file to the IFT property checking. In the future,
an automatic sequential circuit-processing module will be added to the framework. Ac-
cordingly, larger scale benchmarks with hardware Trojans will be tested. Furthermore, we
will extend the framework to cover more properties and features. The integrity property
will be considered to identify malicious modifications.

Author Contributions: Methodology, Q.Z. and X.G.; software, Q.Z.; validation, Y.G.; data curation,
Z.Z.; writing—original draft preparation, Q.Z.; writing—review and editing, J.H.; visualization, Y.L.;
project administration, L.L. and Y.Z.; funding acquisition, Y.Y. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by The Laboratory Open Fund of Beijing Smart-chip Microelec-
tronics Technology Co., Ltd.

Acknowledgments: All of the acknowledagement have been covered in Funding and Author contribution.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 4216 13 of 14

References
1. Agrawal, D.; Baktir, S.; Karakoyunlu, D.; Rohatgi, P.; Sunar, B. Trojan detection using IC fingerprinting. In Proceedings of the 2007

IEEE Symposium on Security and Privacy (SP ’07), Oakland, CA, USA, 20–23 May 2007; pp. 296–310. [CrossRef]
2. Jin, Y.; Makris, Y. Hardware Trojan detection using path delay fingerprint. In Proceedings of the 2008 IEEE International Workshop

on Hardware-Oriented Security and Trust, Anaheim, CA, USA, 9 June 2008; pp. 51–57. [CrossRef]
3. Zhang, X.; Tehranipoor, M. Case study: Detecting hardware trojans in third-party digital ip cores. In Proceedings of the 2011 IEEE

International Symposium on Hardware-Oriented Security and Trust, San Diego, CA, USA, 5–6 June 2011; pp. 67–70.
4. Love, E.; Jin, Y.; Makris, Y. Proof-carrying hardware intellectual property: A pathway to trusted module acquisition. IEEE Trans.

Inf. Forensics Secur. 2012, 7, 25–40. [CrossRef]
5. Jin, Y.; Yang, B.; Makris, Y. Cycle-accurate information assurance by proof-carrying based signal sensitivity tracing. IEEE Int.

Symp. Hardw.-Oriented Secur. Trust (HOST) 2013, 99–106.
6. Jin, Y. Design-for-security vs. design-for-testability: A case study on dft chain in cryptographic circuits. In Proceedings of the

2014 IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 9–11 July 2014. [CrossRef]
7. De Paula, F.M.; Gort, M.; Hu, A.J.; Wilton, S.J.; Yang, J. Backspace: Formal analysis for post-silicon debug. In Proceedings of the

2008 International Conference on Formal Methods in Computer-Aided Design; IEEE Press, Portland, Oregon, USA, 2008; p. 5.
8. Guo, X.; Dutta, R.G.; Jin, Y.; Farahmandi, F.; Mishra, P. Pre-silicon security verification and validation: A formal perspective. In

Proceedings of the 52nd Annual Design Automation Conference; ACM, San Francisco, CA, USA, 2015; p. 145.
9. Drzevitzky, S. Proof-carrying hardware: Runtime formal verification for secure dynamic reconfiguration. In Proceedings of

the 2010 International Conference on Field Programmable Logic and Applications, Milan, Italy, 31 August–2 September 2010;
pp. 255–258.

10. Rajendran, J.; Vedula, V.; Karri, R. Detecting Malicious Modifications of Data in Third-Party Intellectual Property Cores. Ser.; DAC ’15:
New York, NY, USA, 2015; pp. 112:1–112:6.

11. Henzinger, T.A.; Jhala, R.; Majumdar, R.; Sutre, G. Software verification with blast. In Model Checking Software; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 235–239.

12. Guo, X.; Dutta, R.G.; Mishra, P.; Jin, Y. Automatic code converter enhanced
pch framework for soc trust verification. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2017, 25, 3390–3400. [CrossRef]

13. Myers, A.C.; Liskov, B. A decentralized model for information flow control. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), Saint-Malo, France, 5–8 October 1997; pp. 129–142.

