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Abstract: Social networks change the way and approaches of video spread and promote range and
speed of video spread, which results in frequent traffic blowout and a heavy load on the networks. The
social and geographical communication efficiency determines the efficiency of video sharing, which
enables the eruptible traffic to be offloaded in underlaying networks to relieve the load of networks
and ensure the user quality of the experience. In this paper, we propose a novel geo-social-aware
video edge delivery strategy based on the modeling of the social-geographical dynamic in urban area
(GSVD). By investigating the frequency of sharing behaviors, social communication efficiency, and
efficiency of social sub-network consisting of one-hop social neighbors of users, GSVD estimates the
interactive and basic social relationship to calculate the closeness of the social relationship between
mobile users. GSVD makes use of grid partition and coding subarea to express the geographical
location of mobile users and designs a calculation method of coding-based geographical distance.
GSVD considers the dynamic update of social distance and geographical location and designs a
measurement of video delivery quality in terms of delivery delay and playback continuity. A strategy
of video delivery with the consideration of adapting to social-geographical dynamic is designed,
which effectively promotes the efficiency of video sharing. Extensive tests show how GSVD achieves
much better performance results in comparison with other state of the art solutions.

Keywords: social influence; geographical distance; video delivery; video quality

1. Introduction

The development and application of wireless communication technologies (e.g., 5G/6G)
not only support the ubiquitous access of mobile users to break time and space constraints,
but also provide enough network bandwidth for various applications with a high requirement
of bandwidth [1–4]. Video services such as IPTV, VoD, and video living rely on wonderful
content and quality of services (QoS) and have become the most popular application on the
Internet, so much so that video traffic has become more than 70% of the world’s total traffic
[5–8]. The combination between video applications and social networks promotes the process
and range of video dissemination because the video spread considers social links between
users as the new sharing channel [9–13]. The assistance of social networks further results in the
blowout of video traffic, which brings a heavy burden for the core networks. In particular, the
high density of a population in a city promotes social efficiency, so that the traffic load of social-
based video sharing in a city is much higher than that of other video application scenes [14].
The high traffic load aggravate congestion levels of networks, which results in a high loss rate
of video data and reduces user quality of experience (QoE) [15–17]. The high-efficiency video
delivery effectively relieves the traffic load of networks by investigating the social relationships
and geographical locations of mobile users to implement traffic offloading in underlaying
networks [18]. The combined measurement of social relationships and geographical locations
is crucial for the performance and QoS of social-based video delivery.

The closeness levels and interaction efficiency of social relationship between users
determine the influence levels for speed and range of video dissemination, which further
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influences the performance of video delivery and user QoE. The comprehensive measure-
ment for the characteristics of closeness and interaction is very important for estimating
the accuracy of closeness levels and the interaction efficiency of social relationships. On the
other hand, the dynamic of geographical location caused by the mobility of mobile users
brings a severely negative influence for the performance of video delivery due to the fre-
quent variation of transmission paths of video data. The accurate expression and low-cost
update of the dynamic geographical location of mobile uses in an urban area is also very
important for the estimation of the geographical distance between mobile users. Numerous
researchers focus on optimization of the QoE-driven performance of video delivery with
social assistance [19–25]. For instance, Cao et al. propose social-aware D2D-based video
multiCast system by investigation of the cooperation between mobile users to implement
cooperative video multicast and allocate D2D radio resources [19]. Hung et al. propose
an optimization method of live video streaming services in mobile edge computing by
adjustment of the backhaul capacity and allocation of the caching space of an edge-enabled
cellular system to improve video quality [25]. Wang et al. propose a social-aware video
pre-fetching method based on the distributed online learning for differential privacy by
investigation of user preference and social interactions [26]. However, the above methods
do not consider the mobility of mobile users and neglect the comprehensive measurement
of social relationship and mobile behaviors, which can ensure the performance of video
delivery—with some difficulty. Therefore, an efficient method of video delivery should be
able to comprehensively measure the social relationship and mobility variation of mobile
users to ensure user QoE and QoS of video systems by investigation of user interaction and
mobile behaviors.

In this paper, we propose a novel geo-social-aware video edge delivery strategy based
on modeling of the social-geographical dynamic in an urban area (GSVD). GSVD investi-
gates social closeness, geographical distance, and video delivery quality to formulate the
selection strategy of video providers in order to promote video delivery performance and
user QoE. GSVD combines the interactive and basic social relationship for the closeness of
the social relationship between mobile users: (1) The frequency of video sharing behaviors
and social communication efficiency between users are used to estimate the closeness of
interactive social relationship; (2) The estimation of basic social relationship relies on the
number of common one-hop social neighbors and the efficiency of a social sub-network con-
sisting of one-hop social neighbors of users. GSVD employs a coding expression method of
grid-based geographical location and the calculation method of coding-based geographical
distance and formulates an on-demand updating method of geographical location. GSVD
further designs a measurement of video delivery quality and a strategy of video delivery
adapting to social-geographical dynamic. Simulation results show how GSVD achieves
much better performance results in comparison with other state of the art solutions.

2. Related Work

Some researchers focus on promoting video delivery performance in video systems
with large-scale deployment. Li et al. propose an optimization method of video delivery
throughput of a large-scale video-on-demand (VoD) system by investigating the variation of
download speed of users based on a dataset of 20 million video download speed measure-
ments [27]. Video quality is an influencing factor for video download speed and determines
the intentions of the user requesting the videos, which becomes a limited factor for the
speed increases. The video delivery throughput based on the linear regression model is
modeled and the potential performance of edge caching and hybrid CDN-P2P is evaluated.
However, the conclusion that video download speed is the decisive factor for video request
may be partial and may also be suitable for video sharing. Choi et al. proposed a video
delivery strategy for dynamic streaming services in playback-delay-constrained wireless
caching networks, which maximizes video quality for every unit time [28]. The users make
delay-constrained decisions in terms of caching nodes for video delivery, video quality,
and quantity of received video chunks; The dynamic decision of video quality and chunk
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amounts is described as the Markov decision process and the framework of Lyapunov
optimization is used to model the caching node decision. The proposed method considers
the delivery performance of videos of caching nodes and describes the dynamic process
of video quality decision using the Markov decision process, but the method neglects the
user decision of video fetching caused by social influence and the performance jitter of
video delivery caused by the mobility of mobile users. The authors propose a cooper-
ative video delivery strategy in wireless networks [29]. By monitoring and estimating
the real-time variation in movement behaviors and communication quality of one-hop
neighbors of video downloaders, mobility stability of one-hop neighbors is measured and
the communication quality of one-hop neighbors is predicted. The cooperative neighbors
selection algorithm is designed in terms of mobility stability and communication quality,
which speeds up the fetching and dissemination of the videos. The proposed method
considers the mobility and communication quality of nodes to ensure the video delivery
performance, but the social relationship between the nodes is neglected and the mobility
jitter brings a severe negative influence for the video delivery performance. Xiang et al.
propose a cross-layer optimization method of video delivery in two-hop relaying networks
by supplying the video data for multiple users in a base station with the help of relays [30].
The caching and delivery control schemes are designed in order to minimize the overall
video delivery time. An optimization problem of offline caching and delivery is formulated,
which exhibits hidden quasi-convexity and convexity. An online video delivery control
in a stochastic dynamic programming framework is formulated and a low-complexity
online video delivery algorithm is designed. The optimization problem of caching and
delivery time does not consider the social influence and mobility of supply users, so that the
proposed method difficultly is suitable for social-based video sharing in mobile network.

