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Abstract: The accurate and rapid identification of surface defects is an important element of product
appearance quality evaluation, and the application of deep learning for surface defect recognition
is an ongoing hot topic. In this paper, a lightweight KD-EG-RepVGG network based on structural
reparameterization is designed for the identification of surface defects on strip steel as an example. In
order to improve the stability and accuracy in the recognition of strip steel surface defects, an efficient
attention network was introduced into the network, and then a Gaussian error linear activation
function was applied in order to prevent the neurons from being set to zero during neural network
training, leaving neuron parameters without being updated. Finally, knowledge distillation is
used to transfer the knowledge of the RepVGG-A0 network to give the lightweight model better
accuracy and generalization capability. The outcomes of the experiments indicate that the model has
a computational and parametric volume of 22.3 M and 0.14 M, respectively, in the inference phase, a
defect recognition accuracy of 99.44% on the test set, and a single image detection speed of 2.4 ms,
making it more suitable for deployment in real engineering environments.

Keywords: defect detection; structural reparameterization; ECA net; Gaussian error linear units;
knowledge distillation; visualization

1. Introduction

The detection of defects on a product’s surface is important underlying research in the
area of intelligent production, and this paper investigates the detection of surface defects
in strip steel during industrial production. The surface quality of strip steel is one of the
most important indicators of strip steel quality and is linked to the quality of products
downstream in areas such as automotive, household appliances and construction. The
detection of surface defects in steel has therefore become an extremely significant task in
the steel production sector.

The identification of productor surface defects is an important task for enterprise prod-
uct lines. In the early days, the task was completed by human-eyes checking, and it was
limited by the human limitations of the eyes. After the emergence of image processing tech-
nology, the task was then completed by the characteristics of the defect image. Zhou [1] et al.
applied the SIFT algorithm to the identification of defects on the surface of medium-thick
plates and achieved a good accuracy of 95% for defects that occur continuously. Hu [2] et al.
extracted four visual features of the target image: geometry, shape, texture and greyscale
and used a genetic algorithm to optimize a hybrid chromosome-based classification model
for effective identification of image defects. However, the characteristics-based methods
made it hard to check for tiny defects or other imperfections. In recent years, deep learning
methods, such as the convolutional network, were proposed to be applied in certain fields.

Since the introduction of Alexnet [3] convolutional neural networks in 2012, they
have demonstrated high efficiency and accuracy in object recognition. Convolutional
neural networks have gradually become an important research direction in detection and
recognition, and the accurate, fast and contact-free recognition techniques are continuously
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investigated. Manzo [4] et al. used some pre-trained convolutional neural networks to
detect the COVID-19 disease in CT images and gained an accuracy of 96.5%. Jiang [5] et al.
used an improved VGG network to identify rice and wheat leaf disease simultaneously.
Tao [6] et al. accurately identified smaller flames using an improved GoogLeNet network.
As a new research hotspot, deep convolutional neural networks have been used in a wide
range of industries.

Convolutional neural networks have been extensively applied to product surface
defect recognition. Vonnocc [7] et al. used traditional machine learning methods and deep
learning methods to classify surface defects in hot rolled strip steel, and they found that
the deep learning approach worked better. Konovalenko [8] et al. detected surface defects
in strip steel based on the ResNet50 framework, with a precision of 96.91% in recognition.
Xiang [9] et al. used a small sample dataset to achieve an accurate recognition rate of 97.8%
on an improved VGG-19 network. Feng [10] et al. added FcaNet and CMAM modules
based on Resnet, achieving an accuracy of 94.11% for the defect identification in hot-rolled
strip steel. Tang [11] et al. used multi-scale maximum pooling and an attention mechanism
to detect surface defects, where the classification accuracy rate reaches 94.73%. Xing [12]
proposes a convolutional classification model with symmetric structure to achieve accurate
recognition of surface defects. These studies have focused on accuracy design, ignoring
the computational volume, complexity and real-time requirements of the models in real-
world applications. Wang [13] et al. designed the VGG-ADB model for defect recognition,
which achieved 99.63% classification accuracy and 333 frame/s inference speed. The VGG-
ADB model considered the inference speed of the network, but the model was ignored
for the parametric design, where the model size reached 72.15 M. This constrained the
application of the model on edge devices. In actual production, not only does the network
require extremely high detection accuracy, but it also has high requirements for model size,
detection speed and real-time detection.

