
����������
�������

Citation: Huertas E. J.; Lastra A.;

Soria-Lorente A. Watermarking

Applications of Krawtchouk–Sobolev

Type Orthogonal Moments.

Electronics 2022, 11, 500. https://

doi.org/10.3390/electronics11030500

Academic Editor: Frederic Ros

Received: 1 January 2022

Accepted: 31 January 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Watermarking Applications of Krawtchouk–Sobolev Type
Orthogonal Moments
Edmundo J. Huertas 1 , Alberto Lastra 1,* and Anier Soria-Lorente 2

1 Departamento de Física y Matemáticas, Facultad de Ciencias, Universidad de Alcalá,
28805 Alcalá de Henares, Madrid, Spain; edmundo.huertas@uah.es

2 Departamento de Tecnología, Universidad de Granma, Km. 17,5 de la Carretera de Bayamo-Manzanillo,
Bayamo 85100, Cuba; asorial@udg.co.cu

* Correspondence: alberto.lastra@uah.es

Abstract: In this contribution, we consider the sequence {Hn(x; q)}n≥0 of monic polynomials
orthogonal with respect to a Sobolev-type inner product involving forward difference operators
For the first time in the literature, we apply the non-standard properties of {Hn(x; q)}n≥0 in a
watermarking problem. Several differences are found in this watermarking application for the
non-standard cases (when j > 0) with respect to the standard classical Krawtchouk case λ = µ = 0.
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1. Introduction

This work is devoted to an application of the Krawtchouk–Sobolev type polynomials,
previously introduced in [1] and orthogonal with respect to the inner product

〈 f , g〉λ,µ =
N

∑
x=0

f (x)g(x)
Γ(N + 1)px(1− p)N−x

Γ(N − x + 1)Γ(x + 1)
+ λ∆j f (0)∆jg(0) + µ∆j f (N)∆jg(N), (1)

in the framework of a watermarking process. Here, λ, µ ∈ R+, ∆ denotes the forward
difference operator defined by ∆ f (x) = f (x + 1) − f (x), j ∈ N ∪ {0}, and Γ(·) stands
for the classical Gamma function. Notice that when one considers λ = µ = 0 in the
above expression, one finds the standard classical discrete Krawtchouk inner product.
The key point of the application we present here relies on their novel properties related
to their norm, and on the construction of the so-called weighted Krawtchouk–Sobolev type
orthogonal polynomials. The use of orthogonal polynomials (and orthogonal moments) in a
watermarking scheme is widely spread in the scientific community (see, for example [2–9]
among many other references). Nevertheless, and to the best of our knowledge, it is the
first time that any Sobolev-type orthogonal polynomial family has been considered in
such an application, achieving reasonably different, and in some cases, positive results.
In this concern, new open problems come up from this novel direction of research which
are subject of a future study, such as the optimality of the parameters in the definition of
the Krawtchouk–Sobolev polynomials, which compromise a secure watermarking scheme
and similarity of the cover and the watermarked image. Such parameters involve not only
the boundary points of the support of Krawtchouk measure and the level in which such
points interfere in the Sobolev inner product, but also the order of the difference operators
involved.

The interest of orthogonal polynomials associated to inner products involving differ-
ences on a uniform lattice as (1), started with a series of seminal papers by Herman Bavinck
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in the 1900s (see [10–12]) by analogy with the so-called discrete Sobolev inner products
under the action of usual derivatives (see the comprehensive survey [13]). It is well known
that this kind of inner products give place to novel families of non-standard orthogonal
polynomials, meaning that the action of multiplication by x is not symmetric with respect
to such an inner product, i.e., 〈xp, q〉λ,µ 6= 〈p, xq〉λ,µ and therefore the usual properties
of standard orthogonal polynomials disappear: for non-standard inner products, there is
not a three term recurrence relation (see, for example [14–16]), the zeros of consecutive
polynomials could not interlace, or it could not be real, etc. Since those first three seminal
papers, many researchers have made advances on the Sobolev-type case for a bunch of
discrete orthogonality measures, mainly describing and providing properties of the corre-
sponding new discrete Sobolev-type new orthogonal polynomial families (check again [13]
and the references given there). Having said that, the idea here is not to describe the new
properties of the Krawtchouk–Sobolev type orthogonal polynomials (which has already
been done in [1]), but rather to apply for the first time this new discrete non-standard
orthogonal polynomials family in watermarking and steganography techniques. We also
refer to [17,18] as research using similar techniques.

The procedure of watermarking an image C consists, roughly speaking, on embedding
some information in the image (the cover image) in order to obtain a modified imageW
(the watermarked image) in such a way that both images remain as close as possible. In this
work, the tool which serves as a bridge from the first to the second image is the matrix of
Krawtchouk–Sobolev type orthogonal moments (see Equation (18)) which satisfies thatW
approaches C due to the properties of the defined Sobolev-type polynomials. The algorithm
of embedding the watermark in the cover image is shown in Section 5 and is applied in
concrete examples, comparing the results obtained with respect to other families of classical
polynomials in experimental analysis.