Some researchers focus on social-based video spread to optimize video distribution
and resource allocation. Roy et al. design a transfer learning framework of sudden
popularity bursts in online social video streaming [31]. A spread level model of videos in
social networks by transfer learning topics in social streams is designed, which promotes the
prediction accuracy of video popularity. The conclusion that social context is the main factor
of the sudden rise of video popularity is revealed. The main factor for the sudden rise of
video popularity is revealed, but the interaction between video interest and social influence
are not discussed further. Xu et al. propose a forecast algorithm of video popularity in social
networks, which ensures the accuracy and timeliness of video popularity prediction [32].
The popularity prediction investigates the variation and evolution of video propagation
patterns in social networks instead of a training phase or prior knowledge. The prediction
of the popularity of video spread during a short-term period follows the sublinear and
has an explicit bound when the number of video reaches a threshold value. However, the
proposed method does not consider the interactive influence between video content and
social context for video popularity. Yang et al. make use of the incremental marginal gain
to formulate the maximization problem of video spread where the lower and upper bounds
of video spread maximization of formulated problem are constructed [33]. An algorithm
of sandwich-based marginal increment and an algorithm of video spread maximization
are designed, respectively, which guarantees the data-dependent factor and influences the
ranking and adjustment of the video spread. However, there are many influence factors
of video spread, so that the estimation of the lower and upper bounds of video spread
is inaccurate. Niu et al. construct a multiple-source-driven video diffusion model based
on the collection and analysis of substantial video diffusion traces [34]. The latency of
video propagation along social links is investigated and the single-source activation latency
is defined, where the single-source activation latency follows the exponential mixture
model. A multi-sources asynchronous diffusion model is constructed, which describes
the exponential decreases of activation probability with increasing time. The proposed
method reveals the propagation process of videos in social network from single-source to
multi-sources, but other influence factors (e.g., the interaction between video content and
social relationship) are considered.
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Some researchers focus on social-aware video delivery strategies to promote user QoE
and the transmission performance of video data. Fan et al. propose a prediction method
of social-aware video delivery for the problem of watching decision prediction by content
awareness based on capturing the intrinsic relationship among users and videos [35]. The
measurement methods of five factors (active degree of users, social tier between users,
similarity between videos, similarity between user interest and video content, and video
popularity) are designed, which are used to construct the prediction model of video delivery.
The combined prediction algorithm of video delivery is designed. The proposed method
considers five factors for social influence, video interest and content similarity, but the
mobility of the mobile nodes is not considered, which results in the performance jitter of
video delivery. The authors propose a social-aware D2D video delivery method in 5G ultra-
dense network by measurement of mobility similarity [36]. A social state transition model
of user movement is constructed by using encounter duration and shared video length to
define the state transition condition. A cluster algorithm of encounter events is proposed in
terms of similarity between encounter events, so that the patterns of encounter events with
common characteristics is extracted. The cluster-based patterns of encounter events are
further refined and are used to generate the refined patterns of encounter events. A sample-
efficiency rapid recognition algorithm of encounter pattern is designed, which achieves
fast heuristic recognition of encounter pattern. The proposed method only considers the
movement encountered in a social relationship and does not consider the social influence
and sharing habit, so the inadequate measurement of social influence and video sharing
results in the low availability of the proposed method in complex scenarios. Wang et al.
review challenges, approaches, and directions of social-aware video delivery [37]. The
challenges in social-aware video delivery is present and a principal framework for social-
aware video delivery is designed. The unique characteristics of social-aware video access
and social content propagation are analyzed and formulated.

3. GSVD Overview

Figure 1 illustrates the design of GSVD architecture which includes social awareness,
location awareness, measurement of video delivery quality, and video delivery. The video systems
make use of social networks to implement the fast dissemination of information and data
of videos; after the users fetch the information of videos, the video delivery becomes the
key factor for the quality of experience (QoE) of users. The near geographical distance and
good communication quality are key factors for the performance of video delivery.

(1) Social Awareness: Estimation of the interaction behaviors for video sharing can
show the closeness of social communications between users by investigating the interactive
frequency and content; the estimation of a basic social relationship also shows the common
social environment and social communication efficiency between users; the adaptive
management for the dynamics of social distance relies on the real-time capture of variation
of social distance to show the connectivity of users in social networks.

(2) Location Awareness: The location expression based on grid partition for the limited
urban area can support the explicit estimation of geographical distance and the adaptive
management for dynamic geographical location. The estimation of geographical distance
also shows the efficiency of video delivery between users; The adaptive management
for the dynamic of geographical distance relies on the periodical capture of variation of
geographical location to support the selection of video providers.

(3) measurement of video delivery quality: The estimation of transmission time of video
data shows the communication quality of transmission paths of video data. The estimation
of consistency of video playback shows the QoE and the quality of video delivery in the
aspect of viewers.

(4) Video delivery: After the estimation of candidate providers in terms of delivery
quality, social relationship and geographical distance, the video requesters need to make
use of the social links to search for and contact the video providers, to monitor the delivery
quality, and make the decision for the switchover of providers in terms of location variation.
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Figure 1. GSVD architecture.