The KD-EG-RepVGG surface defect detection algorithm is designed using structural
reparameterization, GELU, ECA networks and knowledge distillation for the task require-
ment of surface defects identification. Through experimental comparative analysis, the
KD-EG-RepVGG network is characterized by a low number of parameters, low computa-
tional effort, high speed and high accuracy. The general idea of the method in the paper
is illustrated in Figure 1. The teacher network RepVGG-A0 guides the KD-EG-RepVGG
network training. The structural re-parameterization technique loads the training weights
into the KD-EG-RepVGG inference network to finally obtain the prediction results.
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Figure 1. General diagram of defect identification process.

This paper is structured as follows. Section 2 describes in detail the KD-EG-RepVGG
network framework. Section 3 verifies the validity of the network from several perspectives,
whereas Section 4 is the conclusion of the paper.

2. The KD-EG-RepVGG Network

The EG-RepVGG network is based on structural reparameterization, incorporating a
lightweight attention network while using GELU as the activation function in the improved
network, stacking the S-RepVGG block module and D-RepVGG block module based on
RepVGGBlock. The model is structured as shown in Figure 2. The main function of the
D-RepVGG block module is to extract features and adjust the space size and channel
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number of the feature map, whereas the main purpose of the S-RepVGG block is feature
extraction. The S-RepVGG block has an additional directly connected structure compared
to the D-RepVGG block, which mimics the residual connection in ResNet [14] and improves
the model’s ability to extract features. The output of D-RepVGG Block5 is made up of global
average pooling and then a softmax classifier is appended. The global average pooling layer
is used to downsample the output spatial resolution of the feature map to 1× 1. The softmax
layer is used to output the predicted categories. They together form the classification layer.
With the aim of further improving the accuracy and generalization performance of the
model, the RepVGG-A0 as a teacher model is used to guide the training of EG RepVGG
model using knowledge distillation technology. The final result is a lightweight, fast and
highly accurate strip steel surface defect recognition model, the KD-EG RepVGG model.
The detailed structural information of the KD-EG-RepVGG model is shown in Table 1.
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Figure 2. KD-EG-RepVGG Network. (a) KD-EG-RepVGG Training Network. (b) KD-EG-RepVGG
Inference Network.

Table 1. KD-EG-RepVGG Network Structure Details.

Layers Output Size Output Channel Train Parameters Inference Parameters

input 200 × 200 3
D-RepVGGBlock1 100 × 100 9 309 252
D-RepVGGBlock2 50 × 50 9 849 738
D-RepVGGBlock3 25 × 25 19 1789 1558
S-RepVGGBlock1 25 × 25 19 3727 3268
D-RepVGGBlock4 13 × 13 38 7375 6536
S-RepVGGBlock2 13 × 13 38 14,671 13,034
S-RepVGGBlock3 13 × 13 38 14,671 13,034
S-RepVGGBlock4 13 × 13 38 14,671 13,034
D-RepVGGBlock5 7 × 7 256 98,307 87,808

Classification 1 × 1 6 1542 1542

2.1. Structural Re-Parameterisation

The structural reparameterization was first proposed in RepVGG networks by Ding
XiaoHan [15] et al. The inference network is decoupled from the training network using
structural reparameterization techniques. Decoupling the training network and inference
network by using structure re-parameterization can not only obtain the full advantage
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of feature extraction brought by multi branch network training, but also obtain the high
speed and low memory consumption of a single path model in inference deployment. The
core component of the RepVGG network is the RepVGG Block. Its structure is shown in
Figure 3.
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The structure of the network under training is illustrated in Figure 3a. In the training
phase, the RepVGG Block consists mainly of 3 × 3 convolutional kernels, 1 × 1 convolu-
tional kernels and Identity branches. By adding Identities branches and 1× 1 convolutional
branches in parallel, information at different scales of the image can be extracted and fused,
increasing the representational power of the model.

