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Abstract: The recent introduction of smart manufacturing, also called the ‘smart factory’, has made
it possible to collect a significant number of multi-variate data from Internet of Things devices or
sensors. Quality control using these data in the manufacturing process can play a major role in
preventing unexpected time and economic losses. However, the extraction of information about the
manufacturing process is limited when there are missing values in the data and a data imbalance set.
In this study, we improve the quality classification performance by solving the problem of missing
values and data imbalances that can occur in the manufacturing process. This study proceeds with
data cleansing, data substitution, data scaling, a data balancing model methodology, and evaluation.
Five data balancing methods and a generative adversarial network (GAN) were used to proceed with
data imbalance processing. The proposed schemes achieved an F1 score that was 0.5 higher than the
F1 score of previous studies that used the same data. The data preprocessing combination proposed
in this study is intended to be used to solve the problem of missing values and imbalances that occur
in the manufacturing process.

Keywords: class imbalance problem; skewed data; missing data; semiconductor quality data; data
classification; machine learning

1. Introduction

Recently, interest in the “smart factory” has been increasing for the improvement of
manufacturing competitiveness, and with the development of information and communi-
cations technology (ICT), manufacturing companies are making great efforts to increase
production efficiency by analyzing data that can be collected during the manufacturing
process. As the application of sensing technology is increasing, the amount of data collected
during the manufacturing process is also constantly increasing.

Machine learning and deep learning are being used as methods to uncover meaningful
information about process states from the big data of complex manufacturing processes, and
they are often used to explore important variables for quality improvement or information
that determines quality. In this case, good performance is achieved when the collected data
are sufficiently large and the classes are evenly distributed. However, there are sometimes
missing values in the sensor data collected for equipment failure, maintenance, and the
repair of equipment [1], and missing values in the data obtained in real time affect the
final performance of machine learning models [2]. In addition, during the manufacturing
process, a data imbalance can occur when there are many samples of good products
and insufficient data for samples of defective products. In the case of a dataset with an
imbalanced class, the model does not learn properly on the entire dataset, but is biased
to a large number of classes, which causes problems in data analysis [3]. For example,
because most of the class variables for the data used in the quality classification model are
good products, the quality classification model that learns from these data classifies most
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products as good products. A model trained with imbalanced data classifies most of the
results as the majority class, because the decision boundary of the model is biased toward a
minority class [4]. As a result, although the overall accuracy of the model is high, a data
imbalance occurs where a small number of classes cannot be classified properly.

As many IoT sensors will be attached in the future, it is expected that the problem
of missing values and data imbalances in the collected data will continue to occur. In this
study, several models are proposed to improve missing data values and data imbalances
to obtain meaningful results, such as results for the improvement of quality classification
accuracy. To this end, we propose a method that solves the problem of missing values and
imbalances in the data and shows the most optimal performance. In particular, by using
the data collected from sensors in the semiconductor manufacturing process to improve
missing data values and imbalance problems, we intend to obtain meaningful results for
an improvement in quality classification accuracy. Therefore, the purpose of this study is to
remedy the missing values and imbalances in the collected data using machine learning
and deep learning methods for quality control in the manufacturing process and to improve
the quality classification performance. Table 1 shows the research questions for this study,
and the approaches considered in this study for each question.

Table 1. Research questions and approaches.

Questions Approaches

How can missing values in the data
be replaced?

Use single and multiple imputation methods to replace
missing data

Which methodology can one use to
address data imbalances?

Use legacy simple oversampling, hybrid sampling, and
a GAN

How does one evaluate the
performance of quality classification?

Use the F1 score as an evaluation indicator considering
the characteristics of imbalanced data

This study uses the Semiconductor Manufacturing (SECOM) dataset, which is avail-
able from the University of California, Irvine (UCI) machine learning repository. The
SECOM dataset contains 1567 instances taken from a wafer fabrication production line in
the semiconductor industry. Each instance is a vector of attributes, that is, a timestamp
and 590 sensor measurements plus a label for the Pass/Fail test. Some missing values
exist. In the case of the Pass/Fail test, which indicates the quality of the semiconductor
manufacturing process, −1 means good and 1 means bad. For convenience, in this study,
good was set to 0 and bad was set to −1.