4. GSVD Detailed Design
4.1. Measurement of the Social Relationship

A close social relationship promotes video sharing between users. For instance, a user
ui can always obtain the desired video resources from the good friend uj of ui; ui always
pushes the watched videos to ui’s friends. The video sharing without the participation
of video servers promotes the scalability of video systems and the range and speed of
video dissemination. The frequent sharing of videos is a characteristic of a close social
relationship between users. If ui sends a video vk to uj and uj responds the request of ui
and transmits data of vk to ui, the event of video sharing between ui and uj can be recorded
as e = (eid, uidr, uidp, vid, f lag). eid is the ID of event; uidr is the ID of requester; uidp is the
ID of provider; vid is the ID of shared video; f lag is the ID of shared way (“pull” or “push”)
where “pull” is 1 and “push” is 2. For instance, eij is the five-tuples and eij = (1, ui, uj, vk, 1).
The events of sharing of all videos form a set ES = (e1, e2, . . . , en).

The important information in the event of video sharing is recorded: (1) all users
(requesters and providers) that watch any video; (2) all interaction behaviors between all
users that watch any video. For instance, the number IFij of interaction behaviors (“pull”
or “push”) between ui and uj can be extracted from ES. The interaction closeness between
ui and uj can be defined as:

ICω
ij =

1
dij

MIN[
IFij

IFi
,

IFij

IFj
] (1)

where IFi is the total number of interaction behaviors between ui and other users; IFj are

the total number of interaction behaviors between uj and other users.
IFij
IFi

and
IFij
IFj

are the
partial closeness of interaction behaviors relative to ui and uj, respectively. The interaction

closeness between ui and uj is the minimum value between
IFij
IFi

and
IFij
IFj

. Further, we add
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a weight value 1
dij

for ICij where dij is the shortest distance between ui and uj in social
networks and dij denotes the communication efficiency in social networks.

Moreover, the basic social relationship between ui and uj should also be investigated.
The users have a complex social environment, e.g., they could be relatives and colleagues
in the real world. If the two users ui and uj have many common friends, the basic social
relationship between ui and uj is strong, which can support the high-frequency interaction
between ui and uj; Otherwise, if ui and uj have less common friends, the basic social rela-
tionship between ui and uj is weak and the interaction between ui and uj may be random.
Let NFi and NFj be the number of one-hop social neighbors of ui and uj, respectively, and
NFi and NFj can also be considered as the degree of ui and uj, respectively. The basic social
relationship between ui and uj can be defined as:

BRω
ij =

CN2
ij

dij × NFi × NFj
(2)

where CNij is the number of common one-hop social neighbors between ui and uj;
CNij
NFi

is
the ratio between common one-hop social neighbors between ui and uj and one-hop social

neighbors of ui;
CNij
NFj

is the ratio between common one-hop social neighbors between ui and

uj and one-hop social neighbors of uj. We also add a weight value 1
dij

for BRij.
CNij

dij×NFi×NFj

denotes the efficiency of a social sub-network consisting of one-hop social neighbors of ui
and uj. Therefore, BRij is not only the basic social relationship between ui and uj, but also
denotes the capacity of the video distribution of a social sub-network consisting of one-hop
social neighbors of ui and uj. The closeness of the social relationship between ui and uj can
be defined as:

CRij = ICω
ij × BRω

ij (3)

The shortest social distance between ui and uj is a very important influence factor in
CRij, which determines the cost and efficiency of social communications between ui and uj.
The low value of the shortest social distance can reduce the number of relay users of social
communication between ui and uj, which speeds up the interaction of video information.
The larger/smaller the shortest social distance between ui and uj is, the lower/higher the
closeness of the social relationship between ui and uj is. However, the shortest social path
between ui and uj is various. For instance, if ui and uj do not have direct social link and
need to make use of social links of other users to implement social communications; once
ui and uj build social link after video interaction, the length of shortest social path between
ui and uj become one hop from multiple hop. The cost/efficiency of social communications
between ui and uj is reduced/promoted. On the other hand, if ui and uj have one-hop
social relationship at ti and remove their one-hop social relationship at tj, the multiple-hop
social links between ui and uj increases the cost of social communications. However, the
users need to maintain the state of social links to deal with the dynamic of social links. The
real-time maintenance of social links consumes the large amount of bandwidth resources.
Therefore, the periodical maintenance of social links reduce the bandwidth cost of state
messages. Let TLi be the maintenance period time of social links of ui; Let NLi be the
number of changed one-hop social links of ui during the period time TLi. The variation
rate of one-hop social links of ui can be defined as:

LRi =
NLi
TLi

(4)

The higher the value of LRi is, the shorter the period time of updating one-hop social
links of ui is. The short period time adapts to the fast change of one-hop social links of
users. If the value of LRi is high, the long period time reduces the cost of updating one-hop
social links of ui. The dynamic update period time of ui can be defined as:
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UTi =
TLi
LRi

=
TL2

i
NLi

(5)

The users can dynamically change the update period time with a low message cost
and obtain the accurate state of social links with other users in terms of the above equation.

4.2. Measurement of the Geographical Location

The geographical location of users is also an important influence factor for the per-
formance of video delivery. The dynamic of geographical location of users leads to the
variation of transmission path of video data. For instance, a user ui has one-hop geograph-
ical distance with another user uj at ti; ui has multiple hop geographical distance with
uj at tj. The transmission performance of video data ui and uj may be influenced by the
variation of the geographical distance between ui and uj.

An urban area has a limited boundary, and the range of an urban area is also limited.
An urban area can be divided and coded, so the coded subarea can express the geographical
location. As Figure 2 shows, an urban area is divided into 5× 5 grids (red dashed line)
and each grid has a unique number to express the a well-bounded subarea. The user A
has the explicit code locA

12 of geographical location. The grid partition strategy has a large
influence on the expression of the geographical location of users. The larger the range of
the divided subarea is, the lower the accuracy of the expression of the geographical location
is; Otherwise, the smaller the range of the divided subarea is, the higher the frequency of
updating the geographical location is. The range of the divided subarea can be equal to
the coverage area of the access point (AP) and the grid partition strategy can employ the
deployment method of cellular APs. In terms of the Euclidean distance, the code-based
geographical distance between the two users ui and uj can be defined as:

 

N

User A

Vehicle A

Vehicle B

User B

User C

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(1,2) (1,3) (1,4) (1,5)

(2,2) (2,3) (2,4) (2,5)

(3,2) (3,3) (3,4) (3,5)

(4,2) (4,3) (4,4) (4,5)

(5,2) (5,3) (5,4) (5,5)

Figure 2. Grid-based partition in the urban area.
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Dij =
√
(xi − xj)

2 + (yi − yj)
2 (6)

where xi, yi, xj and yj are the horizontal and vertical coordinates of ui and uj, respectively.

