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Abstract: Gait is commonly defined as the movement pattern of the limbs over a hard substrate, and it
serves as a source of identification information for various computer-vision and image-understanding
techniques. A variety of parameters, such as human clothing, angle shift, walking style, occlusion,
and so on, have a significant impact on gait-recognition systems, making the scene quite complex to
handle. In this article, we propose a system that effectively handles problems associated with viewing
angle shifts and walking styles in a real-time environment. The following steps are included in the
proposed novel framework: (a) real-time video capture, (b) feature extraction using transfer learning
on the ResNet101 deep model, and (c) feature selection using the proposed kurtosis-controlled
entropy (KcE) approach, followed by a correlation-based feature fusion step. The most discriminant
features are then classified using the most advanced machine learning classifiers. The simulation
process is fed by the CASIA B dataset as well as a real-time captured dataset. On selected datasets,
the accuracy is 95.26% and 96.60%, respectively. When compared to several known techniques, the
results show that our proposed framework outperforms them all.

Keywords: gait recognition; deep learning; feature selection; classification; video understanding

1. Introduction

Human gait recognition (HGR) [1] is a biometric application used to solve human
recognition’s behavioral characteristics from a distance. A few other biometrics, such as
handwriting, face [2], iris [3], ear [4], electroencephalography (EEG) [5], etc., are also useful
for identifying an individual in a defined vicinity [6]. Gait recognition is critical in security
systems. In this modern technological era, we require an innovative and up-to-date bio-
metric application; thus, gait is an ideal approach for identifying individuals. The primary
advantage of gait recognition over other biometric techniques is that it produces desir-
able results while avoiding identification from low-resolution videos [7]. Each individual
has a few unique characteristics, such as walking style, speed, clothes variation, carrying
conditions, and variation in angles [8].

Individual body gestures or walking styles are used to detect human gait features
because each subject has a unique walking style. Each subject’s walking style varies
depending on the situation and the type of clothing he is wearing [9]. Additionally, when
an individual holds a bag, the features are changed [10]. Gait recognition is divided into
two approaches: model-based and model-free, also known as the holistic model [11]. The
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model-based method requires extravagant computing costs. However, in the free-model-
based technique, we can detect suspicious activity through preprocessing and segmentation
techniques [12]. The major part of the process is to detect the same person in a different
environment because a person’s body language varies in different situations (for example,
carrying a bag and moving fast) [13].

Many gait-recognition techniques are presented in the literature using machine learn-
ing (ML) [14,15]. ML is an important research area; it is utilized in several applications, such
as human action recognition [16–18], image processing [19,20], and recently, COVID-19
diagnostics [21]. A simple gait-recognition method involves a few essential steps, such as
preprocessing original video frames, segmenting the region of interest (ROI), extracting
features from ROI, and classifying extracted features using classification algorithms [22].
Researchers use thresholding techniques to segment the ROI after enhancing the contrast
of video sequences in the preprocessing step. This step is critical in traditional approaches
because the features are only extracted from these segmented regions. This procedure,
however, is complicated and unauthentic.

Deep learning has had a lot of success with human gait recognition in recent years.
The convolutional neural network (CNN) is a type of deep learning model that is used for
several processes, such as gait recognition [23], action recognition [24], medical imaging [25],
and others [26,27]. A simple CNN model consists of a few important layers, such as
convolutional, pooling, batch normalization, ReLu, GAP, fully connected, and classification
layers [28,29]. Figure 1 depicts a simple architecture. A group of filters is adapted in the
convolutional layer to extract some important features of an image, such as edges and
shape. The non-linear conversion is carried out by the ReLu layer, also known as the
activation layer. The batch-normalization layer minimizes the number of training epochs,
whereas the pooling layers solve the overflow problem. The fully connected layer extracts
the image’s deep features, also known as high-level features, and classifies them in the final
step using the softmax function [30,31].
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Figure 1. A simple CNN architecture for gait recognition.

Our major contributions in this work are:

• A database captured in the real-time outdoor environment using more than 50 subjects.
The captured videos include a high rate of noise and background complexity.

• Refinement of the contrast of extracted video frames using the 3D box filtering ap-
proach and then fine-tuning of the ResNet101 model. The transfer-learning-based
model is trained on real-time captured video frames and extracted features.

• A kurtosis-based heuristic approach is proposed to select the best features and fuse
them in one vector using the correlation approach.

• Classification using multiclass one against all-SVM (OaA-SVM) and comparison of
the performance of the proposed method on different feature sets.
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This paper is organized as follows: previous techniques are discussed in Section 2.
Section 3 describes the proposed method, such as frame refinement, deep learning, feature
selection, and classification. Results of the proposed technique are discussed in Section 4.
Finally, the conclusion and future directions are presented in Section 5.

2. Related Work

There are several methods for HGR using deep learning [32]. The authors focused
on deep-learning-based methods in these methods, but the majority of them focused on
selecting important features and feature fusion. The experimental process used several
gait datasets, such as CASIA A, CASIA B, and CASIA C [33]. In this work, our focus is on
the real-time recorded dataset and CASIA B datasets. CASIA B is a famous dataset and is
mostly utilized for gait recognition.