This paper is structured as follows. Section 2 reviews the existing literature related
to this study, and Section 3 introduces the theoretical background of the methodologies
used in this study. In Section 4, the data preprocessing process is explained, and in
Section 5, the experiment conducted in this study is explained in detail and the results on
the significance of the quality classification performance evaluation and parameters are
interpreted. Section 6 summarizes the research results and presents a conclusion.

2. Literature Review
2.1. Machine Learning Studies Using the SECOM Dataset

In several previous studies, various machine learning techniques were used to improve
the quality classification performance with SECOM data. Ref. [5] built a model using
various techniques, such as support vector machine (SVM), naive Bayes, and decision tree
techniques, to predict quality in the semiconductor manufacturing process. They tried to
improve the model performance by considering missing values that could occur in data
collected in the real world using the SECOM dataset and by studying an efficient method
for replacing missing values. Ref. [6] tried to improve the performance of the methodology,
and they used the Boruta and MARS methods to find the features most related to model
performance and to train the model. Ref. [7] studied the performance improvement of
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the classification model using random oversampling to select 25% of the highly correlated
features using the dataset and to solve the data imbalance problem. Ref. [8] searched for
the model with the highest performance by comparing several models, such as decision
tree, naive Bayes, and logistic regression models. Ref. [9] applied the synthetic minority
oversampling technique (SMOTE) and random undersampling to solve a data imbalance
and applied it to some methodologies to improve the model performance.

In previous studies, missing values and data imbalances were partially considered,
but the performance of the proposed classification model was low. In this study, a single
replacement method and multiple replacement methods were applied to replace missing
values, and various methods were applied to solve the data imbalance problem to improve
the quality classification performance and propose an efficient data preprocessing method.

2.2. Mutiple Imputation Studies for Missing Data

Ref. [10] proposed an algorithm that enables the improvement of the classification
model’s performance by replacing missing values using a weighted distance metric based
on mutual information using k-nearest neighbor (KNN). Ref. [11] randomly introduced
missing values in 10 open datasets at 10%, 20%, and 30% ratios, and compared them with
widely used methods for replacing missing values, such as KNN, multiple imputations
by chained equations (MICE), and MissPALasso. They observed the best performance
when using MissForest to replace missing values. Ref. [12] found that missing values are
generally present in all datasets and studied ways to use KNN, fuzzy k-means, singular
value decomposition (SVD), Bayesian principal component analysis (bPCA), and MICE to
explore the most efficient way to replace missing values. Ref. [13] trained a model to replace
existing missing values with the median, expectation–maximization, and KNN techniques
to compare the models’ performance in predicting the survival of breast cancer patients. It
was shown that the best results were obtained when missing values were replaced using
KNN. Ref. [14] conducted a study to propose an appropriate replacement set for missing
values by structuring and classifying missing patterns and applying a probabilistic multiple
imputation approach to solve the problem of data replacement in the case of multivariate
time series data.

Since most of the existing classification algorithms learn under the assumption that
the number of data points belonging to each class is almost the same, when the number of
data points in each class is imbalanced, the classification accuracy is somewhat lowered. In
this study, to replace missing data that may be caused by the maintenance or breakdown
of equipment, the linear interpolation, poly interpolation, KNN, MICE, and MissForest
methods were used.

2.3. Data Imblance Studies

There is a specific data sampling technique that is used to resolve data imbalances.
Data sampling is a technique for creating a balanced dataset by adjusting the number of
samples from the majority class (occupying a large part of the sample) and the minority
class (occupying a small part of the sample). Data sampling is divided into an undersam-
pling technique and an oversampling technique, according to which the number of samples
is adjusted [15]. Various methodologies have been studied to solve the classification prob-
lem in the field of machine learning. However, because most of the existing classification
algorithms learn under the assumption that the number of data points belonging to each
class is almost the same, the classification accuracy will somewhat lower when the amount
of data in the classes is imbalanced. To address these issues, Ref. [16] proposed an oversam-
pling technique to balance the amount of data by learning features belonging to a class with
a small amount of data through the application of conditional generative adversarial net-
works (CGANs), which restrict the learning method through conditions and by generating
data similar to real data. In this study, SMOTE, SMOTE-Tomek, SMOTE-ENN, Adaptive
Synthetic Sampling (ADASYN), and a GAN were used to improve the model performance



Electronics 2022, 11, 477 4 of 15

to deal with the data imbalance problem. Table 2 summarized the related literatures and
their proposed algorithm.

