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Abstract: For indoor multi-task planning problems of small unmanned aerial vehicles (UAVs) with
different abilities, task assignment and path planning play a crucial role. The multi-dimensional
requirements of reconnaissance tasks bring great difficulties to the task execution of multi-UAV
cooperation. Meanwhile, the complex internal environment of buildings has a great impact on the
path planning of UAVs. In this paper, the ability-restricted indoor reconnaissance task-planning
(ARIRTP) problem is solved by a bi-level problem-solving framework. In the upper level, an iterative
search algorithm is used to solve the task assignment problem. According to the characteristics of the
problem, a solution-space compression mechanism (SSCM) is proposed to exclude solutions that do
not satisfy the task requirements. In the lower level, based on a topological map, the nearest neighbor
(NN) algorithm is used to quickly construct the path sequence of a UAV. Finally, the genetic algorithm
(GA) and simulated annealing (SA) algorithm are applied to the upper level of the framework as
iterative search algorithms, which produces two hybrid algorithms named the GA-NN and SA-NN,
respectively. ARIRTP instances of different scales are designed to verify the effectiveness of the SSCM
and the performance of the GA-NN and SA-NN methods. It is demonstrated that the SSCM can
significantly compress the solution space and effectively improve the performance of the algorithms.
The proposed bi-level problem-solving framework provides a methodology for the cooperation of
multi-UAV to perform reconnaissance tasks in indoor environments. The experimental results show
that the GA-NN and SA-NN methods can quickly and efficiently solve the ARIRTP problem. The
performance of the GA-NN method is similar to that of the SA-NN method. The GA-NN method
runs slightly faster. In large-scale instances, the performance of the SA-NN method is slightly better
than that of the GA-NN method.

Keywords: reconnaissance task planning; unmanned aerial vehicles; topological map; indoor environment;
genetic algorithm; simulated annealing algorithm; nearest neighbor algorithm

1. Introduction

Due to the advantages of flexibility and mobility, unmanned aerial vehicles (UAVs) are
increasingly used in various environments [1–11]. In mountainous environments, UAVs
are widely used in searches, reconnaissance, surveillance, fault detection, data collection,
target recognition, and classification [12–16]. In suburban environments, UAVs are widely
used in agriculture such as for watering, sowing, and spraying pesticides [17]. In urban
environments, UAVs are widely used in searches, reconnaissance, and other tasks. Recently,
there has been an increasing demand for UAVs to solve complex indoor tasks such as
target searches [18], surveillance, search and rescue [19], package delivery to large indoor
facilities, and task-scheduling systems [20].

Compared with outdoor environments, such as urban environments and mountainous
environments, indoor environments have more restrictions on UAVs [21]. In outdoor
environments, there may be no-fly areas and dangerous areas because of bad weather
or electromagnetic interference [22], which require UAVs to avoid those areas or pass
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through those areas in the shortest possible time. Obstacle avoidance is an important
problem for UAVs in path planning. In contrast, such constraints in indoor environments
may be different. Specifically, for mobility, UAVs cannot move forward smoothly in an
indoor environment because of the narrow indoor space and safe flight distance of UAVs. In
addition, compared with outdoor open environments, the connection relationships between
indoor rooms are complex and have a serious impact on the path planning of UAVs.

In existing research on UAVs, the task assignment and path planning of UAVs are often
studied separately [23,24]. In [23], an improved algorithm based on the simulated annealing
algorithm (SA), namely the swap-and-judge simulated annealing (SJSA) algorithm is used
to solve the multi-task planning problem of UAVs. However, in this problem, the task
requirements and UAV abilities are single. The impact of environmental factors on UAV
path planning is not specifically considered. In [25], a bi-level ant colony optimization
(BACO) algorithm was proposed to solve the capacitated electric vehicle routing problem
(CEVRP). The upper level determines the visiting sequence of the tasks, and the lower
level adjusts the task sequence generated by the upper level according to the electricity
constraint. In addition, most of the existing research on indoor path planning is to find a
path that meets the requirements so that the UAV can smoothly reach the destination from
the starting point [21,26]. Most studies aim to find an optimal path for one UAV. There
are also some studies focusing on multi-UAV cooperative path planning but the process
of task assignment is not considered [27,28]. In recent studies, most reconnaissance tasks
have single requirements and the abilities of UAVs are also single. When the multi-task
assignments of multiple UAVs are carried out, these problems can be modeled as the
classical vehicle routing problem (VRP). However, when reconnaissance tasks have multi-
dimensional requirements and the abilities of UAVs are heterogeneous, it may be necessary
to use multiple UAVs with different abilities to complete a single reconnaissance task.

Motivated by the above observations, in order to balance the multi-task assignment
and path planning of multiple UAVs, this paper considers the multi-dimensional require-
ments of reconnaissance tasks. Meanwhile, the influence of the connection relationships
between rooms on the path planning of UAVs is considered based on the indoor topo-
logical map. This paper focuses on solving the ability-restricted indoor reconnaissance
task-planning (ARIRTP) problem. The main contributions of this paper are as follows:

• The ARIRTP problem is modeled as a combinatorial optimization problem in which
the requirements of the reconnaissance tasks and the abilities of UAVs have multiple
dimensions. A topological map is used to present the connection relationships between
indoor rooms and help UAVs to conduct global path planning;

• A bi-level problem-solving framework is proposed for the ARIRTP problem. The
upper level uses an iterative search algorithm to solve the task assignment problem of
UAVs. According to the characteristics of the problem, a solution space compression
mechanism is proposed to make the generated task assignment schemes meet the
requirements of the reconnaissance tasks. The lower level uses the nearest neighbor
(NN) algorithm to quickly construct the path sequence of each UAV based on the
topology information of buildings;

• Two hybrid algorithms are proposed by applying the genetic algorithm (GA) and
SA algorithm as the iterative search algorithms to the upper level of the bi-level
problem-solving framework, respectively.