Wang et al. [34] presented a novel gait-recognition method using a convolutional
LSTM approach named Conv-LSTM. They performed a few steps to complete the gait-
recognition process. At the start, they presented GEI frame by frame and then expanded its
volume to relax the constraint of the gait cycle. Later on, they performed an experiment to
analyze the cross-covariance of one subject. After that, they design a Conv-LSTM model
for final gait recognition. The experiments were performed on the CASIA B dataset and
OU-ISIR datasets. On the CASIA B dataset, they achieved an accuracy of 93%, and 95% on
OU-ISIR, respectively.

Arshad et al. [6] presented a new approach for HGR. In this approach, two deep neural
networks were used with the FEcS selection method. Two pre-trained models, VGG19 and
AlexNet, were used for feature extraction. The extracted features were refined in the later
step using entropy and skewness vectors. Four datasets were used for the experimental
process, CASIA A, CASIA B, CASIA C, and AVAMVG. On these datasets, they achieved
the accuracy of 99.8%, 99.7%, 93.3%, and 92.2%, respectively.

Mehmood et al. [22] presented an automated deep-learning-based system for HGR
under multiple angles. Four key steps were performed, preprocessing, feature extraction,
feature selection, and classification. They extracted deep-learning features and applied the
firefly algorithm for feature optimization. The experiments were performed on a widely
available CASIA B dataset and achieved notable accuracy.

Anusha et al. [35] presented a technique for HGR based on multiple features. They ex-
tracted low-level features through spatial, texture, and gradient information. Five databases
were used for the experimental process, CASIA A, CASIA B, OU-ISIR D, CMU MoBo, and
KTH video datasets. These all datasets were tested on different angles and achieved
improved performance.

Sharif et al. [14] presented a method for HGR based on accurate ROI segmentation and
multilevel features fusion. Several clothing and carrying conditions were considered for the
experimental process and achieved an accuracy of 98.6%, 93.5%, and 97.3%, respectively. A
PoseGait model was presented by Liao et al. [13] for HGR. They considered the problem
of drastic variations of individuals. The 3D models were used for capturing data from
different angles. The 3D image was defined as 3D coordinates of the human body joints.

Wu et al. [36] presented a graph-based approach for multiview HGR. The Spiderweb-
graph-based approach was applied to capture the data in a single view and then connect to
the other view of gait data concurrently. Memory and capsule modules were used for the
trajectory view of each gait as well as STF extraction. The experiments were performed
on three challenging gait datasets, SDUgait, OU-MVLP, and CASIA B, and achieved an
accuracy of 98.54%, 96.91%, and 98.77%, respectively. Arshad et al. [37] focused on the
feature-selection approach to improve the performance of HGR. They used the Bayesian
model and quartile-deviation approaches for enhanced feature vectors.

In conclusion, the previous studies focused primarily on the selection of the most
relevant features. They used CNN to extract features and then combined the results with
data from a few other channels. They did not, however, focus on real-time gait recognition
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due to the complexity of the system design. In this paper, we focus on real-time gait
recognition in an outdoor setting.

3. Proposed Methodology

The proposed method for real-time human gait recognition is presented in this section
with detailed mathematical modeling and visual results. The following steps are involved
in the proposed framework: video preprocessing, deep learning features extraction using
transfer learning, kurtosis-based features selection, correlation-based features fusion, and
finally, one-against-all-SVM (OaA-SVM)-based classification. The main architecture dia-
gram is shown in Figure 2. The proposed method is executed in a sequence, and at the
end of the execution, it returns a labeled output and numerical results in the form of recall
rate, precision, accuracy, etc. The details of each step are given below in the following
subsections.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 23 
 

 

were used for the trajectory view of each gait as well as STF extraction. The experiments 

were performed on three challenging gait datasets, SDUgait, OU-MVLP, and CASIA B, 

and achieved an accuracy of 98.54%, 96.91%, and 98.77%, respectively. Arshad et al. [37] 

focused on the feature-selection approach to improve the performance of HGR. They 

used the Bayesian model and quartile-deviation approaches for enhanced feature 

vectors.  

In conclusion, the previous studies focused primarily on the selection of the most 

relevant features. They used CNN to extract features and then combined the results with 

data from a few other channels. They did not, however, focus on real-time gait 

recognition due to the complexity of the system design. In this paper, we focus on 

real-time gait recognition in an outdoor setting. 

3. Proposed Methodology 

The proposed method for real-time human gait recognition is presented in this 

section with detailed mathematical modeling and visual results. The following steps are 

involved in the proposed framework: video preprocessing, deep learning features 

extraction using transfer learning, kurtosis-based features selection, correlation-based 

features fusion, and finally, one-against-all-SVM (OaA-SVM)-based classification. The 

main architecture diagram is shown in Figure 2. The proposed method is executed in a 

sequence, and at the end of the execution, it returns a labeled output and numerical 

results in the form of recall rate, precision, accuracy, etc. The details of each step are given 

below in the following subsections.  

