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Abstract: Encryption Protocols e.g., HTTPS is utilized to secure the traffic between servers and clients
for YouTube and other video streaming services, and to further secure the communication, VPNs are
used. However, these protocols are not sufficient to hide the identity of the videos from someone who
can sniff the network traffic. The present work explores the methodologies and features to identify the
videos in a VPN and non-VPN network traffic. To identify such videos, a side-channel attack using a
Sequential Convolution Neural Network is proposed. The results demonstrate that a sequence of
bytes per second from even one-minute sniffing of network traffic is sufficient to predict the video
with high accuracy. The accuracy is increased to 90% accuracy in the non-VPN, 66% accuracy in the
VPN, and 77% in the mixed VPN and non-VPN traffic, for models with two-minute sniffing.

Keywords: VPN traffic classification; YouTube video identification; side-channel attack; Sequential
Convolutional Neural Network—SCNN

1. Introduction

In the era of Industry 4.0 and more efficient Internet connectivity worldwide, video
streams are also increasing rapidly. Many statistics indicate this growth; for example, Cisco
mentions that 88% of internet traffic will be comprised of video streams by 2022 [1], Business
Fortune Insights (https://www.fortunebusinessinsights.com/video-streaming-market-10
3057, (accessed on 1 October 2021)) predicts a growth in the global video streaming market
size from USD 342.44 billion in 2019 to USD 849.93 billion in 2027. YouTube—Google’s
video streaming service—is among the most popular video streaming services, where,
in the USA alone, more than 80% of digital video viewers use YouTube for watching
online videos (https://www.emarketer.com/content/us-digital-video-2019 (accessed on
2 October 2021)). Further, a report from YouTube indicates an increase of 2.5× in online
watch time (https://pk.mashable.com/tech/5230/the-livestreaming-boom-isnt-slowing-
down-anytime-soon (accessed on 3 October 2021)).

With such popularity and the common access of video services by almost every-
one around the world, security concerns [2,3] are inevitable. For example, fast-paced
video streaming services has resulted in a fast spread of hate and misinformation in so-
cieties [4]. Various research studies and reports strongly suggest that YouTube acts as
a platform to radicalize people [5]. The investigation reports from a shooting incident
in a Christchurch Mosque also discusses the role of YouTube in promoting hate against
the community and radicalization of the shooter (https://www.theverge.com/2020/12/
8/22162779/christchurch-shooter-youtube-mosque-radicalized (accessed on 4 October
2021)). The viewing content can play an important role in identifying and profiling people,
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which can help the relevant organisation to track any unusual behaviour or people with
radicalized mindset or inclination.

Therefore, the need to identify the video with such content in any given network
traffic is crucial. Moreover, many private enterprises, in order to save the bandwidth of
their productive work, would require blocking unwanted videos on the network. For
example, many private enterprises would like to block access to political, pornographic,
and violence-related videos from their network. However, they would allow many other
videos for their business requirements.

Traditionally, video identification systems use filters based on IP packet headers,
content information, and ports to block the videos. With the popularity of content identifi-
cation in network traffic by security agencies and other middlemen, video streaming service
providers start encrypting the traffic due to privacy concerns. Currently, almost all the
traffic between websites and clients is protected by Secure Sockets Layer (SSL)/Transport
layer Security (TLS) encryption technology over the HTTPS protocol [6]. Therefore, the
traditional techniques including the Deep Packet Inspection (DPI) become ineffective in
identifying the individual videos in the network traffic. In addition, the use of Virtual
Private Networks (VPNs) by clients and criminals makes the job of security agencies more
difficult. As the traditional methods fail to identify individual videos in the network traffic,
there is a need to develop new methods that can detect the videos in encrypted network
traffic under VPN and non-VPN settings. This is the main problem addressed in this paper
to identify the videos in encrypted network traffic and to identify them in the smallest
possible time without breaking the encryption.