The remainder of this paper is organized as follows. The problem description and the
mathematical model are described in Section 2. The details of the proposed algorithms
are described in Section 3. The discussions of the design of the experiments and the
experimental results are given in Section 4. Finally, Section 5 provides the conclusion and
perspectives.

2. Problem Formulation

In this section, first, the problem description of ARIRTP is given. Then, the environ-
ment modeling process is described. Finally, the problem model is presented.
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2.1. Problem Description

A group of UAVs equipped with various sensors is required to conduct a set of
reconnaissance tasks with different requirements distributed in a building. In an indoor
environment, multiple rooms are connected by doors. A series of reconnaissance tasks
with multiple dimensions and different requirements are scattered indoors. Based on the
requirements of the reconnaissance tasks, we judge whether the UAVs are able to complete
the whole task or part of the task. If the UAVs cannot independently meet the requirements
of all dimensions of a certain reconnaissance task, multiple UAVs need to be combined to
make their common capabilities meet the reconnaissance requirements of the whole task.

Figure 1 shows the situation of multiple reconnaissance task planning for multiple
UAVs in an indoor environment. Three UAVs are required to take off from the entrance
point (start point) and enter the building to perform seven reconnaissance tasks. If one
UAV can meet the requirements of all dimensions of a task, it can complete the task
independently. For example, UAV U1 independently performs reconnaissance tasks T7 and
T6. However, when the UAV cannot meet all the requirements of the task alone, it needs to
complete the corresponding reconnaissance task cooperatively in a certain combination
mode. For instance, UAV U2 and UAV U3 cooperate to conduct reconnaissance task T1
because they cannot complete the task alone. When UAV U2 and UAV U3 pass through
door D4, the two UAVs may collide. Now, UAV U2 can choose to wait for UAV U3 to pass
through door D4 first according to the priority of the task to avoid a collision. Topological
maps represent the environment using graphs, where the vertices and edges represent the
rooms and connection relationships between the rooms, respectively [29–32].

Figure 1. An example of three UAVs performing seven reconnaissance tasks in an indoor environment.

Due to ability restrictions, a variety of task assignment situations could occur. One
UAV performs one reconnaissance task, one UAV performs multiple reconnaissance tasks,
or multiple UAVs perform one reconnaissance task.
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2.2. Environment Modeling

The contents of the indoor environment are modeled as follows: the index sets of
rooms, doors, task points, and UAVs are denoted by Rn, Dn, Tn, and Un, respectively. The
coordinate matrices of the doors and reconnaissance task points are described by PD and
PT , where x and y represent the horizontal and vertical coordinates of the different doors
or task points.

Rn = {R1, R2, · · · , RNR}. (1)

Dn = {D1, D2, · · · , DND}. (2)

Tn = {T1, T2, · · · , TNT}. (3)

Un = {U1, U2, · · · , UNU}. (4)

PD =


xD1 yD1

xD2 yD2

· · · · · ·
xDND

yDND

. (5)

PT =


xT1 yT1

xT2 yT2

· · · · · ·
xTNT

yTNT

. (6)

The vector R indicates the room the task points are in. rj represents the index number
of the room that task j belongs to.

R = (r1, r2, · · · , rj, · · · , rNT ), rj ∈ R. (7)

The connectivity matrix between rooms is described by A. If two rooms share a door,
the two rooms are connected.

A =

 a1,1 a1,2 · · · a1,NR
· · · · · · ai,j · · ·

aNR ,1 aNR ,2 · · · aNR ,NR

. (8)

ai,j =


0 if i = j, ∀i, j ∈ R,

g if room i and room j are directly connected,(g ∈ D),

∞ if room i and room j are indirectly connected.

(9)

The distance matrix between two doors is described by B. If the two doors are in the
same room, the distance between the doors can be approximately represented by the Eu-
clidean distance of the positions of the doors (represented by distance(Dh, Dg)). If the two
doors are not in the same room, the distance between the doors can be obtained based on
the Dijkstra algorithm (represented by distanceDij(Dh, Dg)). argmin(distanceDij(Dh, Dg))
represents the coordinate matrix of the doors connecting door h and door g.

B =

 b1,1 b1,2 · · · b1,ND
· · · · · · bh,g · · ·

bND ,1 bND ,2 · · · bND ,ND

. (10)

bh,g =


0 if h = g, ∀ h, g ∈ D,

distance(Dh, Dg) if door h and door g are in one same room,

distanceDij(Dh, Dg) if door h and door g are not in one same room.

(11)
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argmin(distanceDij(Dh, Dg)) =

 xDh yDh
· · · · · ·
xDg yDg

. (12)

2.3. Problem Model

In this section, the ARIRTP problem model is given in detail. First, the related assump-
tions are made. Then, the constraints and decision variables in the ARIRTP problem are
represented. Finally, the objective function is described. The list of relevant parameters and
variables is shown in Table 1.

Table 1. List of parameters and variables.

Symbols Description

NU Total number of UAVs
NT Total number of tasks
NS Total number of sensor types
i Index of UAVs

j, q Index of tasks
h, g Index of doors
n Index of sensor types
k Index of the combination mode of UAVs
li Tour length of UAV i
ei Maximum endurance of UAV i

θn
j

Threshold of the demand on the n-th
sensor type in task j

un
i Ability value of the n-th sensor type for UAV i

Li Task list of UAV i
Pi Task sequence of UAV i
mi Total number of tasks assigned to UAV i
dj,q Distance between the position of task j and task q
dj,h Distance between the position of task j and door h
dh,g Distance between the position of door h and door g
dg,q Distance between the position of door g and task q

X = [xi,j]NU×NT Assignment scheme
xi,j ∈ {0, 1} Task j is assigned to UAV i or not

L = { L1; L2; · · · ; LNU } Task list of total UAVs
P = { P1; P2; · · · ; PNU } Task sequence set of total UAVs
IU={1, 2, · · · , NU } Index set of the UAV
IT ={1, 2, · · · , NT } Index set of the task
IS={1, 2, · · · , NS } Index set of the sensor type

2.3.1. Assumptions

The assumptions about the relevant situations in the ARIRTP problem are made from
three aspects: the UAVs, reconnaissance tasks, and indoor environment [33–36].