 

Figure 2. Proposed architecture of real-time human gait recognition using deep learning. 

3.1. Videos Preprocessing 

One of the most prominent parts of digital image processing is to enhance the 

quality of visual information of an image. This technique helps to remove the noise and 

messy information from the image and make it more readable [38]. In the area of machine 

learning, the algorithm requires better information about an object to learn a good model. 

In this work, we initially process with videos, and in a later stage, convert them into 

frames and label them according to the actual class. Then, we resize images into a 

Figure 2. Proposed architecture of real-time human gait recognition using deep learning.

3.1. Videos Preprocessing

One of the most prominent parts of digital image processing is to enhance the quality
of visual information of an image. This technique helps to remove the noise and messy
information from the image and make it more readable [38]. In the area of machine learning,
the algorithm requires better information about an object to learn a good model. In this
work, we initially process with videos, and in a later stage, convert them into frames
and label them according to the actual class. Then, we resize images into a dimension of
R×C× ch, where R denotes row pixels, C denotes column pixels, and ch represent number
of channels, respectively. We set R = C = 224 and ch = 3.

The real-time videos are recorded into four different angles, and each angle consists of
two gait classes—walk while carrying a bag and normal walk without any bag. The four
angles are 90◦, 180◦, 270◦, and 360◦. The original frames also captured some noise during
the video recording. For this purpose, we used the 3D box filter, which is a perfect choice.
The detail of 3D box filtering is given in Algorithm 1.
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Algorithm 1: Data Augmentation Process.

Input: Original video frame ← φ(r, c) .
Output: Improved video frame ← φ̃(r, c) .
Step 1: Load all video frames ← ∆(φ) .
for: 1 : to ← N f rames

Step 2: Calculate filter size.

� F̃abc̃h = ∑4
r=1 ∑4

c=1 ∑3
c̃h=1

(
Frc c̃h

)
Step 3: Perform padding.

� Padding =
F̃abc̃h−1

2
� where horizontal padding is performed.

Step 4: Update padding window.

� Upd(Padding) = ∑ (Padding)
t

� where t = 2

Step 5: Perform normalization.

� Normalization = 1
∏ (Upd(Padding))

� ∏ ← product of padding image.

end for

The visual effects are also shown in the main flow, Figure 2. Here, the frames are given
before and after the filter processing. The improved frames are utilized in the next step for
model learning.

3.2. Convolutional Neural Network

Deep learning emerged recently in the field of computer vision and has since spread to
other fields. Convolutional Neural Network (CNN) is a deep learning approach that won a
competition for image classification using ImageNet in 2012 [39]. In deep learning, images
are directly passed in the model without segmentation; therefore, it is called image-based
ML. A simple CNN consists of convolutional layer, ReLu layer, dense layer, pooling layer,
and a softmax layer. Visually, simple architecture is shown in Figure 1. In a CNN, the input
image is passed to the network in a fixed size. A convolutional operation is performed in
the convolutional layer and in the output weights, and bias vectors are generated. Back-
propagation is used in the CNN for training the weights. Mathematically, convolutional
operation is formulated as follows:

ŶC =
C

∑
k=1

ψk′k ∗ xk, ∀C′, (1)

where ŶC is convolutional layer output, C denotes the convolutional kernels, x is composed
of channels ch, ∗ denotes the convolutional operation, ψ represents convolutional kernel
and is defined by ψ ∈ Rk×k×C. To increase the nonlinearity of a network, ReLu layer is
applied and defined as follows:

Ŷ̃r = max(0, x), (2)

Another layer named maxpooling is employed to reduce the dimension of extracted
features. This layer is formulated as follows:

Ŷmax(i, j, c) = max
u,v∈N

x + u, j + v, c, ∀i, j, c, (3)

where Ŷmax denotes the max pooling operation, x denotes the input weight matrix, and
x ∈ ŶC, u, j, and v are static parameters. The filter of this layer is normally fixed as 3× 3,
denoted by u, and stride is 2, denoted by v. An important layer in a CNN is fully connected
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layer. In this layer, all neurons are connected to each other, and resultant output is obtained
in a 1D matrix. Finally, the extracted features are classified in the softmax layer.