The structure of the present work is as follows. In Section 2 we recall the definition
and main properties of the classical Krawtchouk {Kp,N

n }n≥0 and Krawtchouk–Sobolev type
{K(j)

n }n≥0 orthogonal polynomials introduced in [1]. Most of the results in this section
are presented without proof, and those necessary can be found in that previous work.
Polynomials in {K(j)

n }n≥0 are defined after a Sobolev type modification, located at the
boundary points of the support of the classical Krawtchouk polynomials, of the inner
product corresponding to {Kp,N

n }n≥0 . We also deepen in the properties relating both
families, and the Section concludes with the novel result relating the norms of both families
of polynomials. Section 3 is devoted to define the weighted Krawtchouk–Sobolev type
polynomials, based on the knowledge of the norms previously obtained. The key result here
is Lemma 3, describing a quasi-orthogonality condition, which is applied in Section 4 to
show that the matrix of orthogonal inverse moments defined in (19) gets close to the cover
image. In Section 5, we put forward the application of polynomials in {K(j)

n }n≥0 in the
framework of a watermarking scheme through an embedding algorithm. The statements
relating the theory and the application are described and motivated in Section 4. Finally,
we include a last section of directions of future work at the end of the paper.

2. Krawtchouk and Krawtchouk–Sobolev Type Orthogonal Polynomials

In this first section, we recall the main definitions and results related to the elements
involved in the construction of the weighted Krawtchouk–Sobolev type polynomials, to be
studied in Section 3. More precisely, we deal with Krawtchouk and Krawtchouk–Sobolev
type orthogonal polynomials in Sections 2.2 and 2.3, respectively.

2.1. Basic Definitions

Definition 1. Given x ∈ C, the shifted factorial of x, also known as Pochhammer symbol [19] is
defined by (x)0 = 1 and

(x)n =
n−1

∏
j=0

(x + j)
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for every positive integer n.
For every positive integer k and a finite tuple (a1, . . . , ar) ∈ Cr, we write

(a1, . . . , ar)k =
r

∏
i=1

(ai)k.

Definition 2. Let {ai}r
i=1 and

{
bj
}s

j=1 be two finite sets of complex numbers such that for every
j = 1, 2, . . . , s one has that bj 6= −n for n ∈ N\{0}. The hypergeometric series is the formal power
series [20]

rFs

 a1, . . . , ar
x

b1, . . . , bs

 =
∞

∑
k=0

(a1, . . . , ar)k
(b1, . . . , bs)k

xk

k!
.

2.2. Krawtchouk Polynomials

Let 0 < p < 1 and let N be a non negative integer. The sequence of monic Krawtchouk
orthogonal polynomials {Kp,N

n (x)}n≥0 are orthogonal with respect to the inner product

〈 f , g〉 =
N

∑
x=0

f (x)g(x)ρ(x),

where

ρ(x) =
Γ(N + 1)px(1− p)N−x

Γ(N − x + 1)Γ(x + 1)
.

Given 0 ≤ n ≤ N, the polynomial Kp,N
n (x) can be explicitly written in the form

Kp,N
n (x) = pn(−N)n 2F1

 −n,−x
p−1

−N

. (2)

In the next result we recall some basic properties of Krawtchouk orthogonal polyno-
mials, which can be found in the references [20,21].

Proposition 1. Let 0 < p < 1, and let N ≥ 0 be an integer. We consider the sequence of classical
Krawtchouk monic orthogonal polynomials, {Kp,N

n (x)}n≥0.

1. The following recurrence relation holds for all n ≥ 0:

xKp,N
n (x) = Kp,N

n+1(x) + α
p,N
n Kp,N

n (x) + β
p,N
n Kp,N

n−1(x), (3)

with
α

p,N
n = p(N − n) + n(1− p), β

p,N
n = np(1− p)(N − n + 1).

Here, we have considered Kp,N
−1 (x) = 0, and Kp,N

0 (x) = 1.
2. Squared norm. For every n ∈ N, it holds that∥∥∥Kp,N

n

∥∥∥2
= n!(−N)n pn(p− 1)n.

3. Let 0 ≤ k ≤ N. The forward shift operator is defined by

∆kKp,N
n (x) = [n]kKp,N−k

n−k (x),

where [·]n denotes the falling factorial which is given by [z]0 = 1 and

[z]n := (−1)n(−z)n, n ≥ 1.
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4. The sequence of classical Krawtchouk monic orthogonal polynomials satisfies the following
second-order difference equation (hypergeometric type equation)

(1− p)x∆∇Kp,N
n (x) + (Np− x)∆Kp,N

n (x) + nKp,N
n (x) = 0,

where ∆ and ∇ denote the forward and backward difference operators defined by ∆ f (x) =
f (x + 1)− f (x) and ∇ f (x) = f (x)− f (x− 1), respectively, with

∆n f (x) = ∆[∆n−1 f (x)] and ∇n f (x) = ∇[∇n−1 f (x)], n ∈ N.