14. Zhang, D.; Askarov, A.; Myers, A.C. Language-based control and mitigation of timing channels. ACM SIGPLAN Not. 2012, 47,
99–110. [CrossRef]

15. Zhang, D.; Wang, Y.; Suh, G.E.; Myers, A.C. A hardware design language for timing-sensitive information-flow security. ACM
SIGPLAN Not. 2015, 50, 503–516. [CrossRef]

16. Li, X.; Tiwari, M.; Oberg, J.K.; Kashyap, V.; Chong, F.T.; Sherwood, T. Hardekopf, B. Caisson: A hardware description language
for secure information flow. ACM SIGPLAN Not. 2011, 46, 109–120. [CrossRef]

17. Li, X.; Kashyap, V.; Oberg, J.K.; Tiwari, M.; Rajarathinam, V.R.; Kastner, R.; Sherwood, T.; Hardekopf, B.; Chong, F.T. Sapper: A
language for hardware-level security policy enforcement. In ACM SIGARCH Computer Architecture News; ACM: New York, USA,
2014; Volume 42, pp. 97–112.

18. Guo, X.; Dutta, R.G.; He, J.; Tehranipoor, M.M.; Jin, Y. Qif-verilog: Quantitative information-flow based hardware description
languages for pre-silicon security assessment. In 2019 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST); IEEE: McLean, VA, USA, 2019; pp. 91–100.

19. Hu, W.; Oberg, J.; Irturk, A.; Tiwari, M.; Sherwood, T.; Mu, D.; Kastner, R. On the complexity of generating gate level information
flow tracking logic. IEEE Trans. Inf. Forensics Secur. 2012, 7, 1067–1080. [CrossRef]

20. Hu, W.; Mao, B.; Oberg, J.; Kastner, R. Detecting hardware trojans with gate-level information-flow tracking. Computer 2016, 49,
44–52. [CrossRef]

21. Qin, M.; Hu, W.; Wang, X.; Mu, D.; Mao, B. Theorem proof based gate level information flow tracking for hardware security
verification. Comput. Secur. 2019, 85, 225–239. [CrossRef]

22. Deng, S.; Gümüsoglu, D.; Xiong, W.; Gener, Y.S.; Demir, O.; Szefer, J. Secchisel: Language and tool for practical and scalable
security verification of security-aware hardware architectures. IACR Cryptol. ePrint Arch. 2017, 2017, 193.

23. De Moura, L.; Bjørner, N. Z3: An efficient smt solver. In International conference on Tools and Algorithms for the Construction and
Analysis of Systems; Springer: Budapest, Hungary, 2008; pp. 337–340.

24. Hu, W.; Wu, L.; Tai, Y.; Tan, J.; Zhang, J. A unified formal model for proving security and reliability properties. In Proceedings of
the 2020 IEEE 29th Asian Test Symposium (ATS), Penang, Malaysia, 23–26 November 2020; pp. 1–6.

25. Kumar, B.; Jaiswal, A.K.; Vineesh, V.S.; Shinde, R. Analyzing hardware security properties of processors through model checking.
In Proceedings of the 2020 33rd International Conference on VLSI Design and 2020 19th International Conference on Embedded
Systems (VLSID), Bangalore, India, 4–5 January 2020; pp. 107–112.

26. Khalid, F.; Abbassi, I.H.; Rehman, S.; Kamboh, A.M.; Hasan, O.; Shafique, M. Forasec: Formal analysis of hardware trojan-based
security vulnerabilities in sequential circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 41, 1167–1180. [CrossRef]

http://doi.org/10.1109/SP.2007.36
https://doi.org/10.1109/HST.2008.4559049
http://dx.doi.org/10.1109/TIFS.2011.2160627
http://dx.doi.org/10.1109/ISVLSI.2014.54.
http://dx.doi.org/10.1109/TVLSI.2017.2751615
http://dx.doi.org/10.1145/2345156.2254078
http://dx.doi.org/10.1145/2775054.2694372
http://dx.doi.org/10.1145/1993316.1993512
http://dx.doi.org/10.1109/TIFS.2012.2189105
http://dx.doi.org/10.1109/MC.2016.225
http://dx.doi.org/10.1016/j.cose.2019.05.005
http://dx.doi.org/10.1109/TCAD.2021.3061524