Therefore, the present work proposes a side-channel attack to identify videos in a
VPN and non-VPN network traffic between YouTube servers and the clients. This attack
verifies the assumption that, even if the network traffic is encrypted or the clients watch
videos using a VPN, these videos leave their distinctive patterns, which can be used to
identify those videos. A lot of information regarding a video can be obtained using flow-
based features, such as the number of packet bursts, burst sizes, packet sizes, and even the
number of packets being transferred between the server and the client. Machine learning
models [7–9] can use these flow-based patterns to identify the videos. The present work
uses a sequence of consecutive bytes per second (BPS) obtained from the traffic from a
YouTube server to a client’s computer and is used as a distinctive feature for identifying
the video. The attack presents a novel approach, where a Sequential Convolutional Neural
Network (SCNN) takes the sequence of BPS as an input to predict the title of the video.
The results have shown the accuracy of 99% in detecting VPN vs. non-VPN traffic, 90% in
the detection of videos in non-VPN traffic, 66% in the detection of videos in VPN traffic,
and 77% accuracy when traffic traces of both VPN and non-VPN are used together for
classification.

The list of contributions of this paper is as follows:

• A side-channel attack that uses a Sequential Convolutional Neural Network is pro-
posed to identify videos in a VPN and non-VPN network traffic.

• A sequence of bytes per second (BPS) from two-minute video traffic is shown as a
feature to identify the video.

• The paper demonstrates that even one-minute sniffing of network traffic can help in
predicting the YouTube videos with high accuracy.

The rest of the paper is organized as follows. Section 2 presents a background of video
streaming, encryption, and VPN. The related works are discussed in Section 3 and the
methodology is detailed in Section 4. Experiments and results are presented in Section 5,
while Section 6 concludes the paper.

2. Background
2.1. DASH Video Streaming

Since 2011, Dynamic Adaptive Streaming over HTTP (DASH) is an international stan-
dard for adaptive video streaming, where YouTube uses an advanced variant named Mov-
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ing Picture Expert Group-Dynamic Adaptive Streaming over HTTP (MPEG-DASH) [10].
In adaptive video streaming, the streaming services divide a video into small segments of
multiple quality (bitrates) levels that are downloaded at the client’s computer in multiple
requests. This methodology provides flexibility to adjust the video quality at the client
side according to the network traffic condition. When a streaming session starts, the server
sends information about the segments and available qualities, such as 1080p, 360p, or
auto-mode quality. By default, the auto-mode quality is selected by the YouTube player
at the client end. Based on the estimate of the available network throughput between the
client and the server, the player requests the different quality levels of upcoming segments.
Moreover, all the DASH video streaming services use Variable Bitrate (VBR) encoding that
encodes videos depending on variations in the content. For example, a fast action scene
is typically encoded with a high bitrate as many content changes per frame, whereas a
slow-changing scene is encoded with a low bitrate as content does not change for several
frames. Consequently, the DASH segments with roughly the same duration differ from
each other in sizes (bytes). The consecutive DASH segments in a video and their sizes leak
unique patterns for the video. Even if the video is encrypted or viewed through VPN, the
videos still carry these characteristics. In this paper, the procedure to obtain the information
of segments through a sequence of network traffic that traces and uses them to identify the
video, is termed a side-channel attack.

2.2. Virtual Private Networks (VPNs)

Both VPN and SSL protocols hide the content of network traffic from viewing the
content of the packets by a middleman between the two communicating parties. However,
in an SSL only the payload of the packet is encrypted, whereas, in a VPN, the whole packet
is encapsulated within another packet. The encapsulation helps to access the servers banned
at the gateway by tunneling the traffic through a remote machine. A VPN does not provide
security itself; rather, the VPN uses different types of security protocols to hide the content.
SSL VPN and IPsec VPN are two popular types of VPNs. This work has experimented
with SSL VPN provided by OpenVPN [11]. The OpenVPN uses a Hash-based Message
Authentication Codes (HMAC) with a SHA1 hashing algorithm for ensuring the integrity
of the contents in the packets. The encryption of the tunneled packets is ensured using a
Blowfish secret-key block cipher [11].