Let 0 < p < 1 and N ≥ 0.

Definition 3. Let {Kp,N
n (x)}n≥0 be the sequence of classical Krawtchouk monic orthogonal poly-

nomials. The n-th reproducing kernel is defined by

Kn(x, y) =
n

∑
k=0

Kp,N
k (x)Kp,N

k (y)

||Kp,N
k ||2

.

Here, || · || stands for the Euclidean norm.

Concerning the partial finite difference of Kn(x, y) with respect to each variable, we
use the following notation for every pair i, j ≥ 0:

K
(i,j)

n (x, y) = ∆i
x

(
∆j

yKn(x, y)
)
=

n

∑
k=0

∆iKp,N
k (x)∆jKp,N

k (y)

||Kp,N
k ||2

. (4)

2.3. Krawtchouk–Sobolev Type Orthogonal Polynomials

In this subsection, we consider the sequence of monic polynomials orthogonal with
respect to a Sobolev-type inner product, as defined in [1]. We include the details of their
main properties for the sake of completeness, and refer to [1] for further information and
the detailed proofs. Let 0 < p < 1, N, j ∈ Z+ and λ, µ ∈ R+. We define the Sobolev-type
inner product 〈·, ·〉λ,µ by

〈 f , g〉λ,µ =
N

∑
x=0

f (x)g(x)
Γ(N + 1)px(1− p)N−x

Γ(N − x + 1)Γ(x + 1)
+ λ∆j f (0)∆jg(0) + µ∆j f (N)∆jg(N). (5)

It holds that for all integers 2 ≤ n ≤ N one can write the elements of the sequence
{K(j)

n (x)}n≥0, consisting of the family of monic orthogonal polynomials with respect to the
previous inner product, in terms of the classical Krawtchouk monic orthogonal polynomials
as follows:

K(j)
n (x) = C

(j)
1,n (x)Kp,N

n (x) +D
(j)
1,n(x)Kp,N

n−1(x), (6)

where

C
(j)
1,n (x) = 1 + [x]−1

j+1

j

∑
k=0

a(k)1,n [x]k + [x− N]−1
j+1

j

∑
k=0

a(k)2,n [x− N]k,

and

D
(j)
1,n(x) = [x]−1

j+1

j

∑
k=0

b(k)1,n [x]k + [x− N]−1
j+1

j

∑
k=0

b(k)2,n [x− N]k,
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with

a(k)1,n = −
λj!∆kKp,N

n−1(0)

||Kp,N
n−1||2k!

∣∣∣∣∣ ∆jKp,N
n (0) µK

(j,j)
n−1 (0, N)

∆jKp,N
n (N) 1 + µK

(j,j)
n−1 (N, N)

∣∣∣∣∣∣∣∣∣∣1 + λK
(j,j)

n−1 (0, 0) µ K
(j,j)
n−1(0, N)

λK
(j,j)

n−1 (N, 0) 1 + µ K
(j,j)
n−1(N, N)

∣∣∣∣∣
, (7)

a(k)2,n = −
µj!∆kKp,N

n−1(N)

||Kp,N
n−1||2k!

∣∣∣∣∣1 + λK
(j,j)

n−1 (0, 0) ∆jKp,N
n (0)

λK
(j,j)

n−1 (N, 0) ∆jKp,N
n (N)

∣∣∣∣∣∣∣∣∣∣1 + λK
(j,j)

n−1 (0, 0) µ K
(j,j)
n−1(0, N)

λK
(j,j)

n−1 (N, 0) 1 + µ K
(j,j)
n−1(N, N)

∣∣∣∣∣
, (8)

where

b(k)1,n = −
a(k)1,n ∆Kp,N

n (0)

∆Kp,N
n−1(0)

and b(k)2,n = −
a(k)2,n ∆Kp,N

n (N)

∆Kp,N
n−1(N)

. (9)

We observe that b(k)1,n and b(k)2,n do not make sense for n = 1. When n = 1, you get

K(j)
1 (x) = Kp,N

1 (x) = x− pN for j ≥ 1. It is worth mentioning the coincidence of K(j)
n (x)

and Kp,N
n (x) for every 0 ≤ n ≤ j, that we present later in Proposition 2.

Lemma 1. Let πh be a polynomial of degree h. Assume that 0 ≤ h < j. Then, one ∆jπh = 0.

Proof. This property follows from an induction argument on h. If h is a constant polyno-
mial, it is straight that ∆jπh = ∆πh = 0 for every j ≥ 1. If we assume the property is