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Abstract: Accurate modeling of photovoltaic (PV) modules under outdoor conditions is essential to
facilitate the optimal design and assessment of PV systems. As an alternative model to the translation
equations based on regression methods, various data-driven models have been adopted to estimate
the current–voltage (I–V) characteristics of a photovoltaic module under varying operation conditions.
In this paper, artificial neural network (ANN) models are compared with the regression models for
five parameters of a single diode solar cell. In the configuration of the proposed PV models, the five
parameters are predicted by regression and neural network models, and these parameters are put
into an explicit expression such as the Lambert W function. The multivariate regression parameters
are determined by using the least square method (LSM). The ANN model is constructed by using a
four-layer, feed-forward neural network, in which the inputs are temperature and solar irradiance,
and the outputs are the five parameters. By training an experimental dataset, the ANN model is
built and utilized to predict the five parameters by reading the temperature and solar irradiance.
The performance of the regression and ANN models is evaluated by using root mean squared error
(RMSE) and mean absolute percentage error (MAPE). A comparative study of the regression and
ANN models shows that the performance of the ANN models is better than the regression models.

Keywords: regression; artificial neural network; I–V characteristics; photovoltaic module

1. Introduction

The output power of photovoltaic (PV) systems is strongly affected under arbitrary op-
erating conditions such as temperature and solar irradiance of PV modules [1,2]. However,
highly predictive and efficient models across different temperatures and irradiances have
not been established [3–6]. In addition, their nonlinear characteristics make highly predic-
tive modeling even more difficult [7–13]. The single-diode model (SDM) with five parame-
ters is widely utilized to reproduce the current–voltage (I–V) characteristics [5–8]. Owing
to the inherent implicit expression for the electrical equivalent circuit of the SDM, analytical
and explicit I–V models have been proposed to calculate the I–V relationship [1,14–16].
The explicit I–V model based on the Lambert W function is simple and efficient, while the
implicit model requires more computational time [14–16]. Although optimization methods
have been proposed to obtain the five parameters at the standard test condition (STC), sig-
nificant extraction efforts are required to consider the dependence of unknown parameters
on temperature and solar irradiance [3–8,17–21]. For arbitrary operating conditions, the
performance of the parameter translation model is greatly limited by the chosen translation
equation and correction factors [13,17–21]. In order to construct a complete PV model for
climatic conditions, the translational formula should be further modified [17,19] and new
parameters may need to be taken into account [18,20,21]. Moreover, the accuracy of the
translational formula varies significantly at low irradiance levels [3–5]. However, artificial
neural network (ANN) models provide parameter identification, I–V prediction with higher
accuracy directly from the measured data [22,23], and fault detection and diagnosis for
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photovoltaic systems [24–26]. To accurately estimate the performance of PV modules under
varying operating conditions, it is necessary to establish a data-driven model for the five
parameters with change in irradiance and temperature [27–37]. In recent years, improved
ANN models have been proposed by adding more variables [38] and utilizing the efficient
training schemes and processing of neural networks [39–42]. This paper compares the
performance of regression and ANN models for the five parameters in predicting the I–V
relationship of a PV module based on an explicit expression. The results show that the
ANN model provides better performance than the regression model. The novelty of the
proposed approach lies primarily in the successful integration of comparative models
into an analytical and explicit Lambert W function, in contrast with the previous practice
for the electrical equivalent circuits. (1) In this new framework, temperature and solar
irradiance serve as inputs to establish the regression and ANN models for I–V prediction
under arbitrary operating conditions. (2) An advanced ANN model for the five parameters
is developed by determining an optimum ANN architecture to improve the estimation
of the model. The ANN model developed can provide an efficient method with higher
accuracy in predicting I–V characteristics, compared to the regression model.

In this work, the modeling process begins in Section 2 with the theoretical formulation
of an explicit I–V model and translation equations for the five parameters. Section 3 de-
scribes the regression and ANN models, followed in Section 4 by a comparative validation
of both the models against the experimental data for a PV module. In Section 5, the main
conclusions are drawn.

