
����������
�������

Citation: Perri, D.; Simonetti, M.;

Gervasi, O. Deploying Efficiently

Modern Applications on Cloud.

Electronics 2022, 11, 450. https://

doi.org/10.3390/electronics11030450

Academic Editors: Juan M. Corchado,

Stefanos Kollias and Javid Taheri

Received: 31 December 2021

Accepted: 28 January 2022

Published: 2 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Deploying Efficiently Modern Applications on Cloud
Damiano Perri * , Marco Simonetti and Osvaldo Gervasi

Department of Mathematics and Computer Science, University of Florence, 50134 Florence, Italy;
m.simonetti@unifi.it (M.S.); osvaldo.gervasi@unipg.it (O.G.)
* Correspondence: damiano.perri@unifi.it

Abstract: This study analyses some of the leading technologies for the construction and configuration
of IT infrastructures to provide services to users. For modern applications, guaranteeing service
continuity even in very high computational load or network problems is essential. Our configuration
has among the main objectives of being highly available (HA) and horizontally scalable, that is, able
to increase the computational resources that can be delivered when needed and reduce them when
they are no longer necessary. Various architectural possibilities are analysed, and the central schemes
used to tackle problems of this type are also described in terms of disaster recovery. The benefits
offered by virtualisation technologies are highlighted and are bought with modern techniques for
managing Docker containers that will be used to build the back-end of a sample infrastructure
related to a use-case we have developed. In addition to this, an in-depth analysis is reported on the
central autoscaling policies that can help manage high loads of requests from users to the services
provided by the infrastructure. The results we have presented show an average response time of
21.7 milliseconds with a standard deviation of 76.3 milliseconds showing excellent responsiveness.
Some peaks are associated with high-stress events for the infrastructure, but the response time does
not exceed 2 s even in this case. The results of the considered use case studied for nine months are
presented and discussed. In the study period, we improved the back-end configuration and defined
the main metrics to deploy the web application efficiently..

Keywords: web app; cloud computing; high availability; high performance computing; docker
container; horizontal scaling

1. Introduction

The infrastructures and techniques that enable the deployment of IT services are
constantly evolving. Today, it seems pretty natural to use online storage spaces to store
heterogeneous documents, such as photographs, music files, or text documents. Web
applications, which do not require additional software installed on clients and perform
calculations via powerful remote servers, are also typical. There are also chargeable services
that guarantee the ability to perform scientific calculations or exploit the computational
capacity of hardware with specific power and cooling requirements. All this is possible
thanks to modern technologies and software development models such as cloud computing.
Users delegate the responsibility of creating available and reliable infrastructures to third-
party companies that take care of the management and maintenance of the hardware
necessary to complete the required tasks. This article will analyse the best practices for
creating a modern and reliable cloud architecture, which exploits the potential of the
most advanced software technologies, such as Docker containers, and guarantees high
availability and scalability.

Nowadays, there are several aspects that have emerged with the spread of cloud
environments, social networks and multimedia platforms that tend to capture personal
information of users. This is despite the fact that many organisations (such as the European
Union) have issued (e.g., through the General Data Protection Regulation, GDPR (https://
gdpr.eu/, accessed on 13 December 2021) a series of recommendations aimed at protecting

Electronics 2022, 11, 450. https://doi.org/10.3390/electronics11030450 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11030450
https://doi.org/10.3390/electronics11030450
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6815-6659
https://orcid.org/0000-0003-2923-5519
https://orcid.org/0000-0003-4327-520X
https://gdpr.eu/
https://gdpr.eu/
https://doi.org/10.3390/electronics11030450
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11030450?type=check_update&version=2


Electronics 2022, 11, 450 2 of 16

personal data. There is no doubt that today this information constitutes an absolutely
attractive asset for the big players in Information Technology because, through it, they
are able to convey, in a much more incisive manner, messages and other services that
suit the increasingly frequent uses and customs of the population. Our work aims to
provide organisations and those sensitive to the importance of respecting the protection of
personal data with a set of best practices that will enable them to implement a private or
hybrid cloud environment, i.e., one that is able to interface with commercial providers to
access computational resources without compromising the security of sensitive data. In
order to facilitate the adoption of this best practices and the dissemination of these open
solutions, thus also oriented to the mitigation of the lock-in (Lock-in refers to the tendency
of proprietary solutions to anchor the user within the area of action of the services provided
by the company) phenomenon, we have provided a use case that makes this adoption of
open technologies easier and more transparent.

The use case that we present involves the implementation of a website based on a PHP
backend assisted by an SQL database for data storage, the creation of a container for the
management of IT services (e-mail, DNS), and we will make the necessary considerations
for the management of the horizontal scalability of the webserver, under established metrics
and the number of user requests. The design of an IT infrastructure must also consider
the aspects concerning data security, protecting them from attacks that can occur from
outside and from any catastrophic events that can lead to severe consequences, such as the
complete loss of information. This article is divided as follows: in Section 2, we analyse
articles and manuscripts that have addressed this problem and that today represent the
state of the art of academic research.

In Section 3, we summarise the characteristics and aspects of the various types of IT
infrastructures concerning disaster recovery techniques, highlighting their main strengths
and weaknesses.

In Section 4, we present an architecture capable of satisfying the requirements imposed
by us and capable of exploiting the most current and modern technologies, defining best
practices for the creation of scalable architectures using Docker containers. The proposed
architecture is also adopted in an actual use case that uses the technologies and methods
proposed in this article.

In Section 5, we presented the infrastructure described in this article in the light of
indicators showing the efficiency and cost savings obtained from adopting a solution
capable of scaling down and up according to the load induced by users.

Section 6 describes the statistics and experimental results that have been collected
over the period considered. The various graphs are explained in the light of the operations
carried out, taking into account the trends observed in them for both CPU and memory by
the various components of the architecture.

Section 7 reports the conclusions and results achieved by our experimental analysis,
and possible future developments are also highlighted.

2. Related Works

Over the last 40 years, the rapid and relentless computerisation has permitted the
handling and administration of huge volumes of data in ever-shorter time periods. Further-
more, the complexity of scientific and technological concerns, as well as the automation
of industrial and economic operations, necessitated a highly sophisticated use of com-
puter resources [1–4]. This has prompted the development of a number of technologies,
ranging from the creation of more powerful CPUs, GPUs, TPUs, and other hardware com-
ponents to the construction of computer clusters capable of working on the same problem
in parallel [5–7].

The investigation about calculation structures that are less eager for computational
assets can essentially add to making data structures more proficient; in numerous applica-
tion issues in the field of engineering and logistics, traditional scientific techniques for the



Electronics 2022, 11, 450 3 of 16

productive pursuit of the most extreme or least upsides of a genuine capacity have been
upheld by exceptionally successful heuristic and meta-heuristic arrangements [8].

In extremely computationally complicated domains such as chemistry, mathematics,
and scientific modelling, artificial intelligence technology is fundamental. It is also useful for
detecting certain patterns in photos and other data aggregation, such as carcinoma detection,
molecular structures, and emotion recognition from images and photographs [9–13]. The
mathematical framework must automatically, and in some cases intelligently, adapt to
circumstances in which the system variables are large and vary fast [14,15]. Artificial
Intelligence approaches have recently allowed us to boost the responsiveness of decision-
making processes, as well as introduce forms of automation and relational empathy with
machines at previously imagined levels, thanks to the rapid growth of AI techniques [16,17].