3.3. Deep Features Extraction

Feature extraction is the process of reducing original images into small number of
important information groups. These groups are called features. The features have few
important characteristics such as color, shape, texture, and location of an object. In this
proposed technique, we utilized a pre-trained deep learning network named ResNet101.
Originally, this model consists of total of 101 layers and was trained on ImageNet dataset.
A visual flow is shown in Figure 3. Note that the filter size of first convolutional layer is
7× 7, stride is 2, and number of channels is 64. In the next, a maxpooling layer is applied
for filter size 3× 3, and stride is 2. Five residual layers are included in this network, and
lastly, global average pool layer and FC layer are added following a softmax layer.
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Training Model using Transfer Learning: In this work, we use ResNet101 pre-trained
CNN model for features extraction [40]. We trained this model using transfer learning, as
visually shown in Figure 4 [41]. Note that parameters of original ResNet101 pre-trained
model are transferred and trained on the real-time captured gait database. We remove
the last layer from modified ResNet101 and extract features. The features are extracted
from global average pool (GAP) and FC layers. Mathematically, TL can define as follows:
given a source domain SD and learning task Lt, a target domain TD̃ and learning task Lt̃, TL
improves the learning of a target predictive function Ft(.) in the TD̃ using the knowledge in
SD and Lt, where SD 6= TD̃ or Lt 6= Lt̃. After this process, we obtain two feature vectors
from GAP and FC layers of dimensions N × 2048 and N × 1000, respectively.

3.4. Kurtosis-Controlled, Entropy-Based Feature Selection

Feature selection (FS) is the process of selecting the most prominent features from
the original feature vector. In the FS, the value of features is not updated, and features
are selected in the original form [42]. The main motivation behind this step is to obtain
the most optimal information of an image and discard the redundant and irrelevant data.
In this work, we proposed a new feature selection technique named kurtosis-controlled
OaA-SVM. The working of this technique is given in Algorithms 2 and 3 for both vectors.

Description: Consider that we have two extracted deep feature vectors denoted by V1
and V2, where the dimension of each vector is N × 2048 and N × 1000, respectively. In the
first step, features are initialized and processed in the system until all features are passed.
In the next step, kurtosis is computed for all features in the pair, where window size and
stride were 2× 2 and 1. A newly generated vector is obtained, which is evaluated in the
next step by fitness function. In the fitness function, we select one vs. all SVM classifier
that classifies the feature and, in the output, returns an error rate.

This process continues until the error rate is minimized and stops when error increases
for the next iteration. By following this, we obtain two feature vectors in the output of
dimension N × 600, as discussed in Algorithms 1 and 2.
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Finally, we fused both selected vectors by employing correlation-based approach. In
this approach, features of both vectors are paired as i(1) and j(1). After that, the correlation
coefficient is computed, and higher-correlated feature pairs are added to the fused vector.
Mathematically, it is defined as follows:

rv1v2 =
∑
(
v1i − v1

)(
v2j − v2

)√(
∑
(
v1i − v1

)2
∑
(
v2j − v2

)2
) , (4)

where v1 ∈ V1, v2 ∈ V2, rv1v2 is a correlation coefficient among two features v1i and v2j,
v1i is ith features of V1, and v2j is jth feature of V2, respectively. The notation v1 is mean
value of feature vector V1 and v2 is mean value of feature vector V2.

In this approach, we choose those features for fused vector which have correlation
value near to 1 or greater than 0. This means we only selected positively correlated features
for final fused vector. This procedure is performed for all features in both vectors and in
the output; we obtained a resultant features vector of length N × fk, where fk denotes the
length of fused feature vector.

Finally, the features in the fused vector are classified using OaA-SVM.
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Algorithm 2: Features selection for deep learning model 1.

Input: Feature vector V1 of dimension N × 2048.
Output: Selected feature Vs of dimension N × 600.
Step 1: Features initialization.
for i← 1 to N // N = 2048

Step 2: Compute kurtosis of each feature pair.

- Kurtosis =
∑N

i=1(Vi−V)4

N[
∑N

i=1(Vi−V)2

N

]2 // Vi is input features, V is mean feature value, and N denotes

the total features.
- Window size is 2× 2 // σ is a standard deviation.
- Stride is 1.

Step 3: Newly generated kurtosis vector Ṽ // Ṽ is kurtosis vector.
Step 4: Perform fitness function.

- OaA-SVM classifier.
- Evaluate features.
- Compute error rate.

Step 5: Repeat steps 2, 3, and 4 until error rate is minimized.
end for

Algorithm 3: Features selection for deep learning model 2.

Input: Feature vector V2 of dimension N × 1000.
Output: Selected feature Vs of dimension N × 600.
Step 1: Features initialization.
for i← 1 to N // N = 1000

Step 2: Compute kurtosis of each feature pair.

- Kurtosis =
∑N

i=1(Vi−V)4

N[
∑N

i=1(Vi−V)2

N

]2 // Vi is input features, V is mean feature value, and N denotes

the total features.
- Window size is 2× 2.
- Stride is 1.

Step 3: Newly generated kurtosis vector Ṽ // Ṽ = random vector size.
Step 4: Perform fitness function.

- OaA-SVM classifier.
- Evaluate features.
- Compute error rate.

Step 5: Repeat steps 2, 3, and 4 until error rate is minimized.
end for

3.5. Recognition

The one against all SVM (OaA-SVM) is utilized in this work for features classifica-
tion [43]. The OaA-SVM approach is usually to determine the separation of one gait action
with other listed gait action classes. Mostly, this classification is used for unknown patterns
to generate the maximum results.