In the inference stage, the 1 × 1 convolution and Identity branch from the training
are fused into the 3 × 3 convolution, and the inference structure is shown in Figure 3b.
RepVGG Block takes the training network and re-parameterizes it structurally, turning
the network into a single linear structure consisting mainly of 3 × 3 convolutions without
any branches. The inference structure both gains the parameter weights obtained from
multi-branch training and allows the use of the single linear structure to speed up the
inference of the model during the deployment inference phase. At the same time, deep
optimization of the 3 × 3 convolution based on NVIDIA cuDNN’s computational library
accelerates the model’s detection speed in the inference phase.

The structural reparameterization in the inference phase mainly consists of the fusion
of the convolution kernel and the Batch Normalization (BN) layer [16], the integration
of 1 × 1 convolution into 3 × 3 convolution and the integration of Identity branches into
3 × 3 convolution. The formula for the fusion of the convolution and BN layers in the
model is as follows:

BN(x) =
x− µ√
σ2 + ε

γ + β (1)

where µ denotes the mean of the BN layer and σ2 denotes the BN layer variance; µ and σ2

are obtained statistically in the training dataset; ε is a constant to prevent the denominator
from being zero; γ is the scale factor of the BN layer; β is the offset of the BN layer and the
values of both γ and β are obtained in the training.

For convolution, the formula is as it is in (2):

Conv(x) = Wx + b (2)

where x and Conv(x) are the input and output of the convolution; W denotes the matrix
weight of the convolution calculation; and b is the bias of the convolution layer calculation.
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The input to the BN layer is the output of the convolution into it. This is equivalent
to taking Equation (2) and bringing it into Equation (1), resulting in a calculation such as
Equation (3):

BN(x) =
(Wx + b)√

σ2 + ε
γ + β (3)

The following can be obtained by sorting and simplifying:

BN(x) =
γ√

σ2 + ε
Wx +

(
γ(b− µ)√

σ2 + ε
+ β

)
(4)

From the calculation results, we can obtain a new convolution by incorporating the
weight information calculated by Batch Normalization layer into the convolution layer,
where the convolution weight is γ√

σ2+ε
W, and the bias of the convolution is γ(b−µ)√

σ2+ε
+ β.

For the Identity branch in the RepVGG Block, a 1 × 1 convolution kernel with a
weight of 1 is used to construct a 1×1 convolution, and then a 3 × 3 convolution kernel
is set to perform identity mapping on the input features. Keep the output of the Identity
layer unchanged before and after the transformation. For a 1 × 1 convolution branch, a
complementary zero operation is performed around the 1 × 1 convolution kernel so that
it becomes a 3 × 3 convolution. At this point, both the 1 × 1 convolution and Identity
are converted into a 3 × 3 convolution, and based on the additivity of the convolution
operation, the three branches can then be incorporated into a single 3 × 3 convolution. The
process is shown in Figure 4.
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2.2. Efficient Channel Attention Network

The Efficient Channel Attention network [17] was added to the RepVGG Block to form
the E-RepVGG network. The feature information can be obtained efficiently and without
increasing the number of parameters of the model at the same time. The structure of ECA is
shown in Figure 5. The feature map x ∈ RL×S×T output from the convolution is pooled and
globally averaged (Global Pooling) over the spatial dimension to output a feature vector y
of size 1× 1× T, as is shown in Equation (5):

y =
1

WH

W,H

∑
i=1,j=1

xi,j (5)
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where L and S are the width and height of the feature map, respectively; and T is the
number of channels in the feature map. Channel weighting coefficient obtained after the
ECA network can be calculated by the following equation:

Ψ = sigmod(Ωy) (6)

where sigmoid is the sigmoid activation function; Ψ is the weight of the ECA network on
the channel; and Ω is the parameter matrix for calculating the channel attention in ECA
networks. The mathematical model is represented as follows:

Ω =


ω1,1 · · · ω1,k · · · 0

0 ω2,2 · · ·
...

...
...

0 · · · 0

· · · 0
...