Undoubtedly, such widespread technological advances will have a major impact
on society. A smart city opens the door to extraordinary views and scenarios about the
potential of serving residents but even to well-founded concerns about its impact on the
environment. Educational institutions have heavily invested in technical equipment and
smart schools to improve the efficiency of education. Its actual results and benefits are still
to be demonstrated [18–22].

Over the years, the number of devices connected to the network has increased dra-
matically: the advent of the Internet of Things (IoT) has allowed heterogeneous devices
to be integrated and communicated with each other, automating processes and making
available information that we did not have before, with the clear advantage of optimising
production processes and economic activities in real time [23–25]. The importance of IoT
devices resides in their capacity to capture specific data by combining privacy awareness
with relevant information, ease of use with utility, economy with power, and versatility
with precision.

Moreover, during 2020, the amount of data created and replicated reached a new high.
Growth was higher than previously expected due to increased demand due to the COVID-
19 pandemic as more people worked and learned from home and used home entertainment
options more often. Storage capacity is also growing. However, only a small percentage of
this newly created data are retained: in fact, only 2% of the data produced and consumed in
2020 was saved and retained in 2021. In line with the strong growth in the volume of data,
the capacity installed storage base is expected to increase, with a compound annual growth
rate of 19.2% in the forecast period from 2020 to 2025. This means that the effectiveness and
efficiency of the computational structures capable of storing and processing information
become essential and crucial requirements [26].

As a result, the Cloud has become more important than ever as a resource to be able
to react to all of these expectations for efficiency and effectiveness in the processing of the
many different types of information that our society has grown inexorably addicted to [27].

In contrast, Docker containers are compact cloud technologies gaining traction among
IT solutions as they enable applications to be launched more quickly and effectively than
virtual machines. Docker container usage in dynamic, heterogeneous settings, as well as the
capacity to deploy and successfully manage containers across many clouds and data centres,
have made these technologies popular and fundamental [28–32]. The advancements in
more outstanding performance and decreased overhead have rendered the cloud container
method necessary for designing cloud environments that can keep up with the needs of
diverse application domains [33,34].

3. Disaster Recovery

To design an IT architecture that is robust and resistant to cyber-attacks and natural
events is necessary to perform a preliminary requisites analysis that establishes three
fundamental parameters [35]. The first parameter is the Service Level Agreement (SLA).
It represents the percentage of time our IT system will work correctly during a calendar
year. As the SLA value increases, the costs necessary for implementing an infrastructure
capable of satisfying it will also increase. For example, if we wanted an SLA value equal to



Electronics 2022, 11, 450 4 of 16

90%, this would be equivalent to saying that our IT system could be offline (during a whole
year of operation) for 36 d 12 h 34 m 55 s. An SLA value of 99.99%, on the other hand, is
equivalent to saying that we can tolerate downtime of 52 m 35 s over a year.

The second parameter that must be defined is the Recovery Point Objective (RPO) and
represents the maximum time interval that we are willing to lose. This parameter is related
to data backup, increasing cost and complexity as the required RPO value decreases.

The third parameter that must be defined is the Recovery Time Objective (RTO) and
represents the time that we are willing to accept between the interruption of the operation
of our IT infrastructure and its recovery. In general, we can say that older architectures
have an RTO time of more than 48 h. For example, in the case of hardware problems, which
require turning off the machine and replacing the non-functioning part, it is also necessary
to consider the time required to find the components to be replaced and the time required
to restore the system [36,37].

In addition, it is essential to define the Work Recovery Time (WRT), which indicates
the maximum tolerable time frame required to verify the integrity of the data recovered.
The sum of RTO and the WRT gives the Maximum Tolerable Downtime (MTD) parameter
shown in Figure 1 along with the other parameters.

Figure 1. Disaster recovery timeline.

Classification of Disaster Recovery

Considering that different levels of disaster recovery imply different costs and organi-
sational complexities, four different plans have been defined in the literature [38].

The first type is called “Backup and Restore” and involves the creation of manual
or periodic data backups. If a failure or disaster occurs, the system will completely stop
working, and it will be necessary to proceed with the restoration of the infrastructure
manually; in the most severe cases, it will be necessary to shut down the system and restore
the backup. It was frequently adopted in legacy architectures and is still used today for
data systems and delivering non-critical services. This solution presents the lowest costs
but exposes to the highest risks. The backup and restore type has an RPO parameter that
can be measured in hours and an RTO that varies between 24 and 72 h.

A second type is the “Pilot light”, which provides the creation of data backups on an
hourly or daily basis. The architectures that use this type are built using virtual machines
or Docker containers and do not install the software that must provide the services directly
on the machine’s main operating system since the data can be quickly restored in case of a
disaster even remotely. The RPO value can be measured in minutes, while the RTO value
can be measured in hours.

A third type is the “Warm Standby”. The systems that adopt it constantly replicate
the data of the primary storage devices in auxiliary backup systems installed in remote
locations. Thanks to the synchronisation of data that occurs almost in real-time, it is possible
to obtain an RPO in seconds and an RTO parameter in minutes.

The fourth type is called “Active/Active”: it provides the highest level of reliability,
implementing the application’s load balancing. Such infrastructure is built using at least
two availability zones, far enough to guarantee service continuity even in natural disasters.



Electronics 2022, 11, 450 5 of 16

Creating a second availability zone implies the complete replica of hardware and software
resources. A load balancer service will allocate the user requests on the webserver instances
available on the two availability zones, balancing them and constantly monitoring their
health. The allocation of resources in the availability zones may be asymmetric. This type of
architecture allows for obtaining an RPO in the order of milliseconds, which can even be 0
in some cases. The RTO value is instead potentially equal to 0. The types just described are
shown in Figure 2. We should note that the higher the requirements of the infrastructure,
the greater the costs necessary for its implementation: by observing the figure, we can see
that moving to the right increases both the general security of the system and the overall
cost that must be faced to create the required IT architecture.

Figure 2. Disaster recovery plans.

4. The Proposed System Architecture

This section describes the architecture proposed to create an IT infrastructure that
guarantees high reliability and high resistance to failures. The infrastructure is built using
the Active/Active disaster recovery type within the virtualisation environment provided
by a cloud provider. The use case we intend to focus on is the management of a website
based on PHP and bash for backend management; HTML5, JavaScript, and CSS3 for
frontend management; SQL for the relational database. The site can manage a very high
number of simultaneously connected users, dynamically scaling the number of PHP and
databases nodes based on the number of users connected. We have two possible ways of
increasing the resources available to an application: horizontal scaling and vertical scaling.
By horizontal scaling, we mean the possibility of increasing the number of server instances
based on the number of connected users and sentinel parameters that enable the mechanism
to be activated. With the expression vertical scaling, we mean the increase in terms of
RAM and CPU cores of the same server. Prudent use of resources, aimed at obtaining
maximum performance at the best cost, requires careful planning of these two mechanisms
to deal with situations of massive users with more powerful hardware. In this way, we
obtain the advantage of low operating costs at night or idle scenarios with a low number of
nodes, with costs that will increase when we have to afford high workloads. In the case of
planned intensive workloads, it is recommended to perform a vertical scaling to afford the
extraordinary workload better. The adoption of vertical scaling involves shutting down the
virtual machines increasing the number of cores and the amount of RAM, redefining the
related metrics for the horizontal scaling, and increasing the related costs.

The scheme of the architecture discussed in this section is shown in Figure 3, and, in
the following subsections, we will describe the main components.