3. Related Works

In 2011 (https://qz.com/246441/what-is-https-and-why-does-google-like-it-so-much/
(accessed on 1 October 2021)), Google introduced HTTPS as a default protocol for Gmail,
which increased Youtube traffic by 97% (https://youtube-eng.googleblog.com/2016/08/
youtubes-road-to-https.html (accessed on 1 October 2021) to use HTTPS encryption until
2016. Google promoted HTTPS by giving a higher ranking to websites with HTTPS. This
promotion created an interest in finding methods and attacks to bypass this security proto-
col; therefore, a majority of research is published in this area focusing on fingerprinting the
websites and applications at the clients’ end to identify them in network traffic. However,
several other research studies focus on identifying the videos on network traffic as well.

Initially, the research on video identification focuses on Quality of Experience (QoE)
metrics to better utilize the network’s bandwidth. Mangla et al. [12] predict QoE metrics of
video streams using the packet headers in the network traffic, whereas Wassermann et al. [13]
use a set of statistical features, such as the number and size of packets, to predict the
resolution and bitrate of video streams. Statistical features are also used by Liu et al. [14] to
identify traffic patterns. Gutterman et al. [15] explore the chunk statistics, such as chunk
duration and chunk size, along with flow statistics, such as flow duration and direction, to
predict the quality metrics for YouTube encrypted videos. Chunk statistics are also used to
identify variable bitrate adaption under HTTP and QUIC protocol by Xu et al. [16].

Ameigeiras et al. [17] present a detailed analysis of YouTube streams, where the authors
describe a burst characteristic feature in the YouTube videos. Their research describes the

https://qz.com/246441/what-is-https-and-why-does-google-like-it-so-much/
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behaviour where videos start downloading with an initial big burst but later the rate of the
download decreases with small bursts. The burst characteristic feature is also discussed by
Rawattu and Balasetty [18]. Dublin et al. [19] present a feature named Bits per Peak (BPP)
representing traffic sizes of different bursts in a sequence. Using this feature, the authors
find similarities among traffic traces of videos. Similar work is proposed in [20] with a
special focus on traffic generated by a Chrome browser. The On-Off periods generated due
to gaps among bursts in video streaming traffic is explored by Rao et al. [21]. Liu et al. [22]
also use an On-Off mode to detect videos using machine learning algorithms. Apart from a
burst size, the size of video segments is also used as a feature to create video fingerprints
as discussed by Wu et al. [23]. Song et al. [24] study the role of open metadata and a
storyboard linked with each YouTube video in the detection of a video in network traffic.
Li et al. [25] use the video segment size, inter-request time, and download link payload size
as features to detect a video in network traffic.

The above-mentioned features are used by different machine learning algorithms,
such as K-nearest neighbor [13,14,20,22], SVM [20], and Neural Networks [20,22,25] as
classifiers for identifying the videos with known titles. Apart from using these classification
techniques, a few studies also explore the use of clustering techniques to detect the videos
in network traffic where titles are unknown. Davir et al. [26] extracted the BPPs from the
video traffic traces and develop an embedding/vector for each BPP similar in concept to
word embeddings in Natural Language Processing. The videos are clustered based on
the similarities among the embedding of difference traces. Biernacki [27] uses Min-Max,
K-means, Optics, and AutoClass for clustering the videos into groups.

Identification of videos with additional encrypted traffic e.g., VPN and Tor are also
researched in some studies. For example, Shi investigates the flow statistics, such as
packet arrival time, intervals, and inter-packets delay for identification of videos in VPN
settings [28,29]. Rahman et al. [30] evaluate the detection of videos in Tor traffic. A Tor is
like a VPN; however, in a VPN, traffic is tunneled through a central server, whereas in a
Tor, the traffic is tunneled through a decentralized layer of independent nodes.

The present work is a novel approach, where the model uses a sequence of bytes per
second as a feature to identify the YouTube videos both in a VPN and non-VPN traffic
instead of manually crafting the features. Earlier research papers identify the video by
sniffing the traffic for more than 3 min, whereas the present work identifies the videos with
high accuracy using only one minute of traffic sniffing.

4. Methodology

This section discusses the methodology used for the proposed technique. The threat
model explains the process to deploy the attack. The attack requires the extraction of
features from the raw traffic between the YouTube server and the client. The extracted
features are used as input in the CNN model. The data captured for experiments and
performance measures is discussed in the last subsection of methodology. The experiments
and results are discussed in the next section.