Here, we have N-class problem, and D represents the training samples: {fk1, l1}, . . . ,
{fkD, lD}. Here, fki ∈ to Rb represents b-dimensional feature vector, where li ∈ to {1, 2, . . . , B}
is the corresponding class label. This approach usually constructs the binary SVM classifiers.
The ith represent all the positive labels of training class and the other negative labels. Then,
ith SVM solves the problems with the following yield-decision function:

fi(s) = hT
i φ(fki) + βi, (5)
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Here, fi(s) is the yield-decision function, hT
i represents weight values, fk1 denotes

input features, and βi denotes the bias values. The minimization function is applied on
weight values as:

Minimize : M
(

h, θi
j

)
=

1
2
‖hi‖2+C

N

∑
l=1

θi
j, (6)

Subject to : lj(hT
i φ) (fki) + βi ≥ 1− θi

j, θi
j ≥ O, (7)

where M is a minimization parameter, C denotes the output class, θi
j is between-class

distance, lj = 1 if lj = i, and lj = −1 otherwise. A sample l is classified as in class i∗.

i∗ =arg max
i=1,...,Bfki =

arg max
i=1,...,B

(
hTφ

)
(fki) + βi), (8)

Resultant visual results are also shown in Figure 5, in which the classifier returned a
labeled output such as walking with bag and normal walk. The numerical results are also
computed and described in Section 4.
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Figure 5. Proposed system predicted labeling results.

4. Results
4.1. Datasets

The results of the proposed automated system for gait recognition are presented in
this section. The proposed framework is tested on a real-time captured dataset and CASIA
B dataset. In the real-time dataset, a total of 50 students are included, and for each student,
we recorded 8 videos in 4 angles, 90◦, 180◦, 270◦, and 360◦. For each angle, two videos
are recorded—one while wearing a bag and one without wearing a bag. A few samples
are shown in Figure 6. For the CASIA B dataset [44], we only consider a 90◦ angle for
evaluation results. In this dataset, three different covariant factors are included, normal
walking, walking with a bag, and walking while wearing a coat, as shown in Figure 7.
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4.2. Experimental Setup

We utilized 70% video frames for training the proposed framework, and the remaining
30% were utilized for the testing. In the training process, a group of hyper parameters
was employed, where the learning rate was 0.001, epochs was 200, mini batch size was 64,
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the optimization algorithm was Adam, the activation function was sigmoid, the dropout
factor was 0.5, momentum was 0.7, the loss function was cross entropy, and the learning
rate schedule was Piecewise. Several classifiers were utilized for validation, such as SVM,
K-Nearest Neighbor, decision trees, and Naïve Bayes. The following parameters were used
for the analysis of selected classifiers: precision, recall, F1 Score, AUC, and classification
time. All results were computed using K-Fold validation, whereas the value of K was 10.
The simulations of this work were conducted in MATLAB2020a using a dedicated personal
desktop computer with 256 GB SSD, 16 GB RAM, and 16 GB memory graphics card.

4.3. Real-Time Dataset Results

In this section, we present our proposed method’s results on real-time video sequences.
The results are computed in three different scenarios—normal walking results for all
selected angles, walking while carrying a bag for all three angles, and finally, classification
of normal walking and walking while carrying a bag. Table 1 shows the results of a normal
walk for the four selected angles of 90◦, 180◦, 270◦, and 360◦, respectively. The OaA-SVM
classifier achieved superior performance compared to other listed classification algorithms.
The achieved accuracy by OaA-SVM is 95.75%, whereas the precision rate is 95.25%, F1-
Score is 95.98%, AUC is 1.00, and FPR is 0.0125, respectively. The Medium KNN also gives
better performance and achieves an accuracy of 95%. The recall and precision rates are
95% and 95.50%, respectively. The worst accuracy noted for this experiment is 48.75% on
the Kernel Naïve Bayes classifier. The change in accuracy among all classifiers shows the
authenticity of this work. The performance of OaA-SVM can be further verified in Figure 8.
The prediction accuracy for the 270◦ angle is maximum, whereas the correct prediction
performance for 360◦ is 86%. In the latter, the recognition time is also tabulated in Table 1
and shows that the Fine Tree classifier executed much faster compared to the other listed
classifiers. The execution time of Fine Tree is 19.465 (s). The variation in execution time is
also shown in Figure 9.

Table 1. Proposed gait-recognition results using real-time captured dataset for normal walk on
selected angles.