4.1. The Load Balancer

The first element is the load balancer, which allocates the incoming requests on the
resources available in the two availability zones [39–41]. Several algorithms can be imple-
mented for configuring a load balancer. The simplest algorithm is the “randomised” one;
one of the target webservers is selected randomly for each new request. A disadvantage of
this algorithm is that balancing requests between the available resources is not guaranteed.

Another algorithm is the “round-robin”. In this case, the requests will be sent in a
perfectly balanced way to the two available resources. This algorithm has a disadvantage:
it does not consider the number of pending requests on computing resources.



Electronics 2022, 11, 450 6 of 16

We recommend using the third available algorithm: the Least Outstanding Requests
(LOR). A new request will be allocated to the resource with the lowest number of pending
requests. In this case, if horizontal scaling is active, new requests will be allocated to
the newly instantiated servers until a new equilibrium is reached between the requests
allocated to each computational resource.

Figure 3. The proposed architecture.

4.2. The Redis Database

Redis is a very high performance non-relational database, whose characteristics make
it extremely suitable for managing session variables in a distributed environment [42]. In
fact, in a distributed environment, it is impossible to maintain the consistency of session
variables since the user can switch from one server to another in the course of navigation.
We have adopted a configuration based on two Redis servers, one configured as primary
and the other as secondary, to guarantee this fundamental service’s high reliability. The
official image for building a Redis server is distributed directly by the Docker repository
(https://hub.Docker.com/r/bitnami/redis/, accessed on 13 December 2021 ). To manage
operation between the two Redis servers, one can use the Redis Sentinel daemon, which
can monitor the health of the servers and manage the switching of roles if necessary
(https://hub.Docker.com/r/bitnami/redis-sentinel, accessed on 14 December 2021).

4.3. The SQL Database

Considering our proposed use case, an essential component of the architecture is the
relational DataBase which manages the storage and high performance search of information.
We adopted the MariaDB relational database, available under the open-source license GPL
v2 [43,44]. At night, or when the workload is low, there are only two database instances,
one in the primary Availability Zone and one in the secondary Availability Zone. The first
instance can be identified as master, with write and read permissions. The second instance
is configured as slave, with only read permissions. Relational databases must guarantee the
consistency of the data structure within them; if we used two databases and both had write
permissions, both might write data, and that, once inserted, it could violate the uniqueness
conditions of a primary key inside of the tables. It will be possible to implement horizontal
scaling mechanisms during intensive system load, i.e., to instantiate salve replicas. These
replicas will enable high performance data reading. It should be noted that each replica of
the database will have a latency time for the master, generally on the order of milliseconds
or tenths of a millisecond. A latency of this type is utterly irrelevant to the use case we are
presenting since, if users see new content with only a one-millisecond delay, there is no
problem. Vertical scaling can be adopted in cases where latency is essential, for example
because an application is used in a mission-critical environment.

https://hub.Docker.com/r/bitnami/redis/
https://hub.Docker.com/r/bitnami/redis-sentinel


Electronics 2022, 11, 450 7 of 16

Database Auto-Scaling

Too many simultaneous connections to the database may cause slowdowns and delays
in delivering data to users. In order to efficiently scale the database, it is necessary to identify
appropriate parameters to be used as metrics [45], so that appropriate scaling policies can
be activated when a peak in user requests is observed that generates the overcoming of
limit thresholds. We have identified two fundamental parameters: CPU utilisation and
the number of concurrently active connections. When defining CPU threshold, we have to
consider the time a database takes to be instantiated; our tests show that, for a medium-
sized database, it is necessary approximately 3 min. Our estimate for the CPU utilisation
percentage threshold is 70%. A higher value could prevent the system from handling a peak
of users, as the time required to start the database could be too long, and therefore users
could encounter requests denied when using the service. A lower value would instead lead
to a waste of money as we will run replicas of the database when there is no real need.

As per the number of concurrently active connections, our estimate for a medium-sized
database is 30 connections. However, this parameter is also influenced by the machine’s
computational power on the database. Each database is managed by two vCPUs and 4 GB
of RAM in our case.

4.4. Storage Configuration

We consider the use case based on containers, which have no persistent memory.
Therefore, it is necessary to configure a permanent memory that can be shared between
the various active containers. Many Cloud providers offer proprietary technologies for
the creation of highly available disks, such as Amazon EFS (Elastic File System) (https:
//aws.amazon.com/en/efs/, accessed on 16 December 2021), Microsoft Azure File Storage
(https://azure.microsoft.com/it-it/services/storage/files/, accessed on 16 December 2021)
or Oracle Direct NFS (https://docs.oracle.com/en/database/oracle/oracle-database/12.2
/ssdbi/about-direct-nfs-client-mounts-to-nfs-storage-devices.html, accessed on 20 Decem-
ber 2021). An open source solution is represented by GlusterFS (https://www.gluster.org/,
accessed on 20 December 2021), configured in the two virtual machines which are in charge
of deploying the containers in the availability zones in use. To this end, each virtual ma-
chine must configure an XFS partitioned disk (https://docs.oracle.com/cd/E37670_01/E3
7355/html/ol_about_xfs.html, accessed on 20 December 2021) on which the data will be
stored. GlusterFS will perform real-time data replication between the various nodes that
make up the cluster it manages.

4.5. The Containers in the Backend

The configuration of web containers requires a step-by-step approach. The first step
must be done in a local environment by writing a Dockerfile [46,47]. The Dockerfile is a
text file that contains the definitions of the software packages to be installed inside the
Docker image we need to run. The second phase requires an in-depth test of the Docker
image we have created. For example, in our case, we tested the web application by running
the Docker container inside a dedicated Virtual Machine to which a domain name was
assigned via DNS. Next, we need to configure an NAT to assign private IP addresses to
the Docker containers we will instantiate. We have two ways to proceed to the next stage,
which are now described in detail.

The first way is to manually configure a cluster that orchestrates the web containers
and does not use the preconfigured services made available by the Cloud providers. In this
case, one must first prepare a virtual machine with Docker installed. Since this machine
will have to manage another number of containers, it should be instantiated with a high
number of CPUs, and a suitable amount of RAM. Inside the machine, we can install the
HAproxy (http://www.haproxy.org/, accessed on 20 December 2021) daemon, which will
sort requests between the Web containers that are part of the cluster we have created. The
downside of this first route is that we will not be able to exploit auto-scaling effectively: it
will not be possible to perform horizontal auto-scaling, but we can only perform vertical

https://aws.amazon.com/en/efs/
https://aws.amazon.com/en/efs/
https://azure.microsoft.com/it-it/services/storage/files/
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/ssdbi/about-direct-nfs-client-mounts-to-nfs-storage-devices.html
https://docs.oracle.com/en/database/oracle/oracle-database/12.2/ssdbi/about-direct-nfs-client-mounts-to-nfs-storage-devices.html
https://www.gluster.org/
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_about_xfs.html
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_about_xfs.html
http://www.haproxy.org/


Electronics 2022, 11, 450 8 of 16

scaling since the maximum number of CPU cores in the cluster is determined at the time of
creating the virtual machine.