• UAVs
(1) The curvature constraint of the UAVs is not considered because small-rotor UAVs
are usually used in indoor environments and their flight speed is slow.
(2) The collision avoidance problem of UAVs is ignored. If the trajectories of the UAVs
have intersections, the UAV with a low task priority waits for the UAV with a high
task priority to pass through the place where a collision may occur. Then, the UAV
with the low task priority starts to perform its task again.
(3) All the UAVs fly at the same constant speed.
(4) The communication between the UAVs is ignored.
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• Reconnaissance tasks
(1) The reconnaissance tasks do not require the UAVs to perform the tasks syn-
chronously.
(2) The UAVs are not required to reach and leave the task points at the same time.
(3) The reconnaissance time can be ignored.
(4) If two task points are distributed in the same room, the distance between these two
task points can be approximately expressed by the Euclidean distance. If two task
points are distributed in different rooms that can be connected directly, the distance
between the two task points can be approximately expressed by the sum of dj,h and dh,q.
If two task points are distributed in different rooms that can be connected indirectly,
the distance between the two task points can be approximately expressed by the sum
of dj,h, dh,g, and dg,q. If two task points are distributed in two completely disconnected
rooms, the distance between the two task points can be defined as infinity.

• Indoor environments
(1) The information on the indoor map is known a priori.
(2) Two connected rooms share only one door.
(3) The rooms inside the building are fully connected, that is, a room can reach any
other room through a certain topological relationship.
(4) The no-fly zone and interference zone for the UAVs are not considered in indoor
environments.
(5) The obstacles in indoor environments will not affect the path planning of the UAVs
because they can adjust their height to avoid obstacles and the time cost caused by
adjusting the height can be ignored.

2.3.2. Decision Variables

Decision variables include two parts: X and P. X = [xi,j]NU×NT represents a task
assignment scheme. xi,j ∈ {0, 1}means reconnaissance task j is assigned to UAV i or not.
P = { P1; P2; · · · ; Pi; · · · ; PNU } denotes the task sequence set of each UAV. Pi is shown in
Formula (14). p0

i and pmi+1
i represent the starting point and ending point, that is, the point

with coordinates (0,0).

X =

 x1,1 x1,2 · · · x1,NT
· · · · · · xi,j · · ·

xNU ,1 xNU ,2 · · · xNU ,NT

. (13)

Pi = (p0
i , p1

i , · · · , pmi
i , pmi+1

i ), i ∈ IU . (14)

2.3.3. Constraints

In order to ensure the feasibility of the planned scheme, the following constraints need
to be met.

• Endurance constraint

li ≤ ei, i ∈ IU . (15)

Formula (15) stipulates that the tour length of each UAV must be less than its maxi-
mum endurance.

• Ability demand constraint

∃ i ∈ IU : un
i xij ≥ θn

j , ∀ j ∈ IT , n ∈ IS . (16)

Formula (16) ensures that for each task, at least one UAV assigned to this task can
meet the d-th requirement.
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2.3.4. Cost Function

In this paper, the task assignment scheme and the path planning results are evaluated
by constructing a specific cost function. The mathematical definition of the ARIRTP problem
is shown below:

F(X, P) =
NU

∑
i=1

li. (17)

li = dp0
i ,p1

i
+ dp1

i ,p2
i
+ · · ·+ d

p
mi−1
i ,p

mi
i
+ d

p
mi
i ,p

mi+1
i

, mi ≤ NT , i ∈ IU . (18)

Formula (17) represents the total tour length of all UAVs and the objective of the
ARIRTP problem is to minimize the total tour length of the UAVs while performing the
tasks. Formula (18) represents the tour length of each UAV.

The ARIRTP problem model is shown below:

min F(X, P) s.t. (11), (12), xi,j ∈ {0, 1} (19)

3. Algorithm Design

In this section, in order to better solve the ARIRTP problem modeled in the previous
section, we propose a bi-level problem-solving framework. The upper level uses an iterative
search algorithm to solve the ability-restricted task assignment problem of UAVs. The
results of the task assignment of the upper level are input to the lower level. Then, the
lower level uses the nearest neighbor algorithm to quickly construct the task sequence of
each UAV based on the topology information of buildings. Meanwhile, the upper and
lower levels jointly participate in the decoding process to obtain a complete solution to
evaluate the task assignment scheme generated at the upper level.

3.1. Bi-Level Problem-Solving Framework

The proposed framework is shown in Figure 2. In the upper level, an iterative search
method is used to solve the task assignment problem. Common iterative search algorithms
include global search algorithms and local search algorithms or exact algorithms and meta-
heuristic algorithms. According to the characteristics of the ARIRTP problem, the encoding
and decoding mechanisms are designed and the knowledge contained in the problem is
mined. Meanwhile, a solution space compression mechanism suitable for the characteristics
of the problem is proposed. After the solution space is compressed, the iterative search
algorithms will use the compressed solution space to generate new solutions. All the newly
generated solutions can meet the requirements of the tasks. Then, the task list assigned by
the upper level for each UAV will be input to the lower level. In the lower level, the nearest
neighbor algorithm is used to quickly construct the task-visiting sequences for the UAVs.
In addition, the lower level also participates in the decoding process of the upper level
and constructs an executable path that conforms to the topological constraints. A complete
task-planning scheme is obtained through decoding by both the upper and lower levels.
The termination condition will be determined according to the specific iteration search
algorithm used in the upper level.
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Figure 2. The bi-level problem-solving framework.

3.1.1. Task Assignment

• Encoding and decoding
Based on the encoding scheme, an individual can be described using Formula (20) and

the initial population is formed by randomly generating multiple individuals.