2. Theoretical Models
2.1. Explicit and Analytical I–V Model

The PV-equivalent circuit of a single diode with two resistors is shown in Figure 1.
The I–V relationship of a PV module can be expressed with a single diode as [1,2,5–8]:
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Figure 1. PV-equivalent circuit of a single diode with series and parallel resistance at arbitrary
irradiance (G) and temperature (T).

I = Iph − I0

[
exp

(
V + IRs

nVt

)
− 1
]
− V + IRs

Rp
(1)

where Iph is the photogenerated current, I0 is the diode reverse saturation current, n is the
ideality factor, and Rs and Rp is the series and parallel resistance, respectively. The thermal
voltage is given by Vt = NskbT/q, where Ns is the number of series-connected cells, kb is
the Boltzmann constant, and T is the temperature. The explicit solution of the PV module
transcendent Equation (1) is given as a function of the Lambert W function [1,14–16]:

I =
Rp

(
Iph + I0

)
− V

Rs + Rp
− nVt

Rs
W(α(V)) (2)
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α(V) =
RsRp I0

nVt
(

Rs + Rp
) e

Rp(Rs Iph+Rs I0+V)

nVt(Rs+Rp) (3)

2.2. Five Parameters as a Function of Temperature and Solar Irradiance

Environmental conditions such as temperature (T) and solar irradiance (G) have strong
effects on the I–V characteristics of the PV module. In order to extract accurate estimates
of the model parameters under arbitrary T and G, mathematical expressions for the five
parameters are reformulated by using the advantage of the previous formula [1,2,5–8].
The I–V curve translation for desired solar irradiance and temperature (G, T) from STC
(G0,T0) is obtained by using the short circuit current (Isc) and the open circuit voltage (Voc).
Assuming the condition Isc ≈ Iph, Isc(G, T) and Voc(G, T) are determined as [1,2,5–8]:

Isc(G, T) ≈ Iph(G, T) =
(

G
G0

)[
Iph0 + αi(T − T0)

]
(4)

Voc(G, T) = Voc0

[
1 + αv(T − T0) + βvVt ln

(
G
G0

)]
(5)

where Iph0 and Voc0 are the photogenerated current and open circuit voltage at standard
test conditions, respectively; αi and αv are temperature coefficients and βv is an irradiance
coefficient. From the relationship n = n0(Voc/Voc0) and Rs,p = Rs0,p0(Voc/Voc0)(Isc0/Isc),
the values of the translated parameters n(G, T), Rs(G, T), and Rp(G, T) are calculated as
follows [1,2,7]:

n(G, T) = n0

[
1 + αn(T − T0) + βnVt ln

(
G
G0

)]
(6)

Rs(G, T) = Rs0

1 + αRs(T − T0) + βRs Vt ln
(

G
G0

)
(

G
G0

)[
1 + α∗Rs

(T − T0)
] (7)

Rp(G, T) = Rp0

1 + αRp(T − T0) + βRp Vt ln
(

G
G0

)
(

G
G0

)[
1 + α∗Rp

(T − T0)
] (8)

where n0, Rs0, and Rp0 are the ideality factor, series resistance, and parallel resistance at
standard test conditions, respectively; αn, αRs , α∗Rs

, αRp , and α∗Rp
are temperature coefficients

and βn, βRs , and βRp are irradiance coefficients. By setting I = 0 in (1), the translation
expression for the reverse saturation current I0(G, T) as a function of Iph(G, T), Voc(G, T),
n(G, T), and Rs,p(G, T) is obtained as [1,2,7]:

I0(G, T) =
Iph(G, T)− Voc(G,T)

Rp(G,T)

exp
(

Voc(G,T)
n(G,T) Vt

)
− 1

(9)

3. Parameter Identification Approaches
3.1. Multiple Regression

The multivariate regression analysis is employed to model the statistical relationship
between inputs (G, T) and outputs (Iph,n,Rs,Rp,I0). The parametric regression equation for
a linear or nonlinear function f is expressed as [43–45]:

y = f (X1, . . . , Xn; θ1, . . . , θm) + ε (10)
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where y is an n × 1 vector of dependent variable, X1, . . . , Xn are an n × m matrix of in-
dependent variables, θ1, . . . , θm are an m × 1 vector of regression parameters, and ε is an
n × 1 vector of random error. The regression parameters θ1, . . . , θm are usually determined

using the least square method (LSM) to minimize
k
∑

i=1
(yi − f (X1i, . . . , Xni; θ1, . . . , θm))

2 with

different sample points k. Based on the estimated regression parameters, the optimum
regression model is chosen for prediction.