The second way is to rely on the services offered by the Cloud provider. Many
providers make it possible to orchestrate Docker containers automatically, managing hori-
zontal scaling. Amazon provides the Elastic Container Service (ECS) (https://aws.amazon.
com/ecs/, accessed on 20 December 2021), Microsoft uses Azure Kubernetes Service (AKS)
(https://azure.microsoft.com/en-us/services/kubernetes-service/, accessed on 20 De-
cember 2021), Google provides Google Kubernetes Engine (GKE) (https://cloud.google.
com/kubernetes-engine, accessed on 20 December 2021). If one wants to use services
offered by the Cloud provider, one needs to upload the Docker image generated to the
private repository of the user’s account. Then, one can start the image within the container
orchestration service, taking care to have the NAT previously configured manage the IP
addresses of the nodes.

4.6. Auto-Scaling

After configuring the Docker containers that manage the backend, we can proceed
to configure horizontal scaling, i.e., adding equivalent nodes that can handle the users’
requests [48]. Since the auto-scaling feature ensures that the cluster delivers the com-
putational power needed to manage users and minimises costs during idle states, we
recommend assigning a modest amount of CPU and RAM to individual web nodes. For
example, in our case, we allocated 1 vCPU and 2 GiB of RAM per node. These values
depend very strongly on the use case and can only be estimated through system load tests
and local tests that monitor RAM usage. However, it is advisable to keep these values low
to take advantage of the benefits of auto-scaling.

There are several parameters for configuring an auto-scaling service. The first param-
eter is the minimum number of nodes we wish to have operational within an availabil-
ity zone.

The second parameter indicates the maximum number of nodes that auto-scaling can
instantiate. This parameter varies according to the use case; it is generally advisable to insert
a high value capable of satisfying load peaks. Then, we have to define additional parameters
concerning the Policies that activate auto-scaling and which we consider guidelines to be
followed when configuring infrastructures of this type. The percentage of CPU utilisation
represents the first parameter. If the average processor usage value within the cluster
exceeds a certain threshold, the orchestrator will activate new nodes. It is necessary to
remind that there is a start-up time for activating containers, so it is advisable to enter a
value that is not too high; otherwise, we could not manage load peaks. In our use case, we
consider that the optimal parameter for adding a new node is the 60% average CPU usage.
The second parameter concerns the average RAM usage; in this case, we recommend a
value of about 80% of the maximum RAM allocated to a node. According to our tests,
sometimes auto-scaling based on CPU and RAM usage may not be sufficient. An essential
parameter is the number of requests a node has handled in a given period. For example, it is
possible to define a policy that monitors the requests received by a node over 5 min. In our
use case, we have found that, in order to have effective and efficient auto-scaling, a value
below 26,000 is recommended. It is interesting to note that a high number of requests within
5 min is not related to high processor utilisation, as requests can be of different kinds, from
file system data requests to database data requests to computational calculations. However,
it is essential to measure this parameter and calibrate it according to the particular use case
by carrying out load tests before the system goes into production. The last configuration
parameter concerns downscaling used to remove nodes when they are no longer required.
For this policy, we recommend monitoring the cluster’s CPU utilisation. When the cluster
reaches a low CPU utilisation, for example, around 15%, it is possible to remove one node
at a time, keeping the system performance constant and reducing costs.

https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://azure.microsoft.com/en-us/services/kubernetes-service/
https://cloud.google.com/kubernetes-engine
https://cloud.google.com/kubernetes-engine


Electronics 2022, 11, 450 9 of 16

4.7. DNS Server

The architecture we propose involves configuring a DNS server inside a Docker con-
tainer [49], which enables the autonomous management of this service. An independently
managed DNS allows for a refined configuration of zone parameters and makes it pos-
sible to propagate updates since the parameters can be managed internally quickly. A
further advantage is the ability to backup DNS settings and configuration parameters since
they are included in the persistent storage attached to the Docker container according to
the presented use case. To install this service, one can use a docker image containing a
server DNS, e.g., “bind” (A DNS server with a web interface and preconfigured for Docker:
https://hub.Docker.com/r/sameersbn/bind/, accessed on 20 December 2021), then open
and expose in the Docker and firewall configuration files, the port 53 TCP (used for zone
transfer) and port 53 UDP (used to answer client queries) and finally associate a storage
space with persisting the DNS data. In order to achieve a configuration that respects the
canons of high reliability and high availability, it is necessary to configure a master DNS in
the main availability zone and a slave DNS in the secondary availability zone.

4.8. The Mail Server

Similarly to the DNS server, a Docker-based mail server should also be configured
to allow complete management of the e-mail transit in our infrastructure. In order to
reduce false positives of anti-spam software and enable reliable message delivery, mail
servers must be authenticated through Domain Keys Identified Mail (DKIM), Sender
Policy Framework (SPF), and Domain-based Message Authentication (DMARC). The
DKIM key is added to the DNS file zone as a TXT record. It ensures that no messages
going from server to server are tampered with and that messages can be identified. SPF
authentication works by specifying the number of allowed IPs that can send e-mails from
a specific domain. The domain manager can add a file or record on the server that tells
the receiving server which domains are allowed to send e-mails. DMARC builds on SPF
and DKIM to further validate e-mails by matching the validity of SPF and DKIM records.
This allows for setting policies and getting alerts generated in case DMARC validation
fails. There are various Docker images that allow you to build a mail server, for example
Poste.io (https://hub.docker.com/r/analogic/poste.io/, accessed on 20 December 2021),
Mailu (https://hub.docker.com/u/mailu/, accessed on 21 December 2021), Postfix (https:
//hub.docker.com/_/postfixadmin, accessed on 22 December 2021) and many others.
Once the image one wants to use is chosen, it is needed to create a Docker container that
uses it, and then one has to expose all the ports necessary for the service to work. Finally,
setting up a relay mail server in the secondary availability zone is advisable to avoid losing
mail if the main availability zone goes offline.

4.9. WAF

Modern cyber threats exploit vulnerabilities and technologies that are increasingly
effective and complex, so we need to protect software applications and equipment within
our infrastructure to the best of our ability. There are attack patterns used by hackers and
bots that can be identified by software designed to defend IT infrastructures. A WAF is a
Web Application firewall, i.e., a firewall that works at level 7 of the ISO/OSI model [50].
This application helps defend our software against SQL injection or cross-site scripting
attacks, as it can also analyse the HTTP requests that clients make to our services. For
example, it filters specific IP addresses by creating blacklists. These devices have undergone
an evolution in time and might be classified into three types:

The first one can detect malicious pattern matches and use whitelists and blacklists to
monitor traffic and cyber attacks.

The second one can automatically generate whitelists of acceptable request patterns,
i.e., not considered dangerous for computer applications; the inconvenience of this gen-
eration is that human intervention is still required to verify the correctness of the lists
automatically generated by the system.

https://hub.Docker.com/r/sameersbn/bind/
https://hub.docker.com/r/analogic/poste.io/
https://hub.docker.com/u/mailu/
https://hub.docker.com/_/postfixadmin
https://hub.docker.com/_/postfixadmin


Electronics 2022, 11, 450 10 of 16

The third one, where threat detection is based on logical rules, represents the most
modern generation and combines the technologies of the second type WAFs to which
they add real-time packet analysis with a categorisation of attacks based on boolean logic.
The most interesting feature of this type of WAFs is the proactive defence of applications,
capable of locating and identifying vulnerabilities in the services we provide before an
attack occurs.

4.10. Backup

A final aspect that needs to be configured concerns backup policies. The backups must
guarantee that they can be restored quickly, minimising data loss in the event of disasters
and protecting as far as possible against cyber-attacks [51]. Various parameters must be
defined for data backup in the architecture described, which differ according to the service
analysed. The first configuration parameter is the time interval between one backup and
the following. The second parameter to configure is the retention time for a backup before
its removal from the system.