Classifiers
Performance Measures

Recall (%) Precision (%) FI Score (%) AUC FPR Accuracy (%) Time (s)

OaA-SVM 95.75 96.25 95.98 1.00 0.0125 96.0 204.050
Cubic KNN 94.25 94.75 94.48 1.00 0.0175 94.5 366.480

Medium KNN 95.00 95.50 95.24 1.00 0.0175 94.9 175.870
Bagged Trees 93.50 93.75 93.62 0.99 0.0200 93.5 345.750

CG-SVM 90.25 90.50 90.36 0.99 0.0325 90.1 189.300
Fine Tree 86.75 86.50 86.62 0.92 0.0425 86.7 19.565

Medium Tree 85.50 85.75 85.62 0.92 0.0475 85.4 39.907
Naïve Bayes 84.50 87.25 85.84 0.90 0.0500 84.3 34.035
Coarse KNN 61.50 72.50 66.54 0.92 0.1275 61.5 189.760

FG-SVM 61.00 84.75 70.92 0.91 0.1300 60.9 132.050
Kernel Bayes 48.75 63.50 50.54 0.73 0.1725 48.5 582.710

Table 2 shows results of walking while carrying a bag at 90◦, 180◦, 270◦, and 360◦

angles, respectively. The OaA-SVM classifier attained better accuracy compared to other
classification algorithms. For OaA-SVM, the accuracy is 96.5%, whereas the precision rate
is 97%, F1-Score is 96.7%, AUC is 1.00, and FPR is 0.01, respectively. The KNN series
classifiers, such as Cubic KNN and Medium KNN, give the second-best accuracy of 95.1%.
Naïve Bayes classifier achieves an accuracy of 83.7%. The recall and precision rates of the
Naïve Bayes classifier are 83.7% and 86.7%, respectively. The Kernel Naïve Bayes, FG-SVM,
and Coarse KNN classifiers do not perform well. They achieve accuracies of 48.6%, 61.3%,
and 63%, respectively.
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Table 2. Proposed gait-recognition results using real-time captured dataset for walking while carrying
a bag at selected angles.

Classifiers
Performance Measures

Recall (%) Precision (%) FI Score (%) AUC FPR Accuracy (%) Time (s)

OaA-SVM 96.5 97.0 96.7 1.00 0.01 96.6 189.850
Cubic KNN 95.0 95.2 95.1 1.00 0.01 95.1 274.850

Medium KNN 95.0 95.2 95.1 1.00 0.01 95.1 9.219
Bagged Trees 94.7 95.0 94.8 0.99 0.01 94.9 202.010

CG-SVM 90.5 91.0 90.7 0.99 0.03 90.5 137.480
Fine Tree 87.7 81.0 84.2 0.93 0.04 87.6 14.190

Medium Tree 86.7 87.0 86.8 0.93 0.04 86.8 13.590
Naïve Bayes 83.7 86.7 85.2 0.89 0.05 83.7 20.920
Coarse KNN 63.0 74.0 68.0 0.92 0.12 63.0 169.521

FG-SVM 61.0 84.7 70.9 0.91 0.13 61.3 27.030
Kernel Bayes 48.7 60.2 53.8 0.75 0.17 48.6 483.800

The performance of OaA-SVM can be further verified through Figure 10, which shows
that the prediction accuracy for the 270◦ angle is the maximum (100%), whereas correct
prediction performance for 360◦ is 89%. The execution time during the recognition process
is also tabulated in Table 2 and shows that the Medium Tree classifier executed much faster
compared to other listed classifiers. The execution time is also plotted in Figure 11, which
shows a huge variation due to the classifier’s complexity.
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Figure 11. Variation in computational time for selected classifiers of 4 selected angles on Real
time dataset.

Table 3 represents the classification results of a normal walk and walking while
carrying a bag. The purpose of this experiment is to analyze the performance of the
proposed algorithm for the binary class classification problem. Table 3 shows that the
OaA-SVM attained an accuracy of 96.4%. The other calculated measures, such as recall
rate, precision rate, f1-Score, AUC, and FPR values, are 96.5%, 96.5%, 96.5%, 1.00, and
0.03, respectively. Medium KNN gives the second-best classification performance of 96.1%,
whereas the recall and precision rates are 96% and 96%, respectively. The following
classifiers, Naïve Bayes, Coarse KNN, Kernel Naïve Bayes, and FG SVM, do not perform
well and achieve an accuracy of 67.8%, 79.3%, 735, and 79.6%, respectively. The confusion
matrix also provided and illustrated in Figure 12 shows that the correct prediction rate
of both classes is above 90%. In the latter, the execution time is also plotted for this
experiment and illustrated in Figure 13, which shows that the Fine Tree execution time is
better compared to other algorithms.

Table 3. Recognition results for all datasets with kurtosis function on 600 predictions on original
deep-feature vector extracted from ResNet 101.

Classifiers
Performance Measures

Recall (%) Precision (%) FI Score (%) AUC FPR Accuracy (%) Time (s)

OaA-SVM 96.5 96.5 96.5 1.00 0.03 96.4 129.830
Cubic KNN 95.0 96.0 95.7 1.00 0.04 95.6 278.980

Medium KNN 96.0 96.0 96.0 1.00 0.04 96.1 106.850
Bagged Trees 90.5 90.5 90.5 0.97 0.09 90.3 209.610

CG-SVM 82.0 82.5 82.2 0.91 0.18 82.2 102.260
Fine Tree 80.0 80.0 80.0 0.81 0.20 79.8 11.954

Medium Tree 76.0 76.5 76.2 0.80 0.24 76.3 30.888
Naïve Bayes 68.0 69.0 68.4 0.78 0.32 67.8 18.767
Coarse KNN 79.0 79.5 79.2 0.88 0.21 79.3 117.990

FG-SVM 79.5 85.5 82.3 0.98 0.41 79.6 74.026
Kernel Bayes 73.0 74.5 73.7 0.84 0.27 73.0 254.580
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Figure 13. Execution time of proposed method on real-time dataset (normal walking and walking
while carrying a bag).