3.2. Artificial Neural Network (ANN)

The artificial neural network is specified in modeling complex systems, especially
nonlinear or random variable systems. The multilayer perceptron (MLP), known as the
fully connected feed-forward network for supervised learning, is the most common and
successful for modeling nonlinear systems [22,23,31]. The MLP network configuration has
an input layer, two hidden layers, and an output layer. The input layer consists of two
neurons (G, T), and the output layer contains five neurons (Iph,n,Rs,Rp,I0). Every neuron
in one layer is fully connected to every neuron in the next layer. By using the activation
function of a hyperbolic tangent sigmoid function for N neurons, the output h(k)i of the ith
neuron in the kth hidden layer is computed as follows [22,23]:

h(1)i = tanh

(
2

∑
j=1

w(1)
ij xj + b(1)i

)
(11)

h(2)i = tanh

(
N

∑
j=1

w(2)
ij h(1)j + b(2)i

)
(12)

where xj is the jth input to the neuron, w(k)
ij is the weight for the ith neuron and jth input in

the kth hidden layer, and b(k)i is the bias for the ith neuron in the kth hidden layer. With the
use of a linear activation function for neurons in the output layer, the network’s output can
be written as

yi =
N

∑
j=1

w(3)
ij h(2)j + b(3)i (13)

In the vectorized form with a weight matrix W(k), an activation vector h(k), and a bias
vector b(k), the network’s computations are given by [22,23]:

h(1) = tanh
(

W(1)x + b(1)
)

(14)

h(2) = tanh
(

W(2)h(1) + b(2)
)

(15)

y = W(3)h(2) + b(3) (16)

where x = [G T]T is the transpose of the input vector x. The neural network is trained
by using the Levenberg–Marquardt algorithm, a method used extensively for learning
a feed-forward network, to realize the rapid correction of network weights and biases.
Since the initial value of weight and bias affects the training results, the neural network
can be retrained several times to obtain a neural network with excellent universality. The
configuration of the proposed model is summarized in Figure 2. The five parameters
are predicted by a MLP neural network, and these parameters are put into the Lambert
W function.
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4. Model Verification

The validation of the regression and ANN models for the five parameters (Iph,n,Rs,Rp,I0)
is assessed by using the experimental data of the monocrystalline SM55 PV panel (Ns = 36) [1].
The five parameters are extracted by using the quality factor variation method from the
manufacturer’s data sheet [1,17]. After determining the parameters at standard test con-
ditions (G0 = 1000 W/m2, T0 = 298 K), the procedure is applied to estimate variations in
the five parameters for different temperature levels (T = 298 ∼ 343 K) and solar irradi-
ance levels

(
G = 200 ∼ 1000 W/m2). The database obtained from the procedure is used

to develop the multiple regression models for Iph(G, T), n(G, T), Rs(G, T), Rs(G, T), and
I0(G, T).

Table 1 shows the regression models and coefficient of determination R2 estimated by
using Equations (4)–(9). As shown in Table 1, the regression models have a high coefficient
of determination ( R2 = 0.9692 ∼ 1.000), and I0(G, T) is obtained by other parameters with
a high coefficient of determination.

Table 1. Regression model and R2 for parameters estimated from experimental data.

Parameters Regression Models and R2

Iph(G, T) (A)
(

G
G0

)[
3.457 + 1.407 × 10−3(T − T0)

]
, R2 = 1.000

Voc(G, T) (V)
21.63

[
1 − 3.434 × 10−3(T − T0) + 1.752 × 10−4Vt ln

(
G
G0

)]
,

R2 = 0.9985

n(G, T)
1.084

[
1 − 8.455 × 10−4(T − T0) + 2.749 × 10−4Vt ln

(
G
G0

)]
,

R2 = 0.9692

Rs(G, T) (Ω) 0.4724
1+1.405×10−2+6.854×10−4Vt ln

(
G

G0

)
(

G
G0

)
[1+3.488×10−2(T−T0)]