For instance, the codes of geographical location of ui and uj are loci
12 and locj

14, so xi = 1,
yi = 2, xj = 1, yj = 4 and Dij = 2. Dij is not the real geographical distance between ui
and uj and is code-based geographical distance. If the grid partition strategy employs the
deployment method of cellular APs, the diameter R of cellular APs is a code-based unit
distance and the real geographical distance between ui and uj is Dij × R = 2R. The urban
area is divided into m× n subarea where m and n are the codes of row and column of each
subarea, respectively. The code of each subarea is in the range [(1, 1), (m, n)]; the shortest

and largest geographical distance ar [0, R
√
(m− 1)2 + (n− 1)2], respectively (when two

users are located at the same subarea, the shortest geographical distance between them is
0). The normalization result of real geographical distance between ui and uj is defined as:

NDij =
Dij − Dmin

Dmax − Dmin
=

Dij√
(m− 1)2 + (n− 1)2

(7)

The users make use of the mobile devices to obtain video data via the Internet, so
the geographical location of the users is a dynamical change. The variation frequency of
geographical location users is higher than that of social distance, so that any user does not
maintain the geographical location of other users in real time due to the large scale and high
frequency of maintenance. Because the users make use of the social links to disseminate the
information and data of videos, the users only maintain the geographical location of one-
hop social neighbors for the maintenance scale. For the maintenance frequency, different
from the periodical maintenance of social links, we employ an on-demand update strategy
of geographical location of one-hop social neighbors. When a user ui requests a video vk
from uj or pushes vk for another user uj, ui sends the multicast messages containing the
request of updating the geographical location to one-hop social neighbors of ui. ui updates
the geographical location to one-hop social neighbors after receiving the response messages.
ui makes use of the updated geographical location to calculate the geographical distance
with one-hop social neighbors. The calculated geographical distance can be used to select
video providers or relay users in the process of video lookup.

4.3. Measurement of Video Delivery Quality

There is a close relationship between video quality and user QoE. The continuity of
video playback is very important for the user QoE. The continuity of video playback relies
on the communication quality in the transmission path of video data. The transmission
time and loss rate of video data are measurement parameters of the communication quality.
If the transmission time of the video data is close to the length of the videos, the number
of playback interrupt maintains low levels; if the loss rate of video data is close to 0, the
number of playback interrupt also maintains low levels. The high quality of video delivery
denotes the high quality of services of video providers. For instance, a user ui requests a
video vk and fetches video data from uj. Let VLk be the length of vk and the service level
about transmission time of uj can be defined as:
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QTj =
Lk

TLj
k

, QTj ∈ (0, 1] (8)

where TLj
k is the average value of transmission time of uj for the uj of all requesters

regarding vk and is defined as:

TLj
k =

SNk
j

∑
c=1

TLc

SNk
j

(9)

where SNk
j is the number of requesters served by uj; TLc is the transmission time of cth

service of uj. The value of TLj
k is in the range [Lk,+∞) and QTj ∈ (0, 1]. On the other hand,

let l f j
k be the average value of loss times of video data of uj and the value of l f j

k is defined
as:

l f j
k =

SNk
j

∑
c=1

l fc

SNk
j

(10)

where l fc is the loss times of cth service of uj. The service level about loss rate of video data
of uj can be defined as:

QLj =
1

l f j
k + 1

, QLj ∈ (0, 1] (11)

The value of l f j
k is in the range [0,+∞) and QLj ∈ (0, 1]. The smaller the value of l f j

k
is, the larger the value of QLj is. QTj and QLj are the important parameters for the service
level of uj. Therefore, the service level uj can be defined as:

Qj = QTj ×QLj (12)

The values of QTj and QLj maintain high levels, so the continuity of video playback
of requesters served by uj is high. There is a close relation between transmission time and
data loss. If the loss rate of video data is high, the retransmission of video data leads to
the increase of transmission time of video delivery. QTj and QLj have the same trend of
variation.

4.4. Video Delivery Strategy

Video delivery includes video lookup and data transmission. Video lookup means
that the requesters find and connect with the providers where to store the needed videos in
the networks. For instance, when a user ui wants to fetch a video vk, ui can obtain the set of
candidate providers which store vk according to the event set of video sharing and needs
to select the providers with high delivery capacity from the large number of candidate
providers. The delivery capacity of video should have a short lookup delay of providers
and a short transmission delay of video data. The requesters need to make use of the social
links between users to forward the request message of vk in the process of social-based
video lookup. Therefore, ui selects the provider that has a strong social relationship with ui
as much as possible. Further, the interaction of video sharing promotes the closeness of
social relationship between ui and the selected provider. On the other hand, the stability
and efficiency of video data transmission relies on the geographical distance between ui
and the selected provider. The close geographical distance can ensure the stability and
efficiency of video data transmission with less relay nodes. Moreover, the selected provider
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should also have high service quality. ui needs to calculate the delivery capacity of each
candidate providers according to the following equation.

QDj =
CRij ×Qj

NDij
(13)

CRij and Qj is the increasing function; the larger the values of CRij and Qj are, the
larger the value of QDj is. 1

NDij
denotes the efficiency of geographical communication

between ui and provider uj and NDij is the decrease function; The less the value of NDij is,
the larger the value of QDj. ui should select the provider that has the largest value of QDj.

The video lookup relies on the forwarding of request messages. The users in so-
cial networks not only store the event set of video sharing to be aware of candidate
providers of videos, but also to maintain the information of one-hop social neighbors
to support the forwarding of request messages. For instance, ui needs to maintain a set
USi = (un1, un2, . . . , unm) of one-hop social neighbors. Any item unh in USi is defined as
unh = (uid, VL, GL, ut) where uid is the ID of the one-hop social neighbor; VL is the list of
videos stored by the one-hop social neighbor; GL is the code of the geographical area; ut is
the timestamp of updating the state of the one-hop social neighbor.

If ui wants to fetch a video vk, ui searches for the items in USi which store vk. If USi
has a subset SUSi whose items store vk, ui sends the request messages to the items in
SUSi. After the items in SUSi receive the request messages of ui, they return the response
messages containing the current code of geographical location and confirmation mark f lag
to ui. The values of f lag are 0 (the user does not store vk) and 1 (the user stores vk):

(1) If all items in SUSi do not store vk due to the dynamic variation of local storage
space, ui is aware of the request results in terms of f lag in the return messages and all items
in SUSi broadcast the request message of ui to their one-hop social neighbors. Further, ui
broadcast the request messages to items in USi − SUSi (the difference set between USi and
SUSi). The request messages of ui are disseminated with the flooding in the whole social
networks. After the relay users receive the return message with f lag = 1 of one-hop social
neighbors, they broadcast the messages containing the termination of the flooding to their
one-hop social neighbors and return the response messages to ui. ui receives the return
messages containing the response user ID and codes of geographical location. ui selects
and connects with the provider that has the largest value according to Equation (13) from
the items in SUSa and receives data of vk from the selected provider.