Table 2. Summary of the literature review.

Author Algorithm

Lamari et al. [17] Hybrid sampling method using SMOTE-ENN
Chawla et al. [18] Combination of methods
Batista et al. [19] SMOTE-Tomek and SMOTE-ENN

Liang [20] Hybrid sampling method using bagging
Branco et al. [21] Research on the imbalanced data problem

3. Theoretical Background
3.1. Data Imputation Methodology

Linear Interpolation: When the values of two points are given, this method performs
a linear calculation according to the straight-line distance to estimate the value located
between the points, and it is the simplest method for replacing missing values.
Poly Interpolation: As a generalization of linear interpolation, polynomial interpolation
increases the computational complexity of linear interpolation because the degree of the
polynomial increases as the number of data points increases. In this study, as a basic
methodology for comparison with other methodologies, missing values in the data were
replaced for the case of two-degree polynomials.
KNN (K-Nearest Neighbor): This is a method for replacing missing values by classifying
the group with the largest number of k elements closest to the analysis target. If the
missing value is categorical, it is replaced with the mode of the neighboring data, and if
it is continuous, it is generally replaced with the median of the neighboring data. When
KNN is used to replace missing values, it can be applied only to independent variables, not
dependent variables, and when it is applied to target variables, its predictability decreases.
MICE: Instead of replacing the missing value once, it is replaced while checking the
uncertainty of the missing value by replacing it several times. The MICE methodology can
be used for both discrete and continuous variables. By using the dataset in which the initial
missing values exist, several similar datasets with the replaced values are created. After
estimating the propensity score through generalized boosted modeling (GBM) on a similar
dataset, a final alternative dataset is provided using the weighted regression analysis of
propensity scores to derive summed estimates according to Rubin’s rules.
MissForest: Using this method, it is possible to replace missing values in numerical and
categorical variables, and the response to outliers is insensitive. Using each variable and
response variable, a random forest is trained to obtain a predicted value.

3.2. Methodologies for Handling Data Imbalances

SMOTE: This is an oversampling method that takes a sample of a class with a small number
of data points, finds k neighbor data samples, and generates a random value between the
samples to create and add a new sample. There is no data loss, and the overfitting caused
by simply duplicating the values of a minority class is alleviated compared with when
random oversampling is performed. Bootstrapping or KNN techniques are used, and it is
the most-used method for generating synthetic data among the oversampling methods. It
has the disadvantage of being weak in predicting data for new cases.
SMOTE-Tomek: TomekLinks are a pair of data points belonging to different classes, when
there are no other data points that are closer to each other. As shown in Figure 1b, if two
data points of different classes are very close together, they become TomekLinks. It is a
method for finding close pairs of data points and then removing from the pairs the data
belonging to the majority class. Because this introduces the problem of data loss, it is
necessary to exercise care in its application. However, by removing multiple classes, the
data imbalance problem can be solved, and, at the same time, as the distance between the
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two classes increases, the boundary line is pushed toward the multiple classes, making the
classification problem easier.

Figure 1. Creation of TomekLinks.