Periodic and incremental backups are necessary: this means storing only the data
that have really changed since the previous backup on disk. It is advisable to backup the
database, the shared network file system disk, and the system disk used by the virtual
machines. A proper value could be at least one backup per day and a retention time of at
least three weeks to prevent threats that can damage data, such as ransomware attacks that
aim to corrupt even system backups.

For the Redis database that manages the session, we did not set any backups because,
in our use case, the most serious situation that could happen is that the user is asked again
to enter the username and password to access the system. We also set up a permanent
backup made when the system was fully functional and kept for possible future needs. All
the backups described above are encrypted, password-protected, and cannot be accessed
outside the infrastructure.

5. Discussion

The case study infrastructure we propose has been operational for about nine months.
During this time, we have obtained statistics and metrics that have allowed us to refine the
model until it reached its current state. The red line shown in Figure 4 indicates the metric
that induces the auto-scaling up (increasing in the number of server instances, fast process)
and down (decreasing the number of server instances, slow process).

Every day about 1000 users use the web application delivered through the infras-
tructure. The users are divided into different roles, characterised by different activities,
depending on the role. The average duration of the sessions is two hours; however, the
type of activity differs according to the role assumed: in some cases, they are sporadic
sessions, linked to information maintenance activities, of unpredictable duration, which
can take place at any time of the day or night. In the other case, sessions take place at the
same time, even in very large groups of users, and are characterised by intense activity for
a period varying between half an hour and two hours. During this time, generally, a user
performs operations that require a high number of disk input and output operations and a
high number of database operations. We have extracted some graphs that we believe are
significant for the functioning of the infrastructure; in particular, to make the data easily
readable and interpretable, we focused on a time range of two weeks. A more extended
period of time would have made it difficult to highlight the peaks and trends in the use
and load levels of the system.

The data collected shows that designing a horizontally scalable architecture is the best
solution that allows the expected level of performance to be borrowed with operating costs.
Figure 4 illustrates the data collected on the number of requests per time unit (see Figure 4a),
the number of requests for read and write operations (see Figure 4b), the use of the shared
network file system (see Figure 4c) and operating costs (see Figure 4d). Analysing the
graphs, it can be seen that, when there are peaks in the number of requests, there are



Electronics 2022, 11, 450 11 of 16

corresponding peaks in the other quantities measured. This proves that resources are only
used when really needed, guaranteeing adequate performance and optimising costs. The
use of the infrastructure undoubtedly influences the cost, but the costs curve shows an
almost flat behaviour in correspondence of an idle system. However, thanks to the use
of auto-scaling technologies, the infrastructure can be scaled down at low activity levels.
Keeping an IT infrastructure active in an “always-on” state, with a high number of servers
capable of satisfying the requests of thousands of users, would involve an unnecessary
waste of resources. An infrastructure such as the one described in this paper, which is
limited to low-end resources, may involve a monthly expense of approximately 550 USD.

Version January 29, 2022 submitted to Electronics 11 of 17

(a) (b)

(c) (d)

Figure 4. Input output request and price chartAverage number of requests received in the considered
range of two weeks and a sampling time of 5 minutes.

focused on a time range of 2 weeks. A more extended period of time would have made it difficult to400

highlight the peaks and trends in the use and load levels of the system.401

The data collected shows that designing a horizontally scalable architecture is the best solution402

that allows the expected level of performance to be borrowed with operating costs. Figure 4 illustrates403

the data collected on the number of requests per time unit (see Figure 4a), the number of requests for404

read and write operations (see Figure 4b), the use of the shared network file system (see Figure 4c)405

and operating costs (see Figure 4d). Analysing the graphs, it can be seen that when there are peaks in406

the number of requests, there are corresponding peaks in the other quantities measured. This proves407

that resources are only used when really needed, guaranteeing adequate performance and optimising408

costs. The use of the infrastructure undoubtedly influences the cost, but the costs curve shows an409

almost flat behaviour in correspondence of an idle system. However, thanks to the use of auto-scaling410

technologies, the infrastructure can be scaled down at low activity levels. Keeping an IT infrastructure411

active in an "always-on" state, with a high number of servers capable of satisfying the requests of412

thousands of users, would involve an unnecessary waste of resources. An infrastructure such as the413

one described in this paper, which is limited to low-end resources, may involve a monthly expense of414

approximately 550 USD.415

Figure 4. Input output request and price chart. (a) average number of requests received in the
considered range of two weeks and a sampling time of 5 min; (b) type of input output requests to the
network drive; (c) percentage of shared network file system usage; (d) graph showing costs trend
over two weeks of usage.

6. Results

This section describes the experimental results we have collected.
Figure 4 shows also various statistics regarding the load balancer and the shared

network file system disk. Figure 4a shows the total number of requests received by the
load balancer calculated in 5-min intervals. As previously discussed, this is a significant
parameter because it identifies the appropriate moments to activate horizontal auto-scaling
policies. A too high number of requests could mean high latency input and output oper-
ations and do not burden the CPU, but which cause delays in the delivery of services to
users, increasing the platform’s response time. Especially in the first weeks, we monitored
the data obtained from this metric very carefully, and on it, we based our auto-scaling



Electronics 2022, 11, 450 12 of 16

policy. If the red line in Figure 4a, which represents the number 26,000, is crossed, new
nodes for PHP backend management will be created. The addition of new nodes occurs
directly proportional to the load encountered by the system; when the load level returns
to a state of rest, they will be progressively removed the excess nodes until returning to
the initial state where there are only two nodes: one on the primary Availability Zone and
one on the secondary Availability Zone. Figure 4b shows the three different types of data
access on disk: writings, readings and metadata access. In our case of use, the operations
carried out more markedly are those of reading compared to those of writing. Figure 4c
illustrates the utilisation of the shared network file system disk by the infrastructure in
terms of percentage throughput. The shared network file system disk configured by us has
high performance in reading and writing, and that is why, even in peak moments, 10% of
the maximum allowed throughput has not been exceeded.

Figure 5 shows the graph of the response time in the considered range of two weeks
and a sampling time of 5 min. As we can see, the response time is excellent, except for a few
peaks where it reaches an acceptable value between 1 and 2 s. These peaks coincide with an
extreme stress period for the infrastructure because many users are connected at the same
time, carrying out intense activities, or a maintenance system procedure involving intense
access to the persistent storage has been carried out. In fact, the peak observed in Figure 5 on
14 December at 7:25 p.m. is also observed in Figure 4c at the same time interval. Meanwhile,
the peaks on 10 December after the 6:20 a.m. and 4:15 p.m. marks are also related to the
peaks shown in Figures 6a (CPU load) and 4a (number of requests/5 min). The average
response time is 21.7 milliseconds and the standard deviation is 76.3 milliseconds.

Figure 5. Average response time of the nodes (5 min interval).

Figure 6 shows various statistics regarding the containers, the SQL database, and the
Redis servers. In particular, Figure 6a shows the average CPU usage levels of the containers
that manage the PHP Web Server. As one can see, the average CPU load is not constant, but
there are load peaks; these are due to user activity that occurs intensely only in certain time
bands. Figure 6b shows the average CPU usage of the SQL database. Generally, the CPU
usage of the database with our application is particularly low, the peaks that are visible
in Figure are due to a script, which runs every night at 1:00 a.m. and cleans the system
from the activity that users carried out during the previous day by securely archiving data.
In Figure 6c, you can see the average RAM trend of the containers that manage the PHP
Web Server. Our application needs a modest amount of RAM: the average occupation is
generally less than 40% of the 2048 MiB available on each node.