...
· · · ωT,T

 (7)
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It is clear from Ω that the weight value of Ψ is determined only by the k channels
in the immediate vicinity of y. This can be expressed as a 1-dimensional convolution
(Conv1d) with a kernel of size k. Bringing in the simplification yields:

Ψ = sigmoid(Conv1d(y)) (8)

where Conv1d denotes a 1-dimensional convolution of convolution kernel size k. In this
paper, considering the model parameters and inference speed, the size of all 1-dimensional
convolution kernels is set to 3.

The weight coefficients of each channel calculated by the efficient attention network
are multiplied by the channel weights of the input feature map x ∈ RL×S×T to obtain
the output:

x̃ = Ψx (9)

where x̃ ∈ RL×S×T is the output of the ECA network.

2.3. Gaussian Linear Units

The rectified linear units (ReLU) activation function is used in the RepVGG Block,
which effectively solved the problem of disappearing or exploding gradients as the neural
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network deepens. However, the ReLU activation function also has some problems. When
the input is less than zero, the ReLU output will be directly zeroed, and the neuron will be
permanently zeroed, which is detrimental to the convergence of the network model and
feature extraction. Therefore, Gaussian Error Linear Units [18] (GELU) are selected as the
activation function in this paper to form the EG-RepVGG network. The GELU activation
function is applied as a non-linear unit after the ECA network. The GELU activation
function is differentiable at the origin, and the idea of stochastic regularity is introduced
into the function. The activation operation will establish a stochastic connection between
the input and output, effectively avoiding the situation where the neurons are set to zero
and enhancing the learning speed and stability of the network.

2.4. Knowledge Distillation

The knowledge distillation is a novel technique for model compression proposed by
Geoffrey Hinton [19] et al. A complex, highly generalizable large model is used to guide
the training of a lightweight small model, allowing the small model to achieve the same
accuracy as the large model at a smaller cost. At the heart of the knowledge distillation
network is the fact that the different classes of confidence in the output of the teacher
network define a rich similarity structure at the data level and can provide more inter- class
knowledge for small networks to guide the training of small networks. The characteristic
distillation is calculated by:

qi =
e

zi
T

∑i e
Zi
T

(10)

The activation operation will establish a stochastic connection between the input
and output, effectively avoiding the situation where the neurons are set to zero and en-
hancing the learning speed and stability of the network. The hyperparameter T softens
the output categories of the large and small networks to find the distillation loss of the
two networks’ outputs and the direct training output loss of the small network. The two
losses are weighted and summed to obtain the training losses of the networks. The entire
knowledge distillation network training process is shown in Figure 6. In this paper, the
KD-EG-RepVGG network was obtained by using RepVGG-A0 as the teacher network and
instructing the training of the EG-RepVGG network.
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Figure 6. Knowledge distillation procedure.

The loss function used in the training phase is the KL scatter loss and the cross-entropy
loss weighted sum is used as the final loss for training and the loss formula is as in (11)

Loss = α·Lkd(q(u, T), q(z, T)) + (1− α)·Ls(y, q(z, 1)) (11)

Lkd =
N

∑
i=1

qi(ui, T) log qi(ui, T)−
N

∑
i=1

qi(ui, T) log qi(zi, T) (12)

Ls = −
N

∑
i=1

yi log qi(zi, 1) (13)
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where N is the number of categories of defects; q(u, T) represents the information about
the features of the teacher network after the distillation temperature; q(z, T) represents
the information about the features of the student network after the distillation temperature;
Lkd is the scatter loss, an asymmetry measure of the difference between the probability
distributions of q(u, T) and q(z, T). This is shown in Equation (12). Ls is the cross-entropy
loss, which indicates how close the predicted output value is to the true sample label, as
shown in Equation (13). In this paper, the distillation temperature T = 7. α is the default
value, which in this paper is 0.3 by default.

3. Experiments and Analysis of Results
3.1. Experimental Paltform

The experimental platform includes: an Intel Core i7-11700F processor, a Nvidia
GeForce RTX3060 12 GB graphics card, 32 GB memory; the software is Windows 10 operat-
ing system, python 3.8; and the deep learning framework used is pytorch.