SMOTE-ENN: In the ENN method, if the majority class of the observation’s KNN and
the observation’s class are different, then the observation and its KNN are deleted from
the dataset. This causes the majority class data around the minority class to disappear.
Therefore, the distinction between the minority class and the majority class becomes
relatively clear because all data having a minority class among the KNNs are removed.
ADASYN: This method was proposed to solve the overfitting problem of SMOTE and
to control the amount of synthesized data in order to more systematically generate them
according to the distribution of the surrounding data [22]. ADASYN generates synthetic
data according to the density of the data, and the synthetic data generation is inversely
proportional to the density of the minority class. A lot of synthetic data are generated when
there are few classes that are less dense.
GAN: A GAN is a deep learning model, as shown in Figure 2, that consists of a generator
that generates virtual data based on the data distribution and a discriminator that separates
the generated data from the real data. The generator receives the z value at random,
generates a sample, and trains it to be similar to the real data so that it can be judged as
real data. The discriminator trains the generated data through the real data to be able to
distinguish it from the real data. The generator and discriminator learn in such a way that
they compete with each other for opposite purposes, and when the discriminator cannot
distinguish between real data and generated data, the learning procedure ends.

Figure 2. GAN framework.

3.3. Machine Learning Classification Methodologies

Logistic Regression: This is a supervised learning model that predicts the probability
that data will belong to a certain category as a value between 0 and 1 and classifies it as
belonging to one or the other category according to the probability.
Decision Tree: This is a supervised learning model that classifies data according to specific
criteria and splits the variable area into two for each branch. As a non-parametric model,
assumptions such as linearity, normality, and equal variance are not required. However,
because continuous variables are treated as discontinuous values, the probability of predic-
tion errors near the boundary of separation is high, and because the continuous variables
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depend only on the training data, there is a high probability of instability in the prediction
of new data.
Random Forest: This is a model for addressing the tendency of overfitting to the training
data that occurs in decision trees. A random forest is constructed through multiple decision
trees, characteristic data values are repeatedly selected from a data sample, and the most
frequent prediction results are selected using multiple decision trees to determine the final
prediction value.
SVC(Support Vector Classification): This is a predictive model that has been actively used
since the late 1990s after it was proposed by [23]. Given a set of data belonging to one of two
classes, the algorithm finds the boundary with the largest width as a criterion to determine
which class the new data belong to. Linear classification and non-linear classification are
possible, and there are not many parameters to consider when creating a model. A model
can be created even with a small amount of data, and before deep learning was used, it was
considered to be the most technologically advanced model among the classification models.

4. Proposed Methodology

The proposed methodology of this study involves three stages: Data Preprocessing,
Building a Classification Model, and Evaluation, as shown in Figure 3. “Data Preprocessing”
proceeds with Data Cleaning, Data Imputation, Data Scaling, and Data Imbalance Handling.
“Building a Classification Model” proceeds with Time Series Cross Validation, Searching
for Hyperparameters, and Optimizing the Classification Model. Finally, “Evaluation”
tries to find the optimal classification performance and combination of data preprocessing
procedures relative to the GAN used to deal with the imbalance.

Figure 3. Framework for imputation and imbalance adjustment.

4.1. Data Preprocessing
4.1.1. Data Cleansing

Columns with missing values and single values were removed before the preprocess-
ing and analysis were performed. First, as shown in Table 3, the proportion of data values
that were missing for each variable was identified. If the proportion of missing values
before replacement was more than half, it was judged that there was no reason to replace
missing values, and the corresponding 32 variables were excluded from the analysis.
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Table 3. Ratios of missing values in the dataset.

Ratio of Missing Values 91.2% 85.6% 65% 60.6% 50.7% ≤17.4%

Number of Features 4 4 12 4 8 558

A total of 122 variables with only a single value were excluded, as they were judged
to be irrelevant to the analysis. Except for two cases, out of a total of 590 features, and not
including features with Pass/Fail values indicating data quality, 436 features were used
for analysis.

4.1.2. Data Imputation

In order to replace missing data with substituted values, we used five methods: linear
interpolation, poly interpolation, KNN, MICE, and MissForest, as described in Section 3.1.
We generated the substituted datasets. In the case of KNN, datasets were generated
according to the values of k, 2, 4, and 6.

4.1.3. Data Scaling

In the SECOM dataset, the data size was normalized and adjusted to prevent the
problem of converging to zero or diverging to infinity during the classification model
training process because specific feature values in the SECOM dataset are too large or too
small. As shown in Table 4, the average of each feature was changed to 0 and the variance
was changed to 1, so that all features had the same scale.