It is interesting to note that there are areas in the graph where the peaks are very close to
zero: this is due to a system update that we have carried out and which involved the restart
of the containers. The technique we use to carry out an update, or the implementation
of a security patch in the code used by the nodes, is the following: we run two or more
nodes with the updated code, which runs in parallel to the nodes that use the previous
code version. After the new nodes are started up and operational, in about 5 min, the old
nodes will gradually stop working and will be shut down and decommissioned. In this



Electronics 2022, 11, 450 13 of 16

way, users will not notice any disruptions and the continuity of the service is guaranteed.
Upon restart, the new nodes are restarted with a RAM usage of less than 10%.

Version January 29, 2022 submitted to Electronics 13 of 17

by securely archiving data. In Figure 6c, you can see the average RAM trend of the containers that451

manage the PHP Web Server. Our application needs a modest amount of RAM: the average occupation452

is generally less than 40% of the 2048 MiB available on each node.453

(a) (b)

(c) (d)

Figure 6. Average CPU and RAM usage of the clusters. (a) CPU usage of the Docker cluster; (b) CPU
usage of the database cluster; (c RAM usage of the Docker cluster) ;(d) RAM usage of the Redis cluster.

It is interesting to note that there are areas in the graph where the peaks are very close to zero: this454

is due to a system update that we have carried out and which involved the restart of the containers.455

The technique we use to carry out an update, or the implementation of a security patch in the code456

used by the nodes, is the following: we run two or more nodes with the updated code, which runs457

in parallel to the nodes that use the previous code version. After the new nodes are started up and458

operational, in about 5 minutes, the old nodes will gradually stop working and will be shut down and459

decommissioned. In this way, users will not notice any disruptions and the continuity of the service is460

guaranteed. Upon restart, the new nodes are restarted with a RAM usage of less than 10%.461

In Figure 6d, you can see the average RAM trend of the Redis servers. Our application uses Redis462

servers only for user session management. The session is defined by a simple hexadecimal string,463

which occupies a minimal amount of memory, which is why even with more than 1000 daily users, we464

observe an average use of RAM of less than 3% of the 512 MiB made available to the server.465

7. Conclusion466

This article discusses techniques for efficiently delivering web applications that provide an467

adequate level of service while optimising operating costs. We believe that what is presented in our use468

Figure 6. Average CPU and RAM usage of the clusters. (a) CPU usage of the Docker cluster; (b) CPU
usage of the database cluster; (c) RAM usage of the Docker cluster; (d) RAM usage of the Redis cluster.

In Figure 6d, you can see the average RAM trend of the Redis servers. Our application
uses Redis servers only for user session management. The session is defined by a simple
hexadecimal string, which occupies a minimal amount of memory, which is why, even
with more than 1000 daily users, we observe an average use of RAM of less than 3% of the
512 MiB made available to the server.

7. Conclusions

This article discusses techniques for efficiently delivering web applications that pro-
vide an adequate level of service while optimising operating costs. We believe that what
is presented in our use case can help organisations efficiently release their applications,
guaranteeing the respect of personal data and the durability of the stored one. The solution
presented lends itself to be implemented with different Cloud platforms and is based on
open solutions, limiting the lock-in phenomenon by various Cloud providers. This paper
also presents a possible implementation of a service that guarantees high fault tolerance and
the ability to scale its computational power according to the number of incoming requests
from users. We have discussed an efficient and modern model on which applications
running in the cloud can be based. The architecture is made up of two availability zones
in an Active/Active (50/50) configuration that are meant to support each other. In fact,
if there is a technical problem in the main availability zone, the secondary availability



Electronics 2022, 11, 450 14 of 16

zone will be perfectly capable of operating and ensuring the continuity of the service
provided. The comparison between the various graphs that have been widely discussed in
Sections 5 and 6 makes the goodness of the choices made clear; in fact, the data relative to
the response times measured for the application in the same temporal range show excellent
values with peaks that are associated with events of exceptional load on the server, and,
even though they are considerable, they do not exceed two seconds. This leads us to
conclude that the infrastructure associated with the presented case study has the optimal
characteristics to allow access to the application, which is fluid and constantly able to serve
users with optimal service levels.

Author Contributions: Conceptualization, D.P., M.S. and O.G.; Data curation, D.P., M.S. and O.G.;
Investigation, D.P., M.S. and O.G.; Methodology, D.P., M.S. and O.G.; Software, D.P., M.S.; Supervision,
O.G.; Validation, D.P., M.S.; Writing—original draft, D.P., M.S. and O.G.; Writing—review & editing,
D.P., M.S. and O.G. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the European Chemistry Thematic Network (ECTN),
EchemTestr project, through recurrent donations to the LibreEOL Project of the Department of
Mathematics and Computer Science of Perugia University and in part by the Italian Not for profit
organization ICCSA (Fiscal ID IT01814970768).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Fox, G.C.; Williams, R.D.; Messina, P.C. Parallel Computing Works! Elsevier: Amsterdam, The Netherlands, 2014.
2. Golub, G.H.; Ortega, J.M. Scientific Computing: An Introduction with Parallel Computing; Elsevier: Amsterdam, The Netherlands,

2014.
3. Stănciulescu, G.C.; Dumitrescu, F. Optimizing the IT Structures of Tourism SMEs Using Modern Applications and Resources

(Cloud). Procedia Econ. Financ. 2014, 15, 1769–1778. [CrossRef]
4. Saura, J.R.; Ribeiro-Soriano, D.; Palacios-Marqués, D. Evaluating security and privacy issues of social networks based information

systems in Industry 4.0. Enterp. Inf. Syst. 2021, 1–17. [CrossRef]
5. Rashid, Z.N.; Zeebaree, S.R.; Shengul, A. Design and analysis of proposed remote controlling distributed parallel computing

system over the cloud. In Proceedings of the IEEE 2019 International Conference on Advanced Science and Engineering (ICOASE),
Zakho, Iraq, 2–4 April 2019; pp. 118–123.

6. Alzakholi, O.; Haji, L.; Shukur, H.; Zebari, R.; Abas, S.; Sadeeq, M. Comparison among cloud technologies and cloud performance.
J. Appl. Sci. Technol. Trends 2020, 1, 40–47. [CrossRef]

7. Madougou, S.; Varbanescu, A.L.; Laat, C.D.; Nieuwpoort, R.V. A Tool for Bottleneck Analysis and Performance Prediction for
GPU-Accelerated Applications. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Chicago, IL, USA, 23–27 May 2016; pp. 641–652. [CrossRef]

8. Li, H.; Weng, S.; Tong, J.; He, T.; Chen, W.; Sun, M.; Shen, Y. Composition of resource-service chain based on evolutionary
algorithm in distributed cloud manufacturing systems. IEEE Access 2020, 8, 19911–19920. [CrossRef]

9. Biondi, G.; Franzoni, V.; Gervasi, O.; Perri, D. An Approach for Improving Automatic Mouth Emotion Recognition. In
Computational Science and Its Applications—ICCSA 2019, Proceedings of the 19th International Conference, Saint Petersburg, Russia, 14
July 2019; Proceedings, Part I, Lecture Notes in Computer Science; Misra, S., Gervasi, O., Murgante, B., Stankova, E.N., Korkhov,
V., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.; Springer Nature AG: Cham, Switzerland, 2019;
Volume 11619, pp. 649–664. [CrossRef]