3.2. Experimental Data Sets

This paper uses the NEU-CLS dataset [20] of strip surface defects produced and
published by Northeastern University for experiments. As shown in Figure 7, the surface
defects of the data strip are divided into six categories: Crack (Cr), Inclusion (In), Patch
(Pa), Pitted Surface (Ps), Rolled-in Scale (Rs) and Scratch (Sc). Table 2 shows the details
of each defective picture. The total 1800 images in the table are divided into training set,
validation set and test set at the ratio of 8:1:1. The training set has 1440 images, and the
validation set and test set have 180 images each.
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Figure 7. Example of defective image and corresponding label. (a) Crack, (b) Inclusion, (c) Patch,
(d) Pitted Surface, (e) Rolled-in Scale, (f) Scratch.

Table 2. Information on the data set.

Defect Category Pixel Channel Amount

Crack 200 × 200 1 300
Inclusion 200 × 200 1 300

Patch 200 × 200 1 300
Pitted Surface 200 × 200 1 300
Rolled-in Scale 200 × 200 1 300

Scratch 200 × 200 1 300
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3.3. Experimental Results and Analysis

To analyze and measure the comprehensive performance of the network model in
the identification task of strip surface defects, the accuracy, the Matthew’s correlation
coefficient, FPS, single picture detection time, model parameters and FLOPs were used to
evaluate the model.

The accuracy (ACC) rate is the proportion of correctly classified samples to all samples.
The higher the accuracy rate, the better the classification effect of the model, and the
formula is shown in 14. The Matthews correlation coefficient (MCC) is used to calculate
the correlation between the actual classification and the predicted classification, and it is a
balanced evaluation index. The value range of MCC is between −1 and 1. When the value
of MCC is closer to 1, the result predicted by the classifier is more reliable.

TP =
TP + TN

ALL
(14)

where TP is the number of samples correctly predicted by positive samples, TN is the
number of negative samples correctly predicted, and ALL is the number of all samples.

3.3.1. Ablation Experiments

The comprehensive performance of KD-EG-RepVGG was evaluated on the NEU-CLS
test set and the results are shown in Table 3. The super parameter setting in the teacher
network RepVGG-A0 is also applied in the KD-EG-RepVGG network. The network is
trained using the stochastic gradient decent (SGD) optimizer with a momentum coefficient
of 0.9 and weight decay of 0.0001. The learning rate is set to 0.1. Batch Size and epochs are
kept at 64 for 100, respectively.

Table 3. Comparative experimental results of distillation.

Model Accuracy MCC Time Params FLOPs

RepVGG-A0 98.83% 97.91% 5.1 ms 7.04 M 1.36 G
EG-RepVGG 97.22% 96.39% 2.4 ms 0.14 M 0.03 G

KD-EG-RepVGG 99.44% 99.02% 2.4 ms 0.14 M 0.03 G

The comparison revealed that the lightweight model KD-EG-RepVGG after knowledge
distillation had an accuracy improvement of greater than two percentage points over
the EG-RepVGG model. Furthermore, the accuracy of the lightweight KD-EG-RepVGG
network after knowledge distillation was improved by 0.6 percentage points over the
teacher network RepVGG-A0. The Matthew’s correlation coefficient of KD-EG-RepVGG
on the test set is 99.02%, which further proves that the model is very accurate in identifying
the surface defects of the strip. Figure 8 shows the validation accuracy and loss curve of
the network. From the curve change trend, we can find that the KD-EG-RepVGG network
converges faster and the model accuracy is higher. The aim of transferring the knowledge
of large models to small networks and improving the accuracy and generalizability of the
networks is achieved.
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Furthermore, to analyze more clearly the capabilities of the model, we calculated the
confusion matrix of the model on the test set and the results are shown in Figure 9. From the
confusion matrix, it can be obtained that the model had a high recognition rate of defects.
The recall rate was calculated according to the confusion matrix, and it was found that only
the “In” defect was 97.30%, and the other defects were 100%. The precision was calculated,
and it was found that only the “Sc” defect is 97.13%, and the other defects were 100%.
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3.3.2. Comparative Experimental Analyses

The KD-EG-RepVGG algorithm was compared with the current mainstream advanced
algorithms on the same test set. To demonstrate the validity of the models, the KD-EG-
RepVGG is compared with ResNet50, VGG16, ShuffleNetV2 and MobileNetV2 models in
the same software and hardware environment. The accuracy, FPS, single picture detection
time, calculation amount, parameter amount and other detection indicators of various
algorithms are compared and analyzed. The results of the experiment are recorded in
Table 4.