Table 4. Comparison before and after data adjustment.

Feature Number 0 7 9

Before Scaling

3026.640 0.118 0.013

2980.840 0.123 −0.009

2847.810 0.123 −0.008

3056.050 0.123 −0.004

Average 3024.392 0.122 −0.001

Variance 141.456 0 0

After Scaling

0.031 0.596 −0.261

−0.457 0.059 0.309

−2.267 0.463 0.717

0.567 0.134 1.448

Average 0 0 0

Variance 1 1 1

4.1.4. Data Imbalance Handling

As the last step of preprocessing, we used six methods in order to resolve the data
imbalance problem. These were random oversampling for the minority class, SMOTE,
SMOTE-Tomek, SMOTE-ENN, and ADASYN, which oversamples the minority class and
undersamples the majority class, and GAN, which generates balanced data by synthe-
sizing virtual data after learning the data of the insufficient class based on the actual
data distribution.

4.2. Building the Classifcation Model and Evaluation

Forty-two datasets were created by applying six methodologies to resolve data imbal-
ances in seven datasets that required replacement of missing values. By comparing the
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quality classification performance of the datasets, we tried to find the combination that
showed the best performance.

In order to prevent the overfitting of training data and testing data, we tried to achieve
optimal performance by the model by using the time series cross validation method, which
is one of the cross validation methods. In the existing cross validation method, because
training, testing, and verification are performed regardless of the time flow, the performance
of the current model may be high, but the performance cannot be guaranteed when future
data are learned. Therefore, in using time series cross validation, the time flow is divided
into regular intervals, and the verification interval is tuned so that it can be evaluated using
future data rather than the training interval.

In machine learning and deep learning, parameters are variables that can be checked
inside the model and then become values that can be calculated through data. They also
play an important role when learning a methodology, as they determine the performance of
the model. In the “building a classification model” stage, logistic regression, KNN, random
forest, decision tree, and SVC methodologies were used to classify the quality of the
semiconductor manufacturing process. In order for these methodologies to find the optimal
parameter settings and show higher performance for model training, a hyperparameter
search and model optimization were performed.

Finally, the model performance was calculated based on the F1 score. When the
data class has an imbalanced structure, the performance of the model can be accurately
evaluated using the F1 score. The F1 score is the harmonic average of Precision and Recall,
as shown below. Precision means the proportion of those whose original value is True
among those classified as True by the classification model, and Recall means the ratio of
what the classification model predicts as True among those that are actually True. Precision
is a measure of result relevancy, while Recall is a measure of how many truly relevant
results are returned.

F1 = 2 × 1
1

Precision + 1
Recall

= 2 × Precision × Recall
Precision + Recall

An analysis of variance (ANOVA) was performed to identify significant results in the
cases where missing data, imbalances, and hyperparameters were applied differently for
the five methods except for the GAN.

5. Experimental Setting and Results
5.1. Dataset

Among the 1567 total data observations in the SECOM dataset, 1463 (93.36%) had
good quality (Pass) and 104 (6.64%) had bad quality (Fail). The number of independent
variables in the data was 436, excluding the variables that had a large proportion of missing
values or that contained single values, and a binary variable representing a good or bad
status was used as a dependent variable. Additionally, some variables included missing
values, as in the example shown in Figure 4.

Figure 4. Example of identifying a missing value in the data of feature 562.
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5.2. Experimental Settings

Because the dataset contains a large number of features, the number of significant
features (from 5 to 40) was calculated to improve the performance of all methodologies.

In the case of logistic regression, the optimal performance of the model was calculated
by specifying the range of cost function values and the range of the solver that determines
the algorithm to be used for optimization.

In the case of KNN, the values of the metric k and the weight, which are methods for
measuring distance, are specified. The classification of new data varies depending on how
the distance is measured and how the standard is set. Additionally, if the value of k is too
small, the optimal conditions for the parameters are searched for because there is a risk
of overfitting, which yields high accuracy in the training process but low accuracy in the
testing process.