4.1. Threat Model

The proposed threat model is presented in Figure 1, where the model assumes that an
adversary (ISP or middleman between a client and a server) can sniff packets on a network.
The adversary setups a dummy client in the network and requests the videos of interest
from the server, and afterwards sniffs the communication of the client on the network.
For each video of interest, the adversary requests the YouTube server multiple times one
after the other and saves the network communication as pcap files along with the titles of
the videos.

The adversary extracts the features from the captured pcap files and trains a machine
learning model using these extracted features. The trained model is further used to predict
the label (title of the video) by sniffing the network traffic of the targeted client.
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Figure 1. SCNN-Attack: Threat Model.

4.2. Feature Extraction

For classification, the set of features used is very important; hence, their selection plays
a crucial role in the whole process [31]. The data in each captured pcap file consists of the
initial two minutes of the video. The data in the files are grouped into uplink and downlink
depending upon the source and destination IP addresses of the client. A sequence of BPS
is extracted from downlinks in the files, where each sequence of BPS differs from others
in every file irrespective of a VPN or non-VPN traffic due to network traffic conditions.
Figure 2 shows VPN and non-VPN traffic traces (BPS) of a single video in an auto-mode
quality. The traffic traces differ from each other even if the same video is requested in a
fixed quality mode (Figure 3).

Figure 2. Six traffic traces (BPS) of the same video (https://www.youtube.com/watch?v=
ZzXGSFVbVvU (accessed on 1 October 2021)) in auto-mode quality.

Figure 3. Three traffic traces (BPS) of the same video (https://www.youtube.com/watch?v=
bDkYvUQYraU (accessed on 1 October 2021)) in 1080p quality.

This work also analyzes the variations in the sequences of BPS of a video in the whole
dataset. Figure 4 represents a distribution of average BPS over consecutive 20 s in different

https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=bDkYvUQYraU
https://www.youtube.com/watch?v=bDkYvUQYraU
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traces of a single video in an auto-mode quality as boxplots in VPN and non-VPN traffic.
The sequences of BPS differ in each file irrespective of a VPN or non-VPN traffic due to the
network traffic conditions.

Figure 4. Average BPS over 20 s of a same video (https://www.youtube.com/watch?v=
ZzXGSFVbVvU (accessed on 1 October 2021)) in auto-mode quality.

The distribution of an average BPS for different videos are compared to each other.
Interestingly, the variations in the average BPS for different videos also differ from each
other in the VPN (Figure 5) and non-VPN traffic (Figure 6). Due to variations within
different sequences of BPS, creating further hand-crafted features is not useful on the
sequence of BPS. Therefore, the sequence of BPS is selected as a feature as an input for a
classifier. The sequences of BPS are normalized between zero and one before being fed to
the classifier for automatic extraction of relations among different BPS sequences of the
same video. The classifier uses the automatically extracted features to identify the videos.

Figure 5. Average BPS over 20 s of two different videos (https://www.youtube.com/watch?v=
ZzXGSFVbVvU, https://www.youtube.com/watch?v=db1u06fojyc (accessed on 1 October 2021)) in
auto-mode quality.

Figure 6. Average BPS over 20 s of two different videos (https://www.youtube.com/watch?v=
ZzXGSFVbVvU, https://www.youtube.com/watch?v=db1u06fojyc (accessed on 1 October 2021)) in
auto-mode quality with VPN.

https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=db1u06fojyc
https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=ZzXGSFVbVvU
https://www.youtube.com/watch?v=db1u06fojyc
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4.3. CNN Model

The Convolutional Neural Network has been successful in many classification tasks,
such as in natural language processing (hate speech detection [4,32,33], bot detection [34]),
human activity recognition [35], malware detection [36], and image processing. The pro-
posed model does not require additional hand-crafted features for the classification of
videos but learns the patterns within the sequence of BPS itself. The proposed Sequential
Convolutional Neural Network (SCNN) model consists of three convolutional 1D layers,
three maxpooling 1D layers, dropout, flatten, and a fully connected Dense layer. The convo-
lutional layer uses a set of independent kernels (filters), where each kernel is independently
convoluted with the input data and generates a feature map as an output. The size of the
kernel is set smaller than the size of the input so that the model can learn more feature
maps improving the overall efficiency of the learning process.