(2) If there are items in SUSi that store vk, the items in SUSi return the messages with
f lag = 1. After ui receives the return messages, ui sends the messages containing the
termination of the flooding to the items in SUSi. ui selects and connect with the provider
that has the largest value according to Equation (13) from the items in SUSi. ui receives
data of vk from the selected provider.

The algorithm of provider selection is described in Algorithm 1. The mobility of the
mobile users leads to the dynamic variation of transmission paths video data, which brings
a severely negative influence for the transmission performance of video data (e.g., a high
loss rate of data). ui needs to keep the contact with the candidate providers with a large
value of QD. Once the communication quality of the data transmission path between the
provider is less than the threshold value of QoE of ui (the loss rate of data is higher than
the threshold value Pi of QoE of ui), ui disconnects with the provider and connects with the
new provider with the maximum value of QD according to Equation (13).
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Algorithm 1 Video Provider Selection

1: Ti is maximum value of startup delay of ui;

2: CDi is set of candidate providers;

3: t is timer and t = 0;

4: for (j = 0; j<|USi|; j++)

5: for (h = 0; h<|USi[j].VL|; h++)

6: if USi[j].VL[h] is vk

7: USi[j] is added into SUSi;

8: end if

9: end for

10: end for

11: sends request messages to items in SUSi;

12: receives return messages from items in SUSi;

13: if items in SUSi do not have vk

14: requires flooding by broadcasting messages to USi;

15: while Ti = t

16: if receives return message with f lag = 1

17: candidate providers are added into CDi;

18: end if

19: t ++;

20: end while

21: end if

22: calculates QD of items in SUSi and CDi;

23: connects with provider with maximum value of QD;

24: receives video data from selected provider;

5. Testing and Results Analysis
5.1. Testing Topology and Scenarios

We compare the performance of the proposed solution GSVD with that of the two state
of the art solutions DMSEM [36] and SECS [38], which are deployed in a mobile network
environment by making use of the Network Simulator 3 (NS-3). The simulation time is
set to 500 s. A total of 500 mobile nodes are uniformly deployed in a square scenario in
a 4000 × 4000 m2 area and maintain the random movement behaviors during the whole
simulation time. Initially, the mobile nodes have the position coordinates of the beginning
and the ending. They are allocated randomly at a constant speed and move along the path
consisting of the beginning and the ending position. When the mobile nodes arrive at the
appointed ending position, they have 0 s stay time and are randomly reassigned a new
destination position and a movement speed. The mobile nodes move immediately to the
new target and follow the new destination position using the new allocated speed. The
velocity of the mobile nodes is in the range [1, 30] m/s.

There are 40 videos that are requested by the mobile nodes. The popularity of all
videos follows the Zipf distribution [39]. The probability of requesting the nth popular
video is defined as [40]:

P(n) = ∑i
40 iρ

rρ (14)
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The mobile nodes follow the request probabilities to request videos and follow the
Poisson distribution start video request. When the mobile nodes request a video, the
playback time is randomly set and is allocated to the mobile nodes. After the mobile nodes
finish the playback according to the allocated playback time, they continue to request a
new video according to the request probabilities. The length and size of every video is
100 s and 25 MB, respectively. The playback bitrate of all videos is 2000 kbps. Every mobile
node can store 10 videos in the local buffer. The number of source nodes that store th initial
video data is set to 10, which means that 40 nodes provide the initial data of 40 videos.
We generate 20,000 log entries that are considered as a historical playback trace library to
support the social relationship measurement of GSVD and interest-based user clustering of
SECS; we also build a historical movement trace library to support the mobility-adapted
video quality estimation of GSVD and the extraction of encountered patterns of DMSEM.
The simulation scenarios uniformly deploy 64 base stations that are used as the access
points (APs) to transmit and forward data. The settings of physical and MAC layer and
modulation schemes of the network units follow the 5G industrial standardization. The
MAC protocol employs the 802.11p and the upper bound of the data rate is set to 27 Mbps.
The maximum communication range is 250 m and the MAC channel delay is 250 ms. The
propagation loss model employs the Friis Propagation Loss Model (FPLM) in NS3 [41]
in order to eliminate the performance degraded by random shadowing effects for the
unstructured clear path between receivers and transmitters. The FPLM effectively erases
the random effects caused by shadowing for the simulation results. The D2D settings of
the 5G network follows the settings in the popular studies [42].

5.2. Performance Evaluation

We compare the performance of GSVD with DMSEM and SECS in terms of the startup
delay (SD), average data transmission delay (ADTD), packet loss rate (PLR), average freeze
time (AFT), and peak signal-to-noise ratio (PSNR), respectively.

Startup delay (SD): Let tsi be the time that a request node ni sends a request message
to the video supply node nj; Let tri be the time that ni receives the first video data sent by
nj. tri − tsi is defined as the startup delay of ni.

The average SD values for every 5 s are shown in Figure 3 according to the equation
∑n

i=1 SDi
n where n is the number of nodes which finish startup and SDi is ith the startup

delay. As Figure 3 shows, the three curves corresponding to the three solutions have the
process of a slow fall after a fast rise with the slight fluctuation. The blue curve of GSVD
first experiences a slow rise from t = 110 s to t = 240 s after a fast rise from t = 0 s to t = 100 s
and have a slow fall from t = 250 s to t = 500 s. The red curve of DMSEM has a fast rise from
t = 0 s to t = 260 s and experiences a slow fall from t = 270 s to t = 500 s. The orange curve
of SECS has a fast rise from t = 0 s to t = 250 s and keeps a slow fall trend from t = 260 s to
t = 500 s. The SD values of GSVD is partially larger than those of DMSEM and SECS from
t = 0 s to t = 150 s, but the SD values of GSVD are less than those of t = 160 s to t = 500 s.
The peak value of blue curve corresponding to GSVD is less than that of DMSEM and SECS.
SECS has the largest SD peak value among the three solutions.