In the case of SVC, the parameter values of C, gamma, and kernel were specified.
Depending on the value of C, overfitting can be prevented. The larger the gamma, the
more accurate the model, and the smaller the gamma, the more overfitting can be pre-
vented. By specifying the value of the kernel, we want to achieve optimal learning by
changing the data to a higher level and discarding the necessary properties. In the case of
the random forest and decision tree methodologies, we tried to find the optimal method-
ology by designating max_features considering the ratio of referencing data variables,
min_samples_split considering the minimum amount of data for splitting nodes, and the
classification criterion.

Table 5 shows the hyperparameters of each model used in this study. In addition,
the level and setting values for each factor are also summarized in this table. The factors
and levels were set and analyzed in order to determine the significance between data
pre-processing combinations. The values of the factor for the imputation methodologies
were assigned serial numbers by the experimental methodology, so the values of KNN
(k = 2): 1, KNN (k = 4): 2, KNN (k = 6): 3, LI: 4, MICE: 5, MissForest: 6, and PI: 7 were
set. The methodologies related to the handling of imbalances were also set as ADASYN:
1, SMOTE: 2, Random Oversampling: 3, SMOTE-Tomek: 4, and SMOTE-ENN: 5. After
the classification model was analyzed, factor analysis was performed using the parameter
values for the top 10 F1 scores on each dataset.

Table 5. Python libraries used for the analysis.

Package Version Description

numpy 1.18.1 Provides useful functions for scientific calculations,
especially for handling multidimensional arrays

pandas 0.25.3 Widely used for data analysis

scikit-learn 0.23.0 Machine learning library

imbalanced-learn 0.7.0 Implements various sampling methods to solve the
imbalanced data problem

mlxtend 0.17.3 Composed of useful tools for common data science tasks

tqdm 4.42.1 Creates a progress bar on the fly and predicts the Time
to Completion (TTC) of a function or loop

keras 2.2.4 Makes it easy to handle deep learning engines such as
TensorFlow with python

As the parameters for the GAN experiment, the learning rate was set to 0.00001, the
momentum coefficient (beta) was 0.8, the activation function of the generator and the
discriminator was a rectified linear unit (ReLU) function with a coefficient of 0.2, and the
batch size was set to 32. The seven datasets generated by replacing missing data were
set to run 10,000 times. The Python version used for analysis was version 3.6.12, Jupyter
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was used as the integrated development environment, and the libraries used are shown in
Table 6.

Table 6. Model parameters and setting ranges for each methodology.

Method Hyperparameter Range Level Setting Value

Logistic
Regression

C [0.0001, 0.001, 0.01, 1, 10, 100, 1000] 7

solver [liblinear, newton-cg] 2 1,2

Feature 7 5,10,15,20,25,30,35

KNN

metric [manhattan, euclidean, minkowski] 3 1,2,3

weights [uniform, distance] 2 1,2

n_neighbors 1 <= k <= 21 3 1,2,3

Feature 5 15,20,25,30,35

SVC

C [0.001, 0.01, 0.1, 1] 4

gamma [0.01, 0.1, 1] 3

kernel [poly, rbf, linear] 3 1,2,3

Feature 5 15,20,25,30,35

Decision
Tree

max_features [auto, sqrt, log2] 3 1,2,3

min_samples_split 3 <= n <= 10 8 3,4,5,6,7,8,9,10

max_depth 1 <= n <= 10 9 1,3,4,5,6,7,8,9,10

criterion [gini, entropy] 2 1,2

Feature 7 5,10,15,20,25,30,35

Random
Forest

max_features [auto, sqrt, log2] 3 1,2,3

min_samples_split 3 <= n <= 10 6 3,4,5,6,7,8

criterion [gini, entropy] 2 1,2

Feature 6 5,10, 20,25,30,35

5.3. Results
5.3.1. Performance Evaluation of Classification Models

Table 7 shows the performance of the model that classified quality by imputation and
imbalance handling. When missing values were replaced using the KNN method with
k = 6 and data imbalance processing used the GAN, the F1 score was the highest at 0.915. It
can be seen that the method proposed in this study has a higher F1 score than the score of
0.192 by [8] and the score of 0.356 by [5], which are the results of studies conducted with the
same dataset. The GAN is a deep neural network composed of two networks, a generator,
and a discriminator. In this method, because the current network and other networks
compete and learn, it is possible to learn to imitate the distribution of the data, which seems
to provide better performance than the existing methods for resolving data imbalances.
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Table 7. Quality classification.