Table 4. Comparison of test results for different algorithms.

Model Accuracy (%) Time (ms) FPS (Frame/s) Params (M) FLOPs (G)

ResNet50 96.67 6.8 146.9 24.56 4.12
VGG16 95.87 6 143.3 138.3 15.61

ShuffleNetV2 97.25 6 167.4 2.26 0.15
MobileNetV2 96.94 6.2 161.4 3.4 0.33

KD-EG-RepVGG 99.44 2.4 408 0.14 0.03

In comparison, the KD-EG-RepVGG network achieves better classification accuracies
than the larger parametric models, VGG16 and ResNet50, outperforming ResNet50 by
almost three percentage points. Compared with the lightweight networks shuffleNetV2 and
MobileNetV2, the KD-EG-RepVGG network has achieved great advantages in reasoning
speed, parameter amount and computation amount. The KD-EG-RepVGG network is more
suitable for industrial applications because it achieves an increase in detection efficiency,
detection accuracy and detection speed while consuming very little memory and few
computing resources.
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3.4. Model Visualisation

The features of the middle layer of the convolutional neural network model are visual-
ized in order to gain a clearer understanding of the features learned with the convolutional
neural network [21]. A random selection of defective images is fed into the KD-EG-RepVGG
inference network, which visualizes the convolutional layers in the network. The visu-
alization results are shown in Figure 10. In the KD-EG-RepVGG network, the shallow
convolutional network retains the image information relatively intact, with the main detec-
tion being contour information. The deeper convolutional layers focus more on the location
features of the target and some abstract information. From the visualization results, it can
be observed that important regional features in the image are encoded into the network,
indicating that the network is effective for feature learning.
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Figure 10. Convolutional layer visualization for RepVGG networks.

The Gradient Weighted Class Activation Mapping algorithm [22] (Grad-CAM) is used
to fully demonstrate the ability of the KD-EG-RepVGG network to extract defective features.
A heat map was used to show the activated regions in the images, which is more consistent
with human vision properties. This is more in line with human visual properties. The
final layer of the KD-EG-RepVGG network was chosen for visual representation in this
paper. This is because it is a generalized representation of the feature extraction from the
previous layer of the network. Images of six types of defects were randomly selected for
visualization with darker colors indicating that the network is paying more attention to the
point. This is shown in Figure 11.
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As can be viewed in Figure 11, the KD-EG-RepVGG’s extraction of defect features is
focused on salient feature points, and the KD-EG-RepVGG network demonstrates high
efficiency by focusing on only one feature point for the same feature in the case of impurities,
spot cracks and pockmark defects. The KD-EG-RepVGG also has the ability to recognize
features from multiple angles. The features of cracks at different locations and angles can
be fully extracted, demonstrating a strong extraction capability.

4. Conclusions

Aiming at the requirement of strip surface defect detection in actual production, a strip
defect recognition method based on a structural re-parameterized KD-EG-RepVGG network
is proposed. In RepVGG Block, the ECA network and GELU activation functions are added.
Among them, the ECA network improves the accuracy of the KD-EG-RepVGG network
while increasing the convergence speed of KD-EG-RepVGG. The GELU activation function
avoids neuron necrosis caused by zeroing. Through knowledge distillation technology,
the KD-EG-RepVGG model obtains the knowledge of RepVGG-A0, which improves the
accuracy and robustness of the model. Through ablation experiments and comparative
analysis with other models, it can be seen that the lightweight KD-EG RepVGG network
takes up very little memory resources and computing resources without affecting the
accuracy, and has a faster detection speed. It is more suitable for deployment and uses in
real production.

The future work involves many directions. Firstly, the research in this paper will
be used as a basis to study the accurate localization of defects and to analyze the size of
defects accurately. Then, the model will be deployed on edge equipment and applied in
the production environment within plants.
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