The average SD values during the whole simulation time with the different speed range
of nodes are shown in Figure 4. As Figure 4 shows, the average SD values corresponding
to the three solutions have the trend of slow rise with an increasing speed range of nodes.
The blue bars of GSVD experience the continuous rise and have a fast increase from the
speed range [5, 10] to [15, 20] and from the speed range [15, 20] to [25, 30]. The red bars
of DMSEM also have a continuous rise and a fast increase from the speed range [5, 10] to
[15, 20] and from the speed range [15, 20] to [20, 25]. The orange bars of SECS show the
continuous rise and also a the fast increase from the speed range [5, 10] to [15, 20] and from
the speed range [15, 20] to [20, 25]. The SD values of GSVD are less than those of DMSEM
and SECS, and the SD values of SECS are larger than those of GSVD and DMSEM.
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Figure 3. Startup delay against the simulation time.
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Figure 4. Startup delay against the various speed ranges of the nodes.

The factors that bring the influence for the SD values include supplier lookup delay,
capacities of handling requests for the supplier, and delivery performance of the request
messages and first video data. GSVD investigates the relationship of sociability and location
between users in terms of video sharing behaviors and grid-based location awareness.
GSVD enables the video request nodes that depend on the social paths to search for video
supply nodes in terms of the interaction behaviors of video sharing between nodes, which
promotes the lookup success rate and reduces the delay of supply node lookup. On
the other hand, GSVD tracks the geographical location of mobile nodes, which ensures
the near geographical distance between mobile nodes in order to provide high-powered
delivery of data. Moreover, GSVD makes use of the transmission time of video data and
the consistency of video playback to measure the video delivery quality of nodes, which
ensures a low transmission time of the request message and video data. Although the
SD values of GSVD quickly increase at the time phasing of intensive request due to the
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short-term deficiency of upload bandwidth supply caused by the negligence of redundancy
distribution of video copies, the high-efficiency delivery performance of video data achieves
the fast spread of video copies, which effectively relieves the unbalance between the supply
and demand. Therefore, the SD values of GSVD are less than those of DMSEM and SECS.
DMSEM investigates the one-hop D2D pair relationship, compares the encounter duration
and shared video length, and defines the encounter events based on the variation rate of
the geographical distance between mobile users and encounter duration time. DMSEM
makes use of the Fuzzy C-Means to group encounter events into the various clusters
according to iterative search and emergence. DMSEM considers the clusters of encounter
events as counter patterns of mobile users and depends on the rapid recognition algorithm
of encounter behaviors to achieve fast heuristic recognition of encounter events, which
supports the high-efficiency video sharing based on one-hop D2D pair. However, DMSEM
does not consider video lookup, so the lookup success rate is not ensured, which results
in a high delay of video lookup. On the other hand, DMSEM also does not consider the
redundancy distribution of video copies, which does not effectively address the problem of
imbalance between supply and demand. When a large request of video arrives, the low
capacities of the handling request caused by the imbalance between supply and demand
results in the increases of the wait delay for the request nodes. Similar to GSVD, DMSEM
also relies on the high performance of delivery of request message and video data to speed
up the spread of video copies and promote the capacities of the video supply. Moreover,
DMSEM relies on one-hop D2D communications to transmit video data, so the probabilities
of the one-hop D2D pair bring a negative influence for the startup delay of the request
nodes. Therefore, the SD values of DMSEM are higher than those of GSVD. SECS constructs
the interest domain of users and clusters the users with common interests into the same
groups, which defines the range of video sharing objects between the users. The intragroup
video sharing relies on the common interests of users and can obtain a high success rate
of video lookup, which reduces the video lookup delay. SECS employs “pull” and “push”
modes to spread video between users to achieve a fast increase of the redundancy copies,
which effectively promotes the capacities of video supply and reduces the wait delay of
the request nodes. However, SECS does not consider the precondition of demand scale, so
the imbalance between supply and demand caused by the stampeded request of videos is
relieved only for a limited time. On the other hand, although SECS considers the sharing
performance for the caching replacement and distribution, SECS does not investigate the
relationship and variation of geographical location of video requesters and suppliers. The
variation of movement behaviors and speed brings a severely negative influence for the
transmission of request message and video data. Therefore, the SD values of SECS are
higher than those of GSVD and DMSEM.

Average data transmission delay (ADTD): The end-to-end transmission delay of video
data is defined as the data transmission delay. The average data transmission delay can be

defined as ∑n
i=1 dti

n where n is the number of delay of transmitted data during a time span t
and dt is the delay of the transmitted data. The ADTD values for every 5 s are shown in
Figure 5 and the ADTD values with various speed range of nodes are shown in Figure 6.

As Figure 5 shows, the three curves corresponding to SDMS, OCP, and SECS have a
severe jitter process with the increasing simulation time. The blue curve of GSVD keeps
lower levels than those of DMSEM and SECS and the ADTD peak value of GSVD is less
than those of DMSEM and SECS. The ADTD peak value of DMSEM is lower than that of
SECS. SECS has the largest ADTD peak value among the three solutions and the orange
curve of SECS has higher levels than those of GSVD and DMSEM.

As Figure 6 shows, the average ADTD values corresponding to the three solutions
have the trend of a slow rise with an increasing speed range of nodes. The blue bars of
GSVD keep the rise trend and have a fast increase from the speed range [5, 10] to [15, 20]
and from the speed range [15, 20] to [25, 30]. The blue bars of GSVD are lower than those of
DMSEM and SECS. The red bars of DMSEM have a fast rise, where the red bar of DMSEM
is higher than that of SECS at the speed range [1, 5] and the red bar of DMSEM is higher
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than that of SECS at the speed range [5, 10]. The red bars of DMSEM are lower than those
of SECS from the speed range [15, 20] to [25, 30].
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Figure 5. Average data transmission delay against simulation time.
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Figure 6. Average data transmission delay against various speed range of nodes.