S = (s1, s2, · · · , sj, · · · , sNT ), sj ∈ {1, 2, · · · , 2Nu − 1}. (20)

C =

 c1,1 c1,2 · · · c1,NU
· · · · · · ck,i · · ·

c2Nu−1,1 c2Nu−1,2 · · · c2Nu−1,NU

 (21)

sj represents the index number of the combination mode of the UAVs that perform
task j. The constant matrix C represents all the combination modes of the UAVs. The vector
C(k, :) is the k-th row of C and represents the k-th combination mode and ck,i ∈ {0, 1}. The
data in C(k, :) are removed and expressed in binary form, recorded as bk. b1=1 and bk+1 =
bk +1, 0 < k < 2Nu − 1, k ∈ N.

The decoding process is shown in Table 2. For ease of understanding, an example
of three UAVs and ten task points is shown in Figure 3. When the number of UAVs is
determined to be 3, the corresponding constant matrix C can be determined. Referring to
matrix C, the solution vector S can be converted into a matrix X and then the task list Li of
each UAV can be extracted.
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Table 2. The decoding process of the upper level.

Decoding of the upper level

1. Vector S
2. Construct combination mode matrix C \\ According to Formula (17)
3. Transfer S to X referring to C \\ Obtain a complete task assignment scheme
4. Obtain Li based on X \\ Obtain the task lists
5. Set Li = ∅
6. For i = 1 : NU
7. For j = 1 : NT
8. xi,j = C(sj, i)
9. If X(i, j) == 1
10. Li = Li

⋃{j}
11. End if
12. End for
13. End for
14. Output L

Figure 3. The decoding process of the upper level of the example of three UAVs and ten tasks.

• Solution space compression mechanism
The solution space compression mechanism is a method proposed to eliminate UAV

combinations that cannot meet the task requirements. When there are more solutions that
do not meet the task requirements in the instances, the effect of solution space compression
will be more obvious. The algorithm flow of solution space compression is shown in
Algorithm 1. First, the set tj = {1, 2, · · · , 2Nu − 1} is constructed, representing all the
combination modes of the UAVs. Then, we judge whether the combination mode can
satisfy the requirements of each task. According to Formula (16), in one combination mode,
at least one UAV assigned to this task can meet the requirements; this combination mode
will be retained; otherwise, it will be abandoned.

Algorithm 1 Solution space compression mechanism

1. Input set tj, ∀j ∈ IT
2. For j = 1 : NT \\ Traverse each task
3. For k = 1 : 2NU − 1 \\ Traverse each combination mode of UAVs
4. If ∃/ un

i ≥ θn
j , ∀n ∈ IS \\ The UAVs in the combination mode k all cannot satisfy the

5. \\ requirements of task j
6. tj = tj \ { k }
7. End if
8. End for
9. End for
10. Output tj, ∀j ∈ IT \\ The compressed task list
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The specific process and results of solution space compression in the example of three
UAVs and ten tasks are shown in Figure 4. Since there are two options for whether the UAVs
are assigned to perform tasks, the number of the whole assignment scheme is (23 − 1)10.
The size of the compressed solution space becomes 0.00007 times the original.

Figure 4. Example of solution space compression process of three UAVs and ten tasks.

3.1.2. Path Planning

In the lower level, based on the task list of each UAV obtained in the upper level,
the path planning is carried out using the nearest neighbor algorithm to obtain the path
sequence of each UAV based on an indoor topology map.

• Nearest neighbor algorithm based on topological map
In order to meet the constraints of indoor environments, we use a topology map for

path planning. This is necessary to determine not only the sequences of the task points but
also the sequence of the path points that can be executed by each UAV. The algorithm flow
of the nearest neighbor algorithm based on a topological map is shown in Algorithm 2.

• Path sequence generation method
According to the connectivity of the indoor rooms, it needs to be judged whether any

two adjacent task points in the UAV task sequence meet the constraints of the environ-
ment. According to the specific indoor environment, the following three situations are
summarized: (1) if two connected task points are in the same room, they do not need to
be processed; (2) if they are in two directly connected rooms, we need to add the door
connecting the two rooms to the sequence, and (3) if they are in two indirectly connected
rooms, we will find a connecting sequence of doors based on Formula (12) and add it to the
sequence.

Remark 1. The task list indicates the set of tasks assigned to each UAV after the task assignment.
The task sequence represents the visiting sequence vector of the task points of the UAVs. The path
sequence indicates the visiting waypoint vector of the UAVs.
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Algorithm 2 Nearest neighbor algorithm based on topological map

1. Input: task list L, start point pstart, end point pend
2. Pi = 0, P

′

i = 0, d = 0, the final path sequence list P
′

i , total tour length ltotal = 0
3. For i = 1 : NU
4. Pi = [Pi; pstart], P

′

i = [P
′

i ; pstart]
5. While Li 6= ∅
6. psize = size(Pi), mi = size(Li) \\ Function size() is used to find the length of Li or Pi
7. For j = 1 : mi
8. d(j) = distance(Pi(psize), Li(j))
9. End for
10. pcurr = Li(argmin(d)) \\ pcurr is temporary point
11. Pi = [Pi; pcurr], P

′

i = [P
′

i ; pcurr], Li = Li \ {pcurr}
12. mi = mi − 1, psize = psize + 1
13. If A(R(Pi(psize)), R(Pi(psize − 1)))! = 0&A(R(Pi(psize)), R(Pi(psize − 1)))! = ∞
14. \\ Two points in two directly connected rooms
15. P

′

i = [P
′

i ; PD((A(R(Pi(psize)), R(Pi(psize − 1)))), :)]
16. Elseif A(R(Pi(psize)), R(Pi(psize − 1))) = ∞ \\ Two points in two indirectly
17. \\ connected rooms
18. PDij = argmin(distanceDij(Dh, Dg)) \\ Based on Formulas (11) and (12)
19. \\ PDij is a coordinate matrix of the doors (connecting the two points)
20. P