, R2 = 0.9938

Rp(G, T) (Ω) 222
1+1.890×10−2+7.246×10−4Vt ln

(
G

G0

)
(

G
G0

)
[1+2.515×10−2(T−T0)]

, R2 = 0.9926

I0(G, T) (A)
[

Iph(G, T)− Voc(G,T)
Rp(G,T)

]
/
[
exp

(
Voc(G,T)
n(G,T)Vt

)
− 1
]

The best ANN model has an input layer with two variables, two hidden layers with five
neurons in each layer, and an output layer with five variables (2-5-5-5 topology). Logarithm
data preprocessing is used to improve the ANN model accuracy for the reverse saturation
current I0(G, T). For training the ANN model, the offline method is utilized to generate
the dataset for the five parameters of the PV panel, which is extracted from manufacturer’s
data sheet. Figure 3 shows the dependence of five parameters on temperature and solar
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irradiance for the regression model and ANN model. The correlation coefficients are
employed to evaluate the accuracy of the ANN model for the five parameters, including
the training, validation, and testing phases. As a result, the correlation coefficients with
values greater than 99.85% were observed between the predicted and measured data in all
network phases.
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Figure 3. Dependence of the five parameters on temperature and solar irradiance for the regression
model (a–e) and ANN model (f–j).

As plotted in Figure 4, two different statistical metrics based on the measured and
estimated five parameters are employed to compare the accuracy of the ANN model
with the regression model, including root mean squared error (RMSE) and mean absolute
percentage error (MAPE), as follows [14,15]:

RMSE =

√
1
n

n

∑
i=1

(ym,i − ye,i)
2 (17)

MAPE =
1
n

n

∑
i=1

∣∣∣∣ym,i − ye,i

ym,i

∣∣∣∣× 100 (%) (18)

where ym,i and ye,i are the measured and estimated values, respectively. Both RMSE and
MAPE values of the ANN models are lower than those of the regression models. This is
attributed to the strong capability of MLP–ANN models to learn the nonlinear relationship
between the inputs and the outputs, whereas the regression models may be limited to a
specific condition. Figure 5a,b show I–V characteristics and the absolute error by simulated
and experimental data at different irradiances and temperatures, respectively. It is found
that the absolute error values of the ANN models are lower than the regression models,
resulting from the better performance of the ANN models for the five parameters shown
in Figure 3. Table 2 shows the comparison of maximum absolute errors of the I–V curves
estimated from the proposed ANN model and different models for the SM55 PV panel. As
can be seen, the maximum absolute errors of the proposed ANN model are much lower
than the other models for different irradiances and temperatures. These results justify the
higher accuracy of the ANN models, compared with other works [1,4,46].
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Table 2. Comparison of maximum absolute errors estimated from different models.

Temperature
T (K)

Irradiance
G (W/m2)

Maximum Absolute Errors (A) of I–V Curves for SM55 Panel
Proposed

ANN Model Model 1 [1] Model 2 [4] Model 3 [46]

298
200 0.02 0.03 0.03 0.08
600 0.01 0.04 0.06 0.05
1000 0.06 0.08 0.06 0.06

298
1000

0.04 0.07 0.06 (293 K) 0.10 (293 K)
313 0.09 0.16 0.15 0.09
333 0.09 0.12 0.10 0.20

5. Conclusions

The electrical characteristics of a PV module under arbitrary operating conditions have
been estimated by using the regression and ANN models. The models are utilized to predict
the five parameters of a single diode solar cell, and the parameters are combined with an
explicit equation for I–V characteristics. The inputs of the regression and ANN models are
temperature and solar irradiance, while the outputs are the five parameters. The dataset
needed for the five parameters was extracted from manufacturer’s data sheet and used
to construct the regression and ANN models. The best neural network architecture had
a 2-5-5-5 topology for the five parameters, leading to correlation coefficients with values
greater than 99.85%. Both the RMSE and MAPE values of the ANN models were found to
be lower than those of the regression models. With comparative results, the ANN models
show better performance than the regression models in predicting I–V characteristics under
varying temperature and solar irradiance. It is applicable to extend the higher capability
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of ANN models to the prediction of electrical characteristics for diverse solar cells under
actual weather conditions.
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