GSVD divides the urban area into multiple coded grids and makes use of the grid
codes to express the geographical location of the mobile nodes. GSVD depends on the
code-based geographical location to calculate the geographical distance between the mobile
nodes. GSVD investigates the transmission delay and loss rate in the process of video data
delivery and constructs the estimation of video delivery quality in order to ensure video
delivery performance and user QoE. GSVD designs a strategy of video delivery to allocate
the optimal video supply node to calculate the delivery capacity of candidate supply nodes
using the calculated social and geographical distance and video delivery quality, which
adapts to the social-geographical dynamic to ensure video delivery performance and user
QoE. The dynamic mobility of nodes results in the dynamic variation of data transmission
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paths; the intensive video request leads to the fast consumption of network bandwidth
during a short time period. The dynamic mobility and the intensive request brings a
severely negative influence, so that the ADTD values of GSVD keep a fast increase with the
increasing levels of intensive request and speed range of nodes. However, the ADTD values
of GSVD are less than those of DMSEM and SECS. DMSEM investigates the encounter
duration and shared video length to define the encounter events in terms of measurement
of the variation rate of the geographical distance between mobile users and the encounter
duration time. DMSEM clusters the encounter events in terms of similarities between
them to extract the encounter patterns of the mobile nodes. DMSEM relies on the extracted
encounter patterns to recognize the encounter behaviors, which supports the high-efficiency
video sharing by pairing one-hop D2D communication parties before future encounters.
Although DMSEM depends on one-hop D2D communications between mobile nodes to
implement high-efficiency data delivery, the mobility of mobile nodes brings a severely
negative influence. Once video requesters or suppliers are out of D2D communication
range, the video requesters re-search suppliers in order to address the problem of data
transmission interruption. Moreover, the huge bandwidth consumption caused by the
intensive short-term video request and the signal attenuation caused by the increasing
geographical distance also promotes the risk of ADTD rise. SECS focuses on the economic
supply of upload bandwidth by clustering the users with common interests and employing
“pull” and “push” modes to spread video between the users. Although SECS considers
the sharing performance in order to efficiently implement the caching distribution and
replacement with low cost, the mobility of mobile nodes related to video data transmission
cannot be considered. Therefore, the ADTD values of SECS are influenced with high
probabilities, so that SECS has higher ADTD values than those of GSVD and DMSEM.

Packet loss rate (PLR): The ratio between the number of lost video data during a time
span t and the total number of sent video data during t is defined as the packet loss rate.
The PLR values during t = 10 s are shown in Figure 7.

As Figure 7 shows, the three solutions keep the fall trend with the slight fluctuation
during the whole simulation time. The blue curve of GSVD has a fast fall trend from t = 0 s
to t = 180 s and keeps a slight decrease with the slight fluctuation from t = 190 s to t = 500 s.
The PLR curve of GSVD are lower than those of DMSEM and SECS during the most of
simulation time. The red curve of DMSEM has a fast fall from t = 0 s to t = 110 s and a slow
fall from t = 120 s to t = 350 s and keeps a stable trend from t = 360 s to t = 500 s. The orange
curve of SECS has a fast fall from t = 0 s to t = 160 s, experiences a transient stable levels
from t = 170 s to t = 230 s and keeps a slight decrease from t = 240 s to t = 500 s. The red
curve of SECS is higher than those of GSVD and DMSEM.

As Figure 8 shows, the bars corresponding to the three solutions maintain a rising
trend with various speed ranges for the nodes. The blue bars of GSVD have a stable rise
with an increasing speed of the nodes and are lower than those of DMSEM and SECS. The
red bars of DMSEM have a stable rise for the speed range of the nodes from [1, 5] to [20, 25]
and a fast increase at the speed range [25, 30]. The orange bars of SECS maintain a slow
increase for the speed range of the nodes from [1, 5] to [5, 10] and have a fast rise from [10,
15] to [25, 30]. The orange bars of SECS are higher than those of GSVD and DMSEM.
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Figure 7. Packet loss rate against the simulation time.
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Figure 8. Packet loss rate against various speed ranges of nodes.

GSVD makes use of the code-based geographical location to calculate the geographical
distance between the mobile nodes by partition of the coded grids to express the geograph-
ical location of mobile nodes. In order to reduce the negative influence levels of mobility,
GSVD investigates the transmission delay and data loss rate in the process of video data
delivery and estimates the video delivery quality. GSVD relies on the mobility-adapted
video delivery to achieve high performance of the video data delivery by allocation of
the optimal video supply node according to the estimation of delivery capacity. Once the
delivery performance of video data decreases, the video request nodes reselect the optimal
supply nodes. Therefore, the PLR values of GSVD is less than those of DMSEM and SECS.
DMSEM investigates the encounter events between the mobile nodes to find the nodes
that can share videos with one-hop D2D communications in the future. DMSEM clusters
encounter events that have a similar encounter duration and a variation of geographical
distance, which extracts the encounter patterns. By recognition of the encounter behaviors
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of mobile nodes according to encounter patterns, DMSEM beforehand pairing with one-
hop D2D communication parties is used to implement high-efficiency data delivery. The
one-hop D2D communications can promote delivery performance of video data and avoid
interference of path variation with multiple hops transmission. However, the mobility
of mobile nodes leads to the variation of geographical distance between mobile nodes.
Once the relationship of communication distance between mobile nodes changes from
one-hop to multiple hops or the signal attenuates because of the lengthening geographical
distance caused by mobility of mobile nodes, the risk of video data loss is greatly pro-
moted. Therefore, the PLR values of DMSEM are severely influenced by the mobility of
mobile nodes. SECS clusters the users with common interests and makes use of “pull” and
“push” modes to distribute videos. Except for the intragroup video sharing based on user
clustering, SECS considers economically caching distribution and management based on
sharing performance awareness. However, the mobility of mobile nodes related to video
data transmission cannot be considered, so that the delivery performance of video data is
severely influenced by the mobility of mobile nodes and network congestion caused by
intensive request. Therefore, the PLR values of SECS are higher than those of GSVD and
DMSEM.

Average freeze time (AFT): The interruption interval time in the process of video
playback of users is defined as the freeze time. The average freeze time is the ratio between
the total sum of freeze time and the number of freeze during a time span t. The AFT values
using t = 10 s are shown in Figure 9.
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Figure 9. Average freeze time against simulation time.

As Figure 9 shows, the three solutions maintain a fall trend after a fast rise with a
slight fluctuation during the whole simulation time. The blue curve of GSVD has a fast rise
from t = 0 s to t = 130 s and experiences a stable stage from t = 140 s to t = 190 s. The AFT
values of GSVD also quickly fall from t = 200 s to t = 250 s and keep a fall with the high
amplitude of fluctuation from t = 260 s to t = 500 s. The blue curve of GSVD is lower than
those of DMSEM and SECS at most of the simulation time. The red curve of DMSEM has a
fast rise from t = 0 s to t = 170 s and experiences a fall process from t = 270 s to t = 500 s
after a stable stage from t = 180 s to t = 260 s. The orange curve of SECS has a fast fall from
t = 230 s to t = 500 s after a fast rise from t = 230 s to t = 500 s. The AFT values of SECS are
larger than those of GSVD and DMSEM.