′

i = [P
′

i ; PDij]
21. End if
22. End while
23. Pi= [Pi; pend], P

′

i = [P
′

i ; pend]

24. psize = size(P
′

i )
25. If A(R(Pi(psize)), R(Pi(psize − 1)))! = 0&A(R(Pi(psize)), R(Pi(psize − 1)))! = ∞
26. P

′

i = [P
′

i ; PD((A(R(Pi(psize)), R(Pi(psize − 1)))), :)]
27. Elseif A(R(Pi(psize)), R(Pi(psize − 1))) = ∞
28. PDij = argmin(distanceDij(Dh, Dg))

29. P
′

i = [P
′

i ; PDij]
30. End if
31. li = length(P

′

i ), ltotal = ltotal + li \\ Sequence length function length() is formula (14)
32. P∗i = P

′

i \\ P∗i is the visiting waypoint matrix of the i-th UAV
33. d = 0, Pi = 0, P

′

i = 0, ltotal = 0
34. End for
35. P∗ = {P∗1 ; P∗2 ; ...; P∗NU

} \\ P∗ is the visiting waypoint matrix of all UAVs
36. Output P∗, ltotal

3.2. Iterative Search Algorithm

The iterative search method is mainly composed of three parts: initializing solutions,
evaluating solutions, and generating new solutions according to certain rules. The iterative
search algorithm includes the global search algorithm and local search algorithm. As a
typical global search algorithm, the GA has been widely used since it was proposed. After
years of development, many studies still concentrate on improving the GA at different
stages, such as the initialization stage, evolution stage, and individual evaluation, among
others [37]. As another promising option, the SA [38] was one of the winning algorithms
for the electric vehicle routing problem in the IEEE WCCI2020 competition [39], which
shows its efficiency in solving the VRP and its variants or other combinatorial optimization
problems [40,41].

Therefore, we apply the GA and SA as iterative search algorithms to the proposed
bi-level problem-solving framework, which produces two hybrid algorithms named the
GA-NN and SA-NN, respectively.
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3.2.1. Genetic Algorithm

• Initialization stage
First, we load the reconnaissance tasks, UAVs, and indoor environment parameters.

Then, the population is initialized. For the population initialization process, we use the
compressed solution space to randomly generate individuals, which ensures that the UAVs
can meet the requirements of each reconnaissance task in the task assignment scheme.

•Evolutionary stage
(1) Fitness evaluation
In order to ensure the algorithm searches in the expected direction, a solution needs to

be properly evaluated. In this paper, the fitness function is realized by the following formula:

hg
p = 1− ( f g

p − f g
min)/( f g

max − f g
min + ε). (22)

hg
p represents the fitness value of the hth individual in the gth generation and hg

p ∈ (0, 1).
f g
p represents the objective function value of the hth individual in the gth generation. f g

min
and f g

max represent the minimum and maximum objective function values in the gth gener-
ation, respectively. We set the parameter ε = 0.001 in order to avoid f g

min − f g
max + ε =0.

(2) Operator design
Selection operator
In this paper, the objective is to minimize the total tour length of UAVs. When the

objective value is smaller, the fitness evaluation value is closer to 1. So, we prefer to retain
individuals with a high fitness value. For each individual, we generate a random number.
If the fitness evaluation value of the individual is bigger than this random number, the
individual is retained. Otherwise, the individual is abandoned, that is, if the following
formula is satisfied, we retain the hth individual in the gth generation.

hg
p > rand, rand ∈ (0, 1). (23)

Crossover operator
After the selection operation, the selected individuals form a new population, that is,

the offspring population. However, the genes of each individual in the offspring population
do not change. Now, in order to generate new individuals, it is necessary to change the
genes of the individual. In this paper, the uniform crossover operator is used. First,
two individuals are randomly selected from the population. Then, each gene of the first
individual is traversed and the random number randj ∈ (0, 1) is generated and compared
with the crossover probability pc to determine whether or not to carry out the crossover
operation. If randj > pc, the jth gene of the first individual exchanges with the jth gene of
the second individual.

Mutation operator
In this paper, the uniform mutation operator is used. First, each gene of the individual

is traversed and the random number randj ∈ (0, 1) is generated and compared with the
mutation probability pm. Then, it is determined whether or not to carry out a mutation
operation in each gene location. If randj > pm, the jth gene of the individual mutates and
the mutation value are randomly selected from tj.

Recombination operator
We set the population size as NP. After the selection operation, some individuals are

abandoned. In order to ensure that the population size is NP, the crossover and mutation
operations are required to be made to generate new individuals until the population size
reaches NP.

To solve the ARIRTP problem, we propose a hybrid algorithm based on the GA and
the nearest neighbor algorithm. The algorithm flow is shown in Algorithm 3. The GA-NN
method mainly includes three stages: the solution space compression stage, initialization
stage, and evolutionary stage. In the initialization stage, the compressed solution space
is used to generate new individuals. When evaluating individuals, the GA and the NN
algorithm jointly participate in the decoding process. The GA is responsible for decoding
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the task assignment results of the upper level. The NN algorithm is responsible for decoding
the path planning results of the lower level.