Electronics 2022, 11, 4216 14 of 14

27. Bouzafour, A.; Renaudin, M.; Garavel, H.; Mateescu, R.; Serwe, W. Model-checking synthesizable systemverilog descriptions of
asynchronous circuits. In Proceedings of the 2018 24th IEEE International Symposium on Asynchronous Circuits and Systems
(ASYNC), Vienna, Austria, 13–16 May 2018; pp. 34–42.

28. He, J.; Guo, X.; Meade, T.; Dutta, R.G.; Zhao, Y.; Jin, Y. Soc interconnection protection through formal verification. Integration 2019,
64, 143–151. [CrossRef]

29. Pieper, P.; Herdt, V.; Große, D.; Drechsler, R. Dynamic information flow tracking for embedded binaries using systemc-based
virtual prototypes. In Proceedings of the 2020 57th ACM/IEEE Design Automation Conference (DAC), San Francisco, CA, USA,
1–5 June 2020; pp. 1–6.

30. Solt, F.; Gras, B.; Razavi, K. Cellift: Leveraging cells for scalable and precise dynamic information flow tracking in RTL. In
31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, 10–12 August 2022; Butler K.R.B., Thomas, K.,
Eds.; USENIX Association, 2022; pp. 2549–2566. Available online: https://www.usenix.org/conference/usenixsecurity22/
presentation/solt(accessed on 14 December 2022).

31. Tiwari, M.; Wassel, H.M.; Mazloom, B.; Mysore, S.; Chong, F.T.; Sherwood, T. Complete information flow tracking from the gates
up. ACM Sigplan Not. 2009, 44, 109–120. [CrossRef]

32. Blackstone, J.; Hu, W.; Althoff, A.; Ardeshiricham, A.; Zhang, L.; Kastner, R. A Unified Model for Gate Level Propagation
Analysis. 2020. Available online: https://arxiv.org/abs/2012.02791 (accessed on 11 December 2022).

33. Zhang, Q.; He, J.; Zhao, Y.; Guo, X. A formal framework for gate-level information leakage using z3. In 2020 Asian Hardware
Oriented Security and Trust Symposium (AsianHOST); IEEE: Shanghai, China, 2020; pp. 1–6.

34. Microsoft Research. Z3 api in Python. Available online: https://ericpony.github.io/z3py-tutorial/guide-examples.htm (accessed
on 11 December 2022).

35. Hansen, M.C.; Yalcin, H.; Hayes, J.P. Unveiling the iscas-85 benchmarks: A case study in reverse engineering. IEEE Des. Test
Comput. 1999, 16, 72–80. [CrossRef]

36. EPFL and ISCAS85. Epfl and iscas85 Combinational Benchmark Circuits in Generic Gate Verilog. Available online: https:
//github.com/jpsety/verilog_benchmark_circuits (accessed on 11 December 2022).

http://dx.doi.org/10.1016/j.vlsi.2018.09.007
https://www.usenix.org/conference/usenixsecurity22/presentation/solt
https://www.usenix.org/conference/usenixsecurity22/presentation/solt
http://dx.doi.org/10.1145/1508284.1508258
https://arxiv.org/abs/2012.02791
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
http://dx.doi.org/10.1109/54.785838
https://github.com/jpsety/verilog_benchmark_circuits
https://github.com/jpsety/verilog_benchmark_circuits

	Introduction
	Background
	Attack Model
	Related Work
	Modeling Gate-Level IFT
	SMT Solver

	Methodology
	Framework Overview
	Sequential Split Strategy

	Tool Design
	Net-list to Z3 Parser
	Integrity Checking Module
	Sequential Label Setting Module
	Property Generation Module

	Experiments
	Experimental Setup
	Leakage Paths Checking
	Results and Analysis

	Limitations and Discussion
	Conclusions
	References