4.4. CASIA B Dataset Results at a 90◦ Angle

CASIA B dataset results are presented in this subsection. For experimental results, we
only selected a 90◦ angle because most of the recent studies used this angle. Numerical
results are given in Table 4. The OaA-SVM gives better results among all other implemented
classifiers. The results are computed with different feature vectors, such as original global
average pool (GAP) layer features, fully connected layer features (FC), and the proposed
approach. For GAP-layer features, the achieved accuracy is 90.22%, and the recall rate is
90.10%, whereas the FC layer gives an accuracy of 88.64%. The proposed method gives
an accuracy of 95.26%, where the execution time is 176.4450 (s). Using Cubic KNN, the
attained accuracy is 93.60%, which is the second-best performance after the OaA-SVM
classifier. Table 5 presents the confusion matrix of the OaA-SVM classifier performance
using the proposed scheme. In this table, it is illustrated that the corrected prediction
accuracy of normal walking is 94%, walking while wearing a coat (W-Coat) is 95%, and
walking while carrying a bag is 97%. In addition, the computational time of all classifiers
is plotted in Figure 14, which shows that Medium KNN efficiency is better than all other
classifiers in terms of the computational cost.
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Table 4. Proposed recognition results on CASIA B dataset, where selected angle is 90◦.

Classifier
Features Measures

GAP FC Proposed Recall (%) Accuracy (%) Time (s)

OaA-SVM
3 90.10 90.22 242.4426

3 88.52 88.64 176.4450
3 95.10 95.26 114.2004

Cubic KNN
3 84.42 84.54 165.5994

3 83.60 83.98 111.2011
3 93.60 93.60 82.1460

Medium KNN
3 83.40 83.48 151.0014

3 84.80 84.76 104.1446
3 93.40 93.46 64.2914

Baggage Tree
3 85.10 85.16 256.1130

3 84.14 84.33 201.0148
3 87.50 87.45 117.1106

Naïve Bayes
3 71.10 71.04 171.2540

3 74.94 74.82 104.3360
3 79.30 79.30 76.3114

Table 5. Confusion matrix of OaA-SVM for CASIA B dataset.

Gait Name
Gait Name

Normal Walk W-Coat W-Bag

Normal Walk 94% 4% 2%
W-Coat 3% 95% 2%
W-Bag 1% 2% 97%
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4.5. Discussion

A detailed discussion on results and comparison is conducted in this section. As shown
in Figure 1, the proposed method has a few important steps, such as video preprocessing,
deep-learning feature extraction, feature selection through the kurtosis approach, the fusion
of selected features through the correlation approach, and finally, the OaA-SVM-based
feature classification. The proposed method is evaluated on two datasets. One is recorded
in the real-time environment, and the second is CASIA B. The real-time captured dataset
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results are given in Tables 1–3. In Table 1, results are presented for normal walking under
four different angles, whereas in Table 2, results are given for walking while carrying a bag.
The classification of the binary class problem is also conducted, and results are tabulated in
Table 3. The OaA-SVM outperformed in all three experiments and can be verified through
Table 1. Additionally, we used the CASIA B dataset for the validation of the proposed
technique. The results are listed in Table 4 and verified through Table 5.

We also performed experiments on different feature sets to confirm the authenticity
of the proposed heuristic-feature-selection approach. For this purpose, we select several
feature vectors, such as 300 features, 400 features, 500 features, 600 features, 700 features,
and a complete feature vector. Results are given in Table 6 for both datasets. This table
shows that the results of 600 features are much better compared to other feature sets. The
results increase initially, but after 600 features, accuracy is degraded by approximately 1%.
For all features, the accuracy difference is almost 4%. Based on this table, we can say that
the proposed technique achieves a significant performance on 600 features.

Table 6. Analysis of proposed feature-selection framework on numerous feature sets. *The OvA-SVM
is employed as a classifier for this table.

Dataset

Accuracy (%) on Feature Sets

300
Features

400
Features

500
Features

600
Features

700
Features

All
Features

Real-time (normal
walking) 93.70 94.24 95.35 96.00 95.70 93.04

Real-time (walking while
carrying a bag) 94.10 94.90 95.80 96.60 96.32 92.10

Real-time (normal
walking vs. walking
while carrying a bag)

92.90 93.72 95.30 96.40 96.14 93.50

CASIA B Dataset 92.96 93.40 93.85 95.26 95.10 92.64

The comparison of the proposed method is also listed in Table 7. In this table, we only
added those techniques in which the CASIA B dataset was used. For a real-time dataset,
the comparison with recent techniques is not fair. This table shows that the previous
best-reported accuracy on this dataset was 93.40% [6]. In this work, we have improved this
accuracy by almost 2% and reached 95.26%.