Algorithm 3 GA-NN
1. Input: instances
2. Set iteration number gen = 1, maximum number of iterations Maxgen, population size NP
3. Selected population Psel = ∅, population size Psize = 0
4. Solution space compression \\ According to Section 3.1.1
5. Initialize current population P \\ Task assignment
6. While gen ≤ Maxgen \\ Main loop
7. For i = 1 : NP
8. r = rand \\ Rand number rand ∈ (0, 1)
9. f (i) = F(P(i)) \\ Objective value of individual i, according to Equations (17) and (18) and
Algorithm 2
10. h(i) = f itness( f (i)) \\ Fitness value of individual i, according to Equation (22)
11. If h(i) > r
12. Psel = Psel ∪ {P(i)}
13. End if
14. End for
15. P = ∅, P = Psel , Psel = ∅
16. Psize = size(P)
17. While Psize < NP
18. p1 = rand ∗ Psize, p2 = rand ∗ Psize \\ Two individuals are randomly selected
19. (p1, p2) = crossover(p1, p2) \\ According to Section 3.2.1
20. p1 = mutate(p1), p2 = mutate(p2) \\ According to Section 3.2.1
21. P = P ∪ {p1, p2}
22. Psize = size(P)
23. End while
24. If Psize > NP
25. P = P(1 : NP, :) \\ Population size is kept as NP
26. End if
27. gen = gen + 1
28. End while
29. Output the best individual

3.2.2. Simulated Annealing Algorithm

The SA is different from the GA and other swarm intelligence optimization algorithms
that solve problems using the force of the swarm. After performing several neighborhood
operations on a current solution, the SA finally obtains the optimal solution that it can
search for. The characteristic of the SA in the search process is to accept a solution worse
than the current solution with a certain probability. The SA tries to accept a new solution
that is slightly worse than the local optimal solution as the current solution and then
searches for the current solution. Once the SA finds a better solution than the local optimal
solution, it means that the SA has escaped from the local optimal solution.

In this paper, since the value range of each gene in an individual will be different
after the solution space is compressed, the traditional neighborhood search strategies, the
exchange, reversal, and insertion operations, are not applicable. So, we use the mutation
operator designed in Section 3.2.1 to generate new solutions. Meanwhile, the mutation
probability should be correspondingly increased.

So, we propose a hybrid algorithm based on the SA algorithm and the nearest neighbor
algorithm. The algorithm flow is shown in Algorithm 4.
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Algorithm 4 SA-NN

1. Input: instances
2. Set initial temperature T, cooling factor α, stop iteration temperature Tstop
3. Solution space compression \\ According to Section 3.1.1
4. Generate an initialization solution p0, set the current solution pcurr = p0
5. Set a best solution pbest = p0
6. h(pbest) = f itness(F(p0)) \\ Objective value of individual i, according to Equations (17)
and (18) and
7. \\ Algorithm 2. Fitness evaluation according to Equation (22)
8. Whereas T > Tstop
9. For i = 1 : L \\ Metropolis chain length L
10. Generate a new solution pnew from pcurr based on the neighborhood search rules
11. If h(pnew) > h(pcurr)
12. pcurr = pnew
13. Else
14. r = U[0,1] \\ Generate a random number
15. If r < exp[(h(pnew)− h(pcurr))/T]
16. pcurr = pnew
17. End if
18. End if
19. If h(pcurr) < h(pbest)
20. pbest = pcurr
21. h(pbest) = h(pcurr)
22. End if
23. End for
24. T = α ∗ T
25. End while
26. Output the best individual

4. Experimental Results

In this section, first, the data sets and parameter settings are described. Then, two
groups of experiments are conducted to illustrate the feasibility and superiority of the
algorithms. In the first group of experiments, small-scale instances with different degrees
of sparsity solution space were used to evaluate the effectiveness of the solution space
compression mechanism. Then, in the second group of experiments, the performances of the
GA-NN, SA-NN, brute force algorithm, BACO [25], and SJSA [23] methods were compared.
In the modeled problems in [23,25], one UAV or vehicle can perform multiple tasks. In
the problem modeled in this paper, there is not only a case where a UAV can perform
multiple tasks but also a case where multiple UAVs can perform a task cooperatively. All
the compared algorithms were implemented in MATLAB R2018b on a workstation (Intel(R)
Core (TM) i7-8700 CPU @ 3.20GHz 3.19 GHz, 16.00 GB of RAM) and run independently on
each instance 30 times.

In the brute force algorithm, we traversed all the task assignment schemes in the upper
level. In the lower level, we used the same nearest neighbor algorithm used in the GA-NN
and SA-NN methods to construct the paths.

4.1. Data Sets

The test instances included the locations of the task points, requirements of the recon-
naissance tasks, abilities of the UAVs, and information about the buildings. The normal
distribution function was used to generate the task requirements and UAV abilities. The
locations of the reconnaissance tasks were randomly generated in the selected scene. The
number of UAVs was chosen from {3, 4}. The number of tasks was chosen from {10, 15,
20}. The solution space included four different degrees of sparsity. We designed a total
of 24 different instances. Here, we specified that if the number of feasible solutions in
the instances was less than 0.001 times the size of the original solution space, this type of
instance was a sparse type; otherwise, it was a dense type.
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4.2. Parameter Settings

In order to fairly compare the running times of the two algorithms, the parameters
were adjusted appropriately so that the evaluation times of the individuals were the same
when the two algorithms were run once, respectively. We carried out experiments on
Instances 1 and 4, respectively (the details of Instances 1 and 4 are shown in Table 3).
Through the experimental results, it was found that the GA-NN and SA-NN methods had
the best performance when the relevant parameters were set as follows: the population
size was set to 200, and 500 generations were given as the training-stopping criterion. The
crossover rate was 0.8 and the mutation rate was 0.15. The stop iteration temperature
Tstop = 0.001. The cooling factor α = 0.99. The initial temperature T = 285. The metropolis
chain length L = 80.

Table 3. Verification experiment of solution space compression mechanism.

Instance Scale Concentration Brute Force
Algorithm

GA-NN without
SSCM GA-NN

i − j − k t min t min t min

1 3-10-1 Sparse
(0.00002 times)

1.439 s 2444 0.688 s 2762 0.937 s 2444

2 3-10-2 Sparse
(0.00014 times)

43.892 s 2036 0.706 s 2585 1.022 s 2036

3 3-10-3 Dense
(0.003 times)

451.579 s 1928 0.716 s 2776 1.185 s 1928

4 3-10-4 Dense
(0.019 times)

– – 0.709 s 2762 1.209 s 1478

4.3. Performance Evaluation of Solution Space Compression Mechanism

In the first group of experiments, we compared the GA-NN method with the brute
force algorithm to verify the accuracy of the GA-NN method and compared the GA-NN
method and the GA-NN method without the SSCM to verify the effectiveness of the SSCM.
In the first group of experiments, the number of UAVs was 3, the number of reconnaissance
tasks was 10, and the solution space had 4 different densities.