Random
Oversampling SMOTE SMOTE-

Tomek
SMOTE-

ENN ADASYN GAN

Linear
Interpolation 0.292 0.532 0.534 0.815 0.517 0.898

Poly
Interpolation 0.293 0.535 0.529 0.818 0.531 0.899

KNN (k = 2) 0.302 0.540 0.537 0.818 0.531 0.904

KNN (k = 4) 0.301 0.535 0.538 0.814 0.530 0.912

KNN (k = 6) 0.301 0.534 0.538 0.814 0.535 0.915

MICE 0.301 0.542 0.536 0.795 0.529 0.907

MissForest 0.301 0.540 0.538 0.817 0.519 0.889

5.3.2. Evaluation of Combinations of Classification Models for Data Preprocessing

As manufacturing processes undergo innovation, and a variety of data are collected,
the data imbalance problem will tend to increase. In order to solve this problem, the
quality classification performance can be improved using the GAN, but the GAN has
disadvantages in that it takes a long time to learn and requires a considerable amount of
computing power.

To supplement this, we propose a technique for finding the optimal data preprocessing
combination by identifying the significance between parameters in the methodologies
frequently used for classification.

For each methodology, to determine whether there is a significant difference in F1
scores between missing values, imbalances, and hyperparameters, the null hypothesis was
set as the absence of a difference, and then an ANOVA was performed. If the p-value is
smaller than the significance level, the null hypothesis can be rejected and the missing
value, imbalance, and hyperparameter can be judged to have significance. In this study, the
significance level was set to 0.05, and the results are shown in Table 8.

For the evaluation index, which was the F1 score, the Missing, Imbalance, and Number
of Features factors were found to be significant for most methodologies. Among the factors
showing significant results, the n_neighbors (k) of KNN, the C and gamma of SVC, and the
C of logistic regression are related to the prevention of overfitting. In the case of the decision
tree methodology, max_depth seems to have a significant effect by adjusting parameters by
setting the learning depth in advance to increase the generalization performance. In the
case of the random forest methodology, min_sample_split can be seen to affect the F1 score
by controlling overfitting and by stopping learning at nodes less than the corresponding
number, as in the decision tree methodology. In the case of logistic regression, it was found
that the solver that determines the algorithm to be used for optimization has a significant
effect on the F1 score.

In addition, the calculation results for the main effects for each parameter by method-
ology are shown in Figure 5. The purpose of this analysis is to determine the significance of
data preprocessing among the results of the 35 datasets generated after replacing missing
values, except for the GAN, and resolving imbalances. For the 35 datasets, the missing
values, imbalances, and parameter combinations were analyzed for the top 10 F1 scores
obtained using the KNN methodology. The figures illustrate the main effects for the
F1 score.
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Table 8. Result of ANOVA for F1 scores for each method and its factors.