10. Franzoni, V.; Tasso, S.; Pallottelli, S.; Perri, D. Sharing Linkable Learning Objects with the Use of Metadata and a Taxonomy
Assistant for Categorization. In Computational Science and Its Applications—ICCSA 2019, Proceedings of the 19th International
Conference, Saint Petersburg, Russia, 14 July 2019; Proceedings, Part II, Lecture Notes in Computer Science; Misra, S., Gervasi, O.,
Murgante, B., Stankova, E.N., Korkhov, V., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Eds.; Springer
Nature: London, UK, 2019; Volume 11620, pp. 336–348. [CrossRef]

11. Benedetti, P.; Perri, D.; Simonetti, M.; Gervasi, O.; Reali, G.; Femminella, M. Skin Cancer Classification Using Inception Network
and Transfer Learning. In Computational Science and Its Applications—ICCSA 2020, Proceedings of the 20th International Conference,
Cagliari, Italy, 1–4 July 2020; Proceedings, Part I, Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau,
C., Blecic, I., Taniar, D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., et al., Eds.; Springer Nature: London, UK,
2020; Volume 12249, pp. 536–545. [CrossRef]

http://doi.org/10.1016/S2212-5671(14)00653-4
http://dx.doi.org/10.1080/17517575.2021.1913765
http://dx.doi.org/10.38094/jastt1219
http://dx.doi.org/10.1109/IPDPSW.2016.198
http://dx.doi.org/10.1109/ACCESS.2020.2969234
http://dx.doi.org/10.1007/978-3-030-24289-3_48
http://dx.doi.org/10.1007/978-3-030-24296-1_28
https://doi.org/10.1007/978-3-030-58799-4_39


Electronics 2022, 11, 450 15 of 16

12. Laganà, A.; Gervasi, O.; Tasso, S.; Perri, D.; Franciosa, F. The ECTN Virtual Education Community Prosumer Model for
Promoting and Assessing Chemical Knowledge. In Computational Science and Its Applications—ICCSA 2018, Proceedings of the 18th
International Conference, Melbourne, VIC, Australia, 2–5 July 2018; Proceedings, Part V, Lecture Notes in Computer Science; Gervasi,
O., Murgante, B., Misra, S., Stankova, E.N., Torre, C.M., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O., Tarantino, E., Ryu, Y., Eds.;
Springer: Berlin, Germany, 2018; Volume 10964, pp. 533–548. [CrossRef]

13. Perri, D.; Simonetti, M.; Lombardi, A.; Lago, N.F.; Gervasi, O. Binary Classification of Proteins by a Machine Learning Approach.
In Computational Science and Its Applications—ICCSA 2020, Proceedings of the 20th International Conference, Cagliari, Italy, 1–4 July
2020; Proceedings, Part VII, Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar,
D., Apduhan, B.O., Rocha, A.M.A.C., Tarantino, E., Torre, C.M., et al., Eds.; Springer Nature: London, UK, 2020; Volume 12255,
pp. 549–558. [CrossRef]

14. Delibasis, K.; Maglogiannis, I.; Georgakopoulos, S.; Kottari, K.; Plagianakos, V. Assessing image analysis filters as augmented
input to convolutional neural networks for image classification. In International Conference on Artificial Neural Networks; Springer
Nature: London, UK, 2018; pp. 188–196.

15. Georgakopoulos, S.V.; Plagianakos, V.P. A novel adaptive learning rate algorithm for convolutional neural network training. In
International Conference on Engineering Applications of Neural Networks; Springer: Berlin, Germany, 2017; pp. 327–336.

16. Chakrabarty, S.; Engels, D.W. Secure Smart Cities Framework Using IoT and AI. In Proceedings of the IEEE 2020 Global
Conference on Artificial Intelligence and Internet of Things (GCAIoT), Dubai, United Arab Emirates, 12–16 December 2020;
pp. 1–6.

17. Gao, J.; Bi, W.; Liu, X.; Li, J.; Shi, S. Generating Multiple Diverse Responses for Short-Text Conversation. Proc. AAAI Conf. Artif.
Intell. 2019, 33, 6383–6390. [CrossRef]

18. Bulman, G.; Fairlie, R. Chapter 5—Technology and Education: Computers, Software, and the Internet. In Handbook of the Economics
of Education; Hanushek, E.A., Machin, S., Woessmann, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; Volume 5, pp.
239–280. [CrossRef]

19. Chauhan, S. A meta-analysis of the impact of technology on learning effectiveness of elementary students. Comput. Educ. 2017,
105, 14–30. [CrossRef]

20. Simonetti, M.; Perri, D.; Amato, N.; Gervasi, O. Teaching Math with the Help of Virtual Reality. In Computational Science and
Its Applications—ICCSA 2020, Proceedings of the 20th International Conference, Cagliari, Italy, 1–4 July 2020; Proceedings, Part VII,
Lecture Notes in Computer Science; Gervasi, O., Murgante, B., Misra, S., Garau, C., Blecic, I., Taniar, D., Apduhan, B.O., Rocha,
A.M.A.C., Tarantino, E., Torre, C.M., et al., Eds.; Springer Nature: London, UK, 2020; Volume 12255, pp. 799–809. [CrossRef]

21. Au-Yong-Oliveira, M.; Gonçalves, R.; Martins, J.; Branco, F. The social impact of technology on millennials and consequences for
higher education and leadership. Telemat. Inform. 2018, 35, 954–963. [CrossRef]

22. Perri, D.; Simonetti, M.; Tasso, S.; Gervasi, O. Learning Mathematics in an Immersive Way. In Software Usability; IntechOpen:
London, UK, 2021.

23. Park, E.; Del Pobil, A.P.; Kwon, S.J. The role of Internet of Things (IoT) in smart cities: Technology roadmap-oriented approaches.
Sustainability 2018, 10, 1388. [CrossRef]

24. Azzawi, M.A.; Hassan, R.; Bakar, K.A.A. A review on Internet of Things (IoT) in healthcare. Int. J. Appl. Eng. Res. 2016,
11, 10216–10221.

25. Saura, J.R.; Palacios-Marqués, D.; Ribeiro-Soriano, D. Using data mining techniques to explore security issues in smart living
environments in Twitter. Comput. Commun. 2021, 179, 285–295. [CrossRef]

26. Saggi, M.K.; Jain, S. A survey towards an integration of big data analytics to big insights for value-creation. Inf. Process. Manag.
2018, 54, 758–790. [CrossRef]

27. Mariotti, M.; Gervasi, O.; Vella, F.; Cuzzocrea, A.; Costantini, A. Strategies and systems towards grids and clouds integration: A
DBMS-based solution. Future Gener. Comput. Syst. 2018, 88, 718–729. [CrossRef]

28. Abdelbaky, M.; Diaz-Montes, J.; Parashar, M.; Unuvar, M.; Steinder, M. Docker Containers across Multiple Clouds and Data
Centers. In Proceedings of the 2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC), Limassol,
Cyprus, 7–10 December 2015; pp. 368–371. [CrossRef]

29. Wan, X.; Guan, X.; Wang, T.; Bai, G.; Choi, B.Y. Application deployment using Microservice and Docker containers: Framework
and optimization. J. Netw. Comput. Appl. 2018, 119, 97–109. [CrossRef]