According to theoretical analysis, the performance of the algorithm using the SSCM
was better than that of the algorithm without the SSCM. According to the number of
feasible solutions, the solution space of the instances was divided into sparse and dense.
Therefore, when conducting the experiments on instances with sparse solution spaces, the
performance of the algorithm was significantly improved after using the SSCM. Compared
to sparse solution spaces, when conducting experiments on instances with dense solution
spaces, the effect was not obvious.

In order to test the performance of the solution space compression mechanism, the
brute force algorithm, GA-NN method without the SSCM, and GA-NN method were tested
on different instances with different solution spaces. The experimental results are shown in
Table 3. i− j− k represents the number of UAVs, reconnaissance tasks, and sparse type,
respectively. ‘–’ represents data that cannot be calculated. ‘Concentration’ represents the
proportion of feasible solutions to the whole solution space. ‘(0.00002 times)’ represents
that the number of feasible solutions is 0.00002 times the size of the original solution space.
The minimum values of the objective value were counted because the objective function
was to minimize the total tour length of the UAVs.

From the experimental data, we can draw the following conclusions:
(1) When the solution space was sparse, the brute force algorithm quickly found the

optimal solution, but when the solution space became dense, the running time of the brute
force algorithm became immeasurable.

(2) It was found that the optimal objective value obtained using the GA-NN method
was consistent with the optimal objective value obtained using the brute force algorithm,
whereas the gap between the optimal objective value obtained using the GA-NN method
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without the SSCM and the real optimal objective value became larger with the gradual
increase in the density of the solution space.

(3) It was found that the running time of the GA-NN method without the SSCM was
faster than that of the GA-NN method alone. The reason is that during the operation of
the GA-NN method without the SSCM, the newly generated solutions were not always
feasible. If the solution was not feasible, the path of the UAVs was not planned so it took
less time.

4.4. ARIRTP Problem-Solving Results

In the second group of experiments, we designed different scale instances with four
different density solution spaces to compare the performance of the GA-NN and SA-NN
methods with the brute force algorithm, BACO, and SJSA. There were a total of 24 instances.
The experimental results are shown in Table 4. In order to save space, we selected 12 groups
of instances to show their evolution curves. Among them, ‘3-10-1’ represents three UAVs,
ten tasks, and the solution space of the first sparse type. The routes of the UAVs in Instance
3-10-1 are shown in Figure 5.

Table 4. Experimental results.

Instance Scale Concentration Brute Force
Algorithm SA-NN GA-NN BACO SJSA

i − j − k t min t min t min t min t min

1 3-10-1 Sparse
(0.00002 times)

1.439 s 2444 8.178 s 2444 0.937 s 2444 0.771 s 2444 9.101 s 2444

2 3-10-2 Sparse
(0.00014 times)

43.892 s 2036 7.269 s 2038 1.022 s 2036 0.836 s 2038 7.026 s 2036

3 3-10-3 Dense
(0.003 times)

451.579 s 1928 7.676 s 1928 1.185 s 1928 1.089 s 1928 8.755 s 1928

4 3-10-4 Dense
(0.019 times)

– – 7.624 s 1478 1.209 s 1478 1.038 s 1478 8.034 s 1478

5 3-15-1 Sparse
(0.00000011 times)

321.018 s 3620 11.582 s 3620 0.945 s 3620 1.912 s 3620 13.135 s 3620

6 3-15-2 Sparse
(0.00038 times)

– – 12.310 s 2878 1.144 s 2878 1.384 s 2878 14.347 s 2878

7 3-15-3 Dense
(0.0031 times)

– – 11.724 s 2144 1.135 s 2128 1.209 s 2128 13.078 s 2128

8 3-15-4 Dense
(0.0111 times)

– – 8.901 s 252.05 1.874 s 252.05 1.921 s 252.05 11.668 s 252.05

9 3-20-1 Sparse
(0.0000000006 times)

– – 17.188 s 4206 1.767 s 4206 1.861 s 4206 20.181 s 4206

10 3-20-2 Sparse
(0.000002 times)

– – 15.059 s 3434 1.957 s 3434 2.762 s 3434 17.796 s 3434

11 3-20-3 Sparse
(0.00036 times)

– – 16.316 s 4028 2.624 s 2960 3.118 s 2960 17.817 s 2960

12 3-20-4 Dense
(0.0028 times)

– – 10.665 s 308.8 2.737 s 308.8 3.564 s 308.8 15.101 s 308.8

13 4-10-1 Sparse
(0.00002 times)

– – 9.791 s 2444 1.245 s 2444 3.570 s 2444 13.268 s 2444

14 4-10-2 Sparse
(0.00089 times)

– – 8.426 s 2037 1.536 s 2037 2.854 s 2037 14.786 s 2037

15 4-10-3 Dense
(0.0014 times)

– – 8.942 s 2170 1.785 s 2170 3.859 s 2170 14.135 s 2170

16 4-10-4 Dense
(0.0601 times)

– – 8.908 s 1477 1.733 s 1477 2.616 s 1477 12.078 s 1477

17 4-15-1 Sparse
(0.00000012 times)

– – 13.933 s 3620 2.579 s 3620 3.277 s 3620 15.347 s 3639

18 4-15-2 Sparse
(0.0000022 times)

– – 15.607 s 3576 3.320 s 3576 3.645 s 3576 17.455 s 3693

19 4-15-3 Sparse
(0.000048 times)

– – 13.645 s 2730 3.428 s 2730 3.716 s 2730 16.078 s 2983
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Table 4. Cont.