Method Source Degrees of Freedom AdjSS AdjMS F-Value p-Value

KNN Factors

Missing 6 0.001 0.000 9.440 0.000

Imbalance 4 5.175 1.294 56,839.100 0.000

metric 2 0.000 0.000 2.530 0.081

n_neighbors 2 0.001 0.000 13.580 0.000

weights 1 0.000 0.000 1.850 0.175

Number of
Features 4 0.002 0.001 23.060 0.000

Error 330 0.008 0.000

SVC Factors

Missing 6 0.007 0.001 4.450 0.000

Imbalance 4 9.766 2.442 9539.580 0.000

C 3 0.019 0.006 24.160 0.000

gamma 2 0.002 0.001 4.740 0.009

kernel 1 0.000 0.000 1.330 0.249

Number of
Features 4 0.024 0.006 23.880 0.000

Error 329 0.084 0.000

Decision Tree
Factors

Missing 6 0.006 0.001 19.800 0.000

Imbalance 4 3.458 0.864 16,731.730 0.000

criterion 1 0.000 0.000 2.490 0.116

max_depth 8 0.002 0.000 5.960 0.000

max_features 2 0.000 0.000 0.430 0.653

min_sample_split 7 0.001 0.000 1.740 0.099

Number of
Features 6 0.001 0.000 2.730 0.013

Error 315 0.016 0.000

Random
Forest

Factors

Missing 6 0.026 0.004 88.110 0.000

Imbalance 4 7.185 1.796 37,046.710 0.000

criterion 1 0.000 0.000 0.000 0.960

max_depth 2 0.000 0.000 1.830 0.162

min_sample_split 5 0.001 0.000 3.650 0.003

Number of
Features 5 0.002 0.000 6.160 0.000

Error 326 0.016 0.000

Logistic
Regression

Factors

Missing 6 0.002 0.000 1.710 0.118

Imbalance 4 15.107 3.777 25,898.740 0.000

C 5 0.078 0.016 107.180 0.000

solver 1 0.001 0.001 4.440 0.036

Number of
Features 6 0.039 0.006 43.980 0.000

Error 327 0.048 0.000
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Figure 5. F1 scores for each of the methodologies.

The results of the main effects analysis show that in the case of imputation, the effect of
each level is similar for all methodologies, and the application of SMOTE-ENN shows the
greatest effect for imbalance handling. In KNN, the “Euclidean” distance has the highest
effect on the metric, and the optimal Number of Features shows a tendency to increase the
influence on the F1 score as the value of k increases. In the case of SVC, as the parameter
values of C and gamma increase, the effect on the F1 score decreases. As for the number
of features, the influence on the F1 score tends to increase somewhat as the value of k
increases. For the decision tree methodology, learning is stopped at nodes less than the
corresponding number, and it can be seen that the effect is large when min_sample_split
is 9. The optimal number of features shows a large influence on the F1 score when the
number of variables is 20. The criterion for the random forest methodology is related to the
criterion that calculates the information gain used to separate the branches, and when the
value is “entropy”, the effect on the F1 score is large. For logistic regression, when C is 0.01
and the solver is “newton-cg”, the effect on the F1 score is large.

6. Conclusions and Future Research

With the large amount of interest in smart manufacturing, at a manufacturing site,
missing values occur during data collection due to sensor failures or machine failures or for
unknown reasons. Finally, data classes become unevenly distributed, which causes a data
imbalance. To solve this problem, machine learning and deep learning could be used to
obtain meaningful information about the process state from the data on the manufacturing
process, and these methods are often used to explore important variables for quality
improvement or information to be used to judge quality. However, machine learning and
deep learning methods still have limitations when the data are missing or imbalanced.
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In this study, considering the case in which data cannot be collected, i.e., there are
missing data, we created a number of datasets by replacing missing values in the data
using various methods, and we applied methods that have been widely used to solve
data imbalance problems, including the GAN, which has been widely studied recently,
and finally we used combinations that increased the performance of the methodologies.
When missing values were replaced using the KNN methodology, and the GAN was
applied to the imbalance problem, the F1 score was 0.915, which is much higher than the
0.356 obtained in a previous study by [5]. Because the GAN has shortcomings, such as a
long learning time and high computing power requirements, to compensate for this, we
investigated a data preprocessing combination of the methodologies most used in existing
classification studies, and then we measured the significance of each factor to the F1 score.
In the case of imputation, all methodologies except for logistic regression had an effect on
the F1 score, and in the case of data imbalance handling, it was confirmed that there was
an effect for all methodologies.

This study proposed a procedural framework that can be applied to other datasets. It
has been shown that meaningful parameters can be identified during data preprocessing
using the open dataset provided by UCI. Although it was difficult to understand exactly
what each data observation meant and to interpret the results due to the limitations of the
open dataset, it will be possible to increase the efficiency of the analysis by applying the
framework to other datasets of manufacturing processes in the future.
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