The result of convolution passes through an activation function before being forwarded
to the maxpooling layer. The pooling layer replaces the output generated by the previous
layer with a summary of the nearby outputs. This replacement reduces the size of the data
representation without losing the key features. Different pooling layers are being used,
where the maxpooling layers take the neighbouring values from a subset of the previous
input and replace it with the maximum value.

The dropout layer randomly takes the output of the previous layer as input and sets
the value as zero with a pre-defined probability. This dropout technique helps prevent
overfitting and not letting our model depend on certain inputs. The flatten layer in the
model flattens the data for a fully connected layer—Dense layer. In a typical fully connected
layer, all neurons are connected to the neurons in the previous layer. The last fully connected
layer is also known as the Output Layer [37].

The input of the SCNN model is an array (1-dimensional) of BPS with a size of 120.
The first convolutional layer consists of 1024 kernels of size 6 with a stride of 1. Each neuron
in the layer is connected to a neighbourhood of 6 elements in the input data. The outputs
of the layer are 1024 feature maps of size 120. The first convolutional layer contains a total
of 7168 trainable parameters (6144 weights and 1024 bias parameters). The next layer is a
maxpooling layer that comprises 1024 feature maps of size 60. Each feature map of this
maxpooling layer is connected to two feature maps of the previous convolutional layer.
The maxpooling layer requires zero trainable parameters.

The second convolutional layer with 512 kernels of size 4 contains a total number
of 2,097,664 trainable parameters gives an output of 512 feature maps of size 60. The
second convolutional layer is followed by a second maxpooling layer with 512 feature
maps of size 30. The third convolutional layer with 1,311,232 trainable parameters consists
of 512 kernels of size 5. The outputs of the third convolutional layer are 512 feature maps
of size 30. Consequently, the third maxpooling layer generates 512 feature maps of size
15. After the third maxpooling layer, the proposed model has a dropout layer that drops
the values of neurons from the previous layer with a probability of 0.2. The flatten layer
comes after the dropout layer and it converts the 512 feature maps from the previous layer
to a one-dimensional feature of size 7680. The last fully connected layer comprises 337,964
trainable parameters in 44 different classes that are used in the data.

All the convolutional layers in the proposed model use a ReLU activation function,
whereas the last fully connected layer uses a softmax activation function. The ReLU
activation function outputs the input values if input values are positive; otherwise, the
function provides zero as an output. The softmax activation function is a generalization
of logistic regression. The softmax function normalizes a D-dimensional vector of real
values to a D-dimensional probability distribution vector of real values in the range [0, 1]
that sums up to 1. The D represents the number of output classes and each value in the
D-dimensional output vector presents a probability score of the corresponding class.

The cost function, categorical cross-entropy, is used in the proposed model. The cost
function measures the difference between the softmax layer’s output and the true label (in
a hot-encoding format) of a sample being trained. Moreover, for an optimization task, the
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model uses an Adam optimization algorithm [38]. The architecture of the SCNN model is
presented in Figure 7. Table 1 presents the summary of the model.

Figure 7. SCNN Model: Architecture.

Table 1. SCNN Model Summary for 360p quality videos dataset.

Layer ID Layer (Type) Output Shape Param #

1 Conv1D (None, 120, 1024) 7168

2 MaxPooling1 (None, 60, 1024) 0

3 Conv1D (None, 60, 512) 2,097,664

4 MaxPooling1 (None, 30, 512) 0

5 Conv1D (None, 30, 512) 1,311,232

6 MaxPooling1 (None, 15, 512) 0

7 Dropout (None, 15, 512) 0

8 Flatten (None, 7680) 0

9 Dense (None, Number of videos = 44) 337,964
Total params: 3,754,028; Trainable params: 3,754,028; Non-trainable params: 0.