Table 7. Comparison with existing techniques for CASIA B dataset.

Reference Year Dataset Accuracy (%)

[45] 2015 CASIA B 86.30
[46] 2017 CASIA B 90.60
[37] 2019 CASIA B 87.7
[6] 2020 CASIA B 93.40

Proposed CASIA B 95.26
Proposed Real-time 96.60

Normally, researchers employ metaheuristic techniques, such as a genetic algorithm,
PSO, ACO, and BCO [47]. These techniques have consumed too much time during the
selection process. However, the proposed feature-selection approach is based on the single-
kurtosis value activation function and is executed fast compared to the GA, PSO, BCO,
Whale, and ACO on both the selected dataset, as shown by time plotted in Figures 15 and 16.
These figures show that the proposed feature-selection approach is more suitable for gait
recognition in terms of computational time than the metaheuristic techniques.
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A detailed analysis is also conducted through confidence intervals. For this purpose,
the proposed framework is executed 500 times for both datasets. For the real-time dataset,
we obtained three accuracy values—maximum (96.8%), minimum (95.3%), and average
(96.05%). Based on these values, the standard deviation and standard error mean (SEM)
are computed and obtain values of 0.75 and 0.5303. Similarly, for the CASIA B dataset, the
standard deviation and standard error mean value are 0.56 and 0.3959, respectively. Using
standard deviation and standard error mean values, the margin of error is computed, as
plotted in Figures 17 and 18. From these figures, it is shown that the proposed framework
accuracy is consistent after the number of selected iterations. Moreover, the performance of
the proposed framework (OvA-SVM) is also analyzed with a few other classifiers, such as
Softmax, ELM, and KELM, as illustrated in Figure 19. From this figure, it can be noted that
the proposed framework shows better performance.
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The reason for the selected hyper parameters is as follows. Normally, the researchers
employed gradient descent [48] as an optimization function, but due to the complex nature
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of the selected pre-trained model Resnet101 (residual blocks), the ADAM optimizer [49]
can work better. The initial learning rate is normally 0.010, but in this work, the selected
dataset dimension is high; therefore, the learning rate of 0.001 is suitable. Mini batch size
is always selected based on the machine (desktop computer), but we do not have enough
resources for the execution on a mini batch size of 128; therefore, we selected a value of
64. The maximum epochs are normally 70–100, but in this work, due to the higher number
of video frames, we obtained a better training accuracy after 150 epochs. A few training
results that were noted during the training process are given in Tables 8 and 9 below.

Table 8. Training accuracy on selected hyper parameters using real-time collected dataset.

Epochs Accuracy (%) Error (%) Time (min)

20 83.5 16.5 221.6784
40 87.9 12.1 375.7994
60 90.2 9.8 588.7834
80 92.6 5.4 792.5673

100 93.9 5.1 875.1247
150 96.8 1.2 988.0045
200 98.1 0.4 1105.5683

Table 9. Training accuracy on selected hyper parameters using CASIA B dataset.

Epochs Accuracy (%) Error (%) Time (min)

20 81.4 18.6 174.8957
40 84.6 15.4 292.0645
60 88.0 12 411.4756
80 90.2 9.8 581.8322

100 91.6 8.4 695.4570
150 94.3 5.7 808.5334
200 97.5 2.5 981.6873

5. Conclusions

Human gait recognition is an active research domain based on an important biometric
application. Through gait, the human walking style can be easily determined in the
video sequences. The major use of human gait recognition is in video surveillance, crime
prevention, and biometrics. In this work, a deep-learning-based method is presented
for human gait recognition in a real-time environment and for offline publicly available
datasets. Transfer learning is applied for feature extraction and then selects robust features
using a heuristic approach. The correlation formulation is applied for the best-selected
feature fusion. In the end, multiclass OaA-SVM is applied for the final classification. The
methodology is evaluated on a real-time captured database and CASIA B dataset, and it
achieves an accuracy of 96.60% and 95.26%, respectively.

We can conclude that the preprocessing step before the model’s learning reduces
the error rate. This step further shows strength in selecting the best features, but some
features are discarded, which are essential for classification. The kurtosis-controlled entropy
(KcE) is a new heuristic feature-selection technique that is executed in less time than the
metaheuristic techniques. Another new technique named correlation-formulation-based
fusion is used in this work for the best feature fusion. We compare the results of this method
to existing methods such as PCA and LDA, and our newly proposed selection technique
gives better results and has a shorter computational time for real-time video sequences.
Moreover, the fusion process, through correlation formulation, increased the information
of the human walking style that later helped the improved gait-recognition accuracy.

The drawback of this work is as follows: in the correlation-formulation-based feature
fusion step, the method added some redundant features that later increased the computa-
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tional time and reduced the recognition accuracy slightly. In the future, we shall improve
the fusion approach and increase the database by adding data from more subjects.
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