As Figure 10 shows, the bars corresponding to the three solutions all have a rising
trend with variation of the speed range of the nodes. The blue bars of GSVD have a slight
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increase in the speed range of the nodes from [1, 5] to [5, 10] and have a fast rise from [10,
15] to [25, 30]. The AFT values of DMSEM have a slight increase in the speed range of the
nodes from [1, 5] to [15, 20] and have a fast rise from [20, 25] to [25, 30]. The orange bars of
SECS also have a rise trend similar to those of DMSEM and are higher than those of GSVD
and DMSEM.
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Figure 10. Average freeze time against the various speed ranges of the nodes.

Loss of video data and variation of the transmission delay are the main reasons of
video freeze in the process of stream transmission. In order to reduce the risk of data loss
and variation levels of delay, GSVD measures the video delivery quality by estimation
of the transmission delay and data loss rate in the process of video data delivery. GSVD
further makes use of the estimation of video delivery quality to allocate the optimal video
supply nodes for the video request nodes and support the reselection supply nodes when
the performance of data transmission decreases. The mobility-adapted video delivery can
achieve a high performance of video data with a low delay and PLR. Therefore, the AFT
values of GSVD are less than those of DMSEM and SECS. However, the fast movement
of mobile nodes increases the variation levels of geographical location, which leads to a
fast change of the transmission paths and bandwidth. The increasing movement speed
brings a severely negative influence, so that the AFT values of GSVD rise quickly with
the increasing speed of the mobile nodes. Moreover, the fast bandwidth consumption
caused by the intensive request results in network congestion, which leads to an increase
of PLR and transmission delay. DMSEM depends on the extracted encounter patterns to
predict the encounter between the mobile nodes and pair D2D communication parties with
one-hop geographical distance, which supports high-efficiency video data delivery. In
order to ensure that the encounter duration meets the demand of video data transmission,
DMSEM clusters the encounter events that have a similar encounter duration and variation
of geographical distance. The one-hop D2D communications can promote the transmission
efficiency of video data. The long-term one-hop D2D communication path also avoids
interference of the path variation with multiple hops transmission. However, the fast
movement of mobile nodes leads to the fragile one-hop D2D communication relationship.
With the fast rise in movement speed, the fast change of geographical location increases the
risk of disconnection of one-hop D2D communications. Once the geographical distance
of D2D communication parties changes from one hop to multiple hops, the receivers of
the video data need to re-search the new video suppliers, which prolongs the freeze time.
The limited area and fast speed can promote the probabilities of the encounter of mobile
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nodes, so that DMSEM has a better performance of AFT. SECS focuses on the economic
caching distribution and replacement to meet the increasing demand of upload bandwidth
and support the video sharing via “pull” and “push” modes. The intensive request does
not bring the severely negative influence for the AFT of SECS, which has a better AFT
than those of GSVD. When the large number of nodes take part into the video sharing,
the fast movement of mobile nodes increases the risk of data loss and delay jitter. SECS
does not consider the mobility of mobile nodes, so that the effective solutions for the
performance of video data transmission caused by dynamic movement of mobile nodes
cannot be formulated. The mobility of mobile nodes leads to high loss of video data and
high variation levels of transmission delay, so that the AFT values of SECS increase quickly
with the increasing movement speed. Therefore, the AFT values of SECS are higher than
those of GSVD and DMSEM.

Peak signal-to-noise ratio (PSNR): The peak signal-to-noise ratio (PSNR) is used to
denote the video quality and is measured in decibels (dB) [43]. The value of PSNR is cal-
culated according to the equation PSNR = 20 · log10(

MAX_Bit√
(EXP_Thr−CRT_Thr)2

). EXP_Thr and

CRT_Thr are the expected and real throughput, respectively. MAX_Bit is the maximum
value of transmission rate.

As Figure 11 shows, the three solutions have a fall trend with the increasing speed
of thenodes. The blue bars of GSVD are higher than those of DMSEM and SECS and the
decrement of PSNR values of GSVD is lower than those of DMSEM and SECS. The red bars
of DMSEM have a slight fall in the speed range of the nodes from [1, 5] to [5, 10], a fast
decrease from [5, 10] to [15, 20], and maintain the stable fall from [20, 25] to [25, 30]. The
orange bars of SECS maintain the fast fall in the speed range of the nodes from [1, 5] to [15,
20] and have a stable fall from [20, 25] to [25, 30]. The PSNR bars of SECS are lower than
those of GSVD and DMSEM.
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Figure 11. PSNR against various speed ranges of the nodes.

The values of PSNR are related with PLR due to the negative influence for the real
throughput. GSVD depends on the mobility-adapted video delivery based on video
delivery quality with the consideration of transmission delay and data loss rate to ensure
the transmission performance of video data, which effectively reduces the levels and jitter
of transmission delay and data loss rate. The PSNR values of GSVD are larger than those of
DMSEM and SECS. DMSEM predicts the encounter between mobile nodes and pairs D2D
communication parties with one-hop geographical distance by making use of the extracted
encounter patterns, which obtains a high performance of video data transmission. DMSEM
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clusters encounter events that have a similar encounter duration to generate the encounter
patterns, which effectively reduces the negative influence of variation of geographical
distance for the delivery performance of videos. Therefore, DMSEM also obtain low-level
PLR. SECS does not consider the mobility of mobile nodes, so that the transmission of
video data is negatively influenced by the variation of transmission paths. The PLR values
of SECS are higher than those of GSVD and DMSEM. Therefore, the PSNR values of SECS
are less than those of GSVD and DMSEM.

6. Conclusions

In this paper, we propose a novel geo-social-aware video edge delivery strategy based
on modeling of the social-geographical dynamic in an urban area (GSVD). GSVD integrates
social closeness, geographical distance, and video delivery quality to synthetically esti-
mate the service capacity of video providers to guarantee the video delivery performance
and user QoE. The measurement of social closeness between mobile users includes the
interactive and basic social relationships. The frequency of sharing behaviors and social
communication efficiency between users are used to estimate an interactive social rela-
tionship. The number of common one-hop social neighbors and the efficiency of social
sub-network consisting of one-hop social neighbors of users are used to estimate basic
social relationships. GSVD divides the urban area into multiple coded grids to express the
geographical location of mobile users and calculate the geographical distance between mo-
bile users. GSVD considers user QoE by estimation of the video delivery quality using two
parameters: transmission delay and data loss rate. A strategy of video delivery is designed,
which adapts to a social-geographical dynamic to ensure video delivery performance and
user QoE. Simulation results show how GSVD achieves much better performance results in
comparison with other state of the art solutions.
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