30. Guan, X.; Wan, X.; Choi, B.Y.; Song, S.; Zhu, J. Application Oriented Dynamic Resource Allocation for Data Centers Using Docker
Containers. IEEE Commun. Lett. 2017, 21, 504–507. [CrossRef]

31. Casalicchio, E.; Iannucci, S. The state-of-the-art in container technologies: Application, orchestration and security. Concurr.
Comput. Pract. Exp. 2020, 32, e5668. [CrossRef]

32. Naouri, A.; Wu, H.; Nouri, N.A.; Dhelim, S.; Ning, H. A Novel Framework for Mobile-Edge Computing by Optimizing Task
Offloading. IEEE Internet Things J. 2021, 8, 13065–13076. [CrossRef]

33. Maliszewski, A.M.; Vogel, A.; Griebler, D.; Roloff, E.; Fernandes, L.G.; Philippe O. A., N. Minimizing Communication Overheads in
Container-based Clouds for HPC Applications. In Proceedings of the 2019 IEEE Symposium on Computers and Communications
(ISCC), Barcelona, Spain, 29 June–3 July 2019; pp. 1–6. [CrossRef]

http://dx.doi.org/10.1007/978-3-319-95174-4_42
https://doi.org/10.1007/978-3-030-58820-5_41
http://dx.doi.org/10.1609/aaai.v33i01.33016383
http://dx.doi.org/10.1016/B978-0-444-63459-7.00005-1
http://dx.doi.org/10.1016/j.compedu.2016.11.005
http://dx.doi.org/10.1007/978-3-030-58820-5_57
http://dx.doi.org/10.1016/j.tele.2017.10.007
http://dx.doi.org/10.3390/su10051388
http://dx.doi.org/10.1016/j.comcom.2021.08.021
http://dx.doi.org/10.1016/j.ipm.2018.01.010
http://dx.doi.org/10.1016/j.future.2017.02.047
http://dx.doi.org/10.1109/UCC.2015.58
http://dx.doi.org/10.1016/j.jnca.2018.07.003
http://dx.doi.org/10.1109/LCOMM.2016.2644658
http://dx.doi.org/10.1002/cpe.5668
http://dx.doi.org/10.1109/JIOT.2021.3064225
http://dx.doi.org/10.1109/ISCC47284.2019.8969716


Electronics 2022, 11, 450 16 of 16

34. Zhang, W.Z.; Holland, D.H. Using Containers to Execute SQL Queries in a Cloud. In Proceedings of the 2018 IEEE/ACM
International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December
2018; pp. 26–27. [CrossRef]

35. Al-Masni, M.A.; Al-Antari, M.A.; Park, J.M.; Gi, G.; Kim, T.Y.; Rivera, P.; Valarezo, E.; Choi, M.T.; Han, S.M.; Kim, T.S. Simultaneous
detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput.
Methods Programs Biomed. 2018, 157, 85–94. [CrossRef]

36. Chang, V. Towards a big data system disaster recovery in a private cloud. Ad Hoc Netw. 2015, 35, 65–82. [CrossRef]
37. Khoshkholghi, M.A.; Abdullah, A.; Latip, R.; Subramaniam, S.; Othman, M. Disaster Recovery in Cloud Computing: A Survey.

Comput. Inf. Sci. 2014, 7, 39–54. [CrossRef]
38. Hamadah, S. Cloud-based disaster recovery and planning models: An overview. ICIC Express Lett. 2019, 13, 593–599.
39. Al Nuaimi, K.; Mohamed, N.; Al Nuaimi, M.; Al-Jaroodi, J. A survey of load balancing in cloud computing: Challenges and

algorithms. In Proceedings of the IEEE 2012 Symposium on Network Cloud Computing and Applications, Cambridge, MA,
USA, 23–25 August 2012; pp. 137–142.

40. Mishra, S.K.; Sahoo, B.; Parida, P.P. Load balancing in cloud computing: A big picture. J. King Saud-Univ.-Comput. Inf. Sci. 2020,
32, 149–158. [CrossRef]

41. Mesbahi, M.; Rahmani, A.M. Load balancing in cloud computing: A state of the art survey. Int. J. Mod. Educ. Comput. Sci. 2016,
8, 64. [CrossRef]

42. Matallah, H.; Belalem, G.; Bouamrane, K. Evaluation of NoSQL databases: MongoDB, Cassandra, HBase, Redis, Couchbase,
OrientDB. Int. J. Softw. Sci. Comput. Intell. (IJSSCI) 2020, 12, 71–91. [CrossRef]

43. Tongkaw, S.; Tongkaw, A. A comparison of database performance of MariaDB and MySQL with OLTP workload. In Proceedings
of the 2016 IEEE conference on open systems (ICOS), Langkawi Island, Kedah, 10–12 October 2016; pp. 117–119.

44. Zaslavskiy, M.; Kaluzhniy, A.; Berlenko, T.; Kinyaev, I.; Krinkin, K.; Turenko, T. Full automated continuous integration and testing
infrastructure for MaxScale and MariaDB. In Proceedings of the IEEE 2016 19th Conference of Open Innovations Association
(FRUCT), Jyväskylä, Finland, 7–11 November 2016; pp. 273–278.

45. Feuerlicht, G.; Pokornỳ, J. Can relational DBMS scale up to the cloud? In Information Systems Development; Springer: Berlin,
Germany, 2013; pp. 317–328.

46. Boettiger, C. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 2015, 49, 71–79. [CrossRef]
47. Turnbull, J. The Docker Book: Containerization Is the New Virtualization; Glitch: New York, NY, USA, 2014.
48. Vaquero, L.M.; Rodero-Merino, L.; Buyya, R. Dynamically scaling applications in the cloud. ACM SIGCOMM Comput. Commun.

Rev. 2011, 41, 45–52. [CrossRef]
49. Papadopoulos, P.; Pitropakis, N.; Buchanan, W.J.; Lo, O.; Katsikas, S. Privacy-Preserving Passive DNS. Computers 2020, 9, 64.

[CrossRef]
50. Betarte, G.; Giménez, E.; Martínez, R.; Álvaro, P. Machine learning-assisted virtual patching of web applications. arXiv 2018,

arXiv:cs.CR/1803.05529.
51. Jin, Y.; Tomoishi, M.; Matsuura, S.; Kitaguchi, Y. A secure container-based backup mechanism to survive destructive ransomware

attacks. In Proceedings of the IEEE 2018 International Conference on Computing, Networking and Communications (ICNC),
Maui, HI, USA, 5–8 March 2018; pp. 1–6.

http://dx.doi.org/10.1109/UCC-Companion.2018.00028
http://dx.doi.org/10.1016/j.cmpb.2018.01.017
http://dx.doi.org/10.1016/j.adhoc.2015.07.012
http://dx.doi.org/10.5539/cis.v7n4p39
http://dx.doi.org/10.1016/j.jksuci.2018.01.003
http://dx.doi.org/10.5815/ijmecs.2016.03.08
http://dx.doi.org/10.4018/IJSSCI.2020100105
http://dx.doi.org/10.1145/2723872.2723882
http://dx.doi.org/10.1145/1925861.1925869
http://dx.doi.org/10.3390/computers9030064

	Introduction
	Related Works
	Disaster Recovery
	The Proposed System Architecture
	The Load Balancer
	The Redis Database
	The SQL Database
	Storage Configuration
	The Containers in the Backend
	Auto-Scaling
	DNS Server
	The Mail Server
	WAF
	Backup

	Discussion
	Results
	Conclusions
	References