4.4. Dataset and Performance Evaluation

OpenVPN with an external VPN desktop client—SurfShark—is used as the dummy
client for VPN traffic [39]. The Selenium web tool along with a chrome driver is used
to automate the dummy client on the network to request the video of interest from the
YouTube server. The network traffic is captured using Python’s TShark library and each
video communication is stored as a pcap file along with the video title. The client requests
the YouTube videos in three different modes: 1080p, 360p, and auto-mode. YouTube
presents videos of the highest quality in 1080p and lowest quality in 360p. The auto-mode
of YouTube varies the quality of the videos depending upon the bandwidth availability
at the client-side. The collected dataset consists of 43 different videos for auto-mode,
44 for 360p, and 20 for 1080p quality modes. Each video is requested 50 times using a
VPN and 50 times without a VPN to create multiple instances. The initial two minutes
of the videos are captured and converted into pcap files for experimentation purpose.
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However, for detecting the video from anywhere on its timeline, the attacker needs to store
the whole video.

For each quality mode, the instances are divided randomly into training and testing
datasets with a split ratio of 60:40. The performance of the algorithm is evaluated using the
accuracy measure and confusion matrix. The accuracy measure evaluates the performance
of the algorithm over all the classes, whereas the confusion matrix is used to evaluate the
performance over each class. The accuracy measure is defined as follows:

Accuracy =
Correct Predictions

Total Predictions
(1)

5. Experiments and Results

Six different scenarios are set up for an evaluation of the proposed SCNN technique,
where Scenario A, Scenario B, and Scenario C execute the technique on 1080p, 360p, and
auto-mode quality datasets. In Scenario D, the traffic traces of videos in auto-mode quality
are tested in VPN traffic. All the traces of videos in auto-mode quality in the VPN traffic are
labelled under one class (VPN) instead of their labels, and the traces of videos in auto-mode
quality in the non-VPN traffic are labelled as non-VPN in Scenario E. However, in Scenario
F, the traffic traces are assigned their original video labels and identified in a mixed VPN
and non-VPN traffic.

The proposed SCNN technique is compared with the following machine learning
algorithms: (1) Sequential minimal optimization and (2) Naïve Bayes. Sequential minimal
optimization (SMO) is a popular machine learning algorithm to solve quadratic program-
ming (QP) problems and train the Support Vector Machines (SVM). The algorithm divides
the problem into a series of small parts and solves the problem analytically. Naïve Bayes
algorithm is a probabilistic model of classification that depends upon the Bayesian theorem.
The algorithm assumes that each feature in the input is independent and does not depend
upon any other feature in the data.

The algorithms are compared for different sizes of traffic traces in all the scenarios.
Initially, the models are trained and tested for a size of 120 s. However, 20, 40, 60, 80, and
100 s of traffic traces are used to find the smallest suitable size for detecting the video titles
in the traffic traces.

Figure 8 presents the accuracy of the proposed model in Scenario A. The confusion
matrix of the experiment is shown in Figure 9. The proposed SCNN model achieves the
testing accuracy of 60% on a 120 s traffic trace better than the Naïve Bayes and SMO
algorithms. However, the accuracy drops below 40% on the traffic traces of the size 40 s or
less. The Naïve Bayes and SMO also presented a similar behaviour. The comparison results
of the SCNN, Naïve Bayes, and SMO are presented in Figure 10.

In Scenario B, the models are evaluated on a 360p quality videos dataset. The 360p
dataset is a larger dataset than the 1080p quality videos dataset in terms of the number of
videos (labels) and the number of trace files. The increase in dataset results in an increase in
the testing accuracy of the model (Figure 11). More classes (labels) are predicted accurately
among all the test samples of those classes. This effect is shown as red dots in the diagonal
of the confusion matrix (Figure 12). The accuracy comparison of SCNN, SMO, and Naïve
Bayesian is presented in Figure 13.

Figure 8. Accuracy on 1080p dataset.
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Figure 9. Confusion Matrix for 1080p dataset.

Figure 10. Comparison results against trace size (in seconds) for 1080p quality.

Figure 11. Accuracy on 360p dataset.

Figure 12. Confusion Matrix for 360p dataset.
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Figure 13. Comparison results against trace size (in seconds) for 360p quality.