Instance Scale Concentration Brute Force
Algorithm SA-NN GA-NN BACO SJSA

i − j − k t min t min t min t min t min

20 4-15-4 Dense
(0.1501 times)

– – 9.734 s 1675 2.721 s 1675 3.233 s 1675 13.263 s 1836

21 4-20-1 Sparse
(0.0000000007 times)

– – 15.777 s 3611 3.495 s 4206 5.196 s 4310 19.181 s 4341

22 4-20-2 Sparse
(0.0000014 times)

– – 14.654 s 3710 5.080 s 3715 6.401 s 3710 19.822 s 3857

23 4-20-3 Sparse
(0.0000338 times)

– – 12.500 s 2826 4.025 s 4028 6.005 s 4152 19.796 s 3169

24 4-20-4 Dense
(0.087 times)

– – 12.305 s 1895 5.868 s 2066 7.163 s 2208 15.817 s 1930

Figure 5. The routes of the UAVs in Instance 3-10-1.

From the experimental data, we can draw the following conclusions:
(1) With the increase in the number of reconnaissance tasks or the gradual density of

the solution space, the brute force algorithm failed.
(2) As can be seen from the experimental data, in most instances, the objective function

values obtained using the SA-NN and GA-NN methods after the convergence of the
algorithms were the same, but the running time of the SA-NN method was longer than
that of the GA-NN method.

(3) However, in some large-scale instances, the SA-NN method performed better than
the GA-NN method.

(4) The GA-NN method was superior to the SJSA in terms of both the algorithm
convergence time and optimal objective function values obtained after the algorithm
convergence. After the algorithm convergence, the optimal objective function values
obtained using the GA-NN method and the BACO in most instances were the same.
However, in some large-scale instances, the objective function value obtained using the
GA-NN method was better than that obtained using the BACO. Moreover, the GA-NN
method converged faster than the BACO.
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(5) The SA-NN method converged faster than the SJSA. After the algorithm conver-
gence, in most instances, the optimal objective function values obtained using the SA-NN
method and the SJSA were the same. However, in some large-scale instances, the objective
function value obtained using the SA-NN method was better than that obtained using
the SJSA.

4.5. Performance Evaluation of the GA-NN and SA-NN Methods

The objective value evolution curves of the GA-NN and SA-NN methods for Instances
3 and 4 are shown in Figure 6 and Figure 7, respectively. However, it can be seen from the
figures that the GA-NN method converged faster than the SA-NN method. In this section,
we used the Mann–Whitney U test and Kolmogorov–Smirnov test with 95% confidence to
test whether there were significant differences between the GA-NN and SA-NN methods.
The statistical hypothesis test results are shown in Table 5. As far as the Mann–Whitney U
test and Kolmogorov–Smirnov test are concerned, the performance of the GA-NN method
was no different from that of the SA-NN method. However, in some large-scale instances,
the SA-NN method performed better than the GA-NN method.

Table 5. Statistical hypothesis test results.

1 2 3 4 5 6 7 8 9 10 11 12

Mann–Whitney U test 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/28/2 0/0/30

Kolmogorov–Smirnov test 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/27/3 0/0/30

Instances 13 14 15 16 17 18 19 20 21 22 23 24

Mann–Whitney U test 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 28/0/2 27/0/3 30/0/0 24/0/6

Kolmogorov–Smirnov test 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 0/0/30 30/0/0 29/0/1 30/0/0 22/0/8
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Figure 6. Objective value evolution curve for Instance 3.
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Figure 7. Objective value evolution curve for Instance 4.

Remark 2. Instances (†/§/ ≈): †, §, and ≈ represent that the performance of the SA-NN method
is superior to, inferior to, and no different from the GA-NN method, respectively.

5. Conclusions and Perspectives

This paper focuses on the ability-restricted indoor reconnaissance task-planning prob-
lem for multiple UAVs. First, the ARIRTP problem is modeled as a combinatorial op-
timization problem in which the multi-dimensional requirements of the reconnaissance
tasks, multi-dimensional abilities of UAVs, and impact of the connectivity between indoor
rooms on the path planning of UAVs are considered. Second, a bi-level problem-solving
framework is proposed. The upper level uses an iterative search algorithm to solve the task
assignment problem of UAVs. According to the characteristics of the problem, a solution
space compression mechanism is proposed to make the generated task assignment schemes
meet the requirements of the reconnaissance tasks. The lower level uses the nearest neigh-
bor algorithm to quickly construct the path sequence of UAVs. Third, a hybrid algorithm
based on the GA and the nearest neighbor algorithm and a hybrid algorithm based on the
SA and the nearest neighbor algorithm are proposed to solve the ARIRTP problem under
the bi-level problem-solving framework. The experimental data show that the proposed
algorithms, the GA-NN and SA-NN, can solve the ARIRTP problem quickly and accurately.
The performance of the GA-NN method is no different from that of the SA-NN method;
however, the GA-NN method runs slightly faster. In large-scale instances, the performance
of the SA-NN method is slightly better than that of the GA-NN method. Furthermore, the
GA-NN and SA-NN methods perform better than the SJSA, and the GA-NN method also
performs better than the BACO.

This paper also has some limitations. We assume that the indoor environment has full
coverage for communication and that UAVs can communicate with each other. However,
due to the complex indoor environment and large number of walls, the communication
between UAVs has a certain attenuation.

In future work, we will consider the communication between UAVs in an indoor
environment. The connection relationship of the communication topology between UAV
teams is helpful for them to cooperate in reconnaissance, rounding up, and other tasks.
Initially, we plan to add a maximum communication distance as a constraint to ensure
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smooth communication between UAV teams. Subsequently, the attenuation of the indoor
environment to communication may be considered to make the communication model
closer to reality. In indoor environments, when UAVs pass through a door, there are certain
risks. In the future, we will consider introducing a risk coefficient to measure the risk
degrees of the paths of UAVs.
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