Scenario A and Scenario B evaluate the proposed model on the fixed quality video
datasets. The default method of the YouTube player is to play the videos in auto-mode
quality. Scenario C evaluates the models for detection of videos in auto-mode quality. The
proposed model achieves 90% accuracy (Figure 14) and more classes are predicted correctly
for their tested samples as shown in Figure 15. The model performs better than both the
Naïve Bayes and SMO (Figure 16).

Figure 14. Accuracy on auto-mode quality.

Figure 15. Confusion Matrix for auto-mode quality.

Figure 16. Comparison results against trace size (in seconds) for auto-mode quality.
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The videos in the auto-mode quality are also requested while running the VPN on the
system. Scenario D evaluates the performance of the models on auto-mode quality in the
VPN settings. The performance of the model drops from a 90% in the non-VPN setting to
a 66% testing accuracy in the VPN settings as shown in Figures 17 and 18. However, the
proposed SCNN model performs better than the Naïve Bayes and SMO (Figure 19). Even
with a trace size of 40 s, the proposed SCNN achieves a 50% accuracy.

Figure 17. Accuracy on auto-mode quality in VPN dataset.

Figure 18. Confusion Matrix for auto-mode quality in VPN traffic.

Figure 19. Comparison results against trace size (in seconds) for auto-mode quality on VPN.

In Scenario E, the models are evaluated for detection of a VPN vs. non-VPN traffic. All
the traffic traces for auto-mode quality videos are assigned a single label (non-VPN). Simi-
larly, all the traces in a VPN set are labelled as VPN instead of their class labels. The results
show the high accuracy of 99% correctly identifying both the classes (Figures 20 and 21).
Even the Naïve Bayes and SMO show above 95% accuracy. Only a 20-second traffic trace is
enough to detect that the traffic is with or without a VPN setting with above 85% accuracy
as shown in Figure 22.
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Figure 20. Accuracy for VPN and non-VPN traffic.

Figure 21. Confusion Matrix for VPN and non-VPN traffic.

Figure 22. Comparison results for VPN and non-VPN traffic.

Scenario F presents a case when the attacker tries to detect the video without the
information that traffic is a VPN or non-VPN. In this scenario, the original labels are
assigned to the traffic traces with the modification that along with the label, information
regarding a VPN setting is added to the label. Therefore, if a Label_1 is in a non-VPN setting,
the label becomes Label_1_non-VPN and if it is in VPN settings, it becomes Label_1_VPN.
The results show a decrease in the testing accuracy to 77% (Figures 23 and 24) from 99% in
Scenario E and 90% from only non-VPN settings in the Scenario C. However, the accuracy
remains better than the 60% accuracy of Scenario D. In Scenario F, only 40 s traffic traces
prove to be sufficient to predict the label with above 60% accuracy using the proposed
methodology as shown in Figure 25.

In all the scenarios, the proposed model performs better than Naïve Bayes and SMO.
The results have shown that YouTube videos can be detected by the adversary who can
sniff the network traffic in both the VPN and non-VPN traffic.
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Figure 23. Accuracy on all auto-mode quality videos in VPN and non-VPN datasets.

Figure 24. Confusion Matrix on all auto-mode quality videos in VPN and non-VPN datasets.

Figure 25. Accuracy results for all videos in VPN and non-VPN traffic.

6. Conclusions and Future Works

This study presents a side-channel attack named SCNN-Attack. The SCNN-Attack
utilizes a Sequential Neural Network model to predict the video stream in a VPN and
non-VPN network traffic. A sequence of bytes per second from a two-minute sniffing of
network traffic can identify a video with high accuracy. The results have shown that HTTPS
and VPN are not enough to hide the identity of the videos in the network traffic. Any
adversary, such as a network administrator or ISP can identify the YouTube videos being
watched by the clients on the network.

The proposed attack is limited due to the problem of concept drift that is caused due
to the instability of the network. The attack requires active learning with retraining after
every week. Therefore, the proposed technique requires huge computational and space
requirements at the adversary’s end that keeps the attack limited for large scale deployment.
In future works, concept drift handling and detection techniques along with the attack will
increase the practical deployments of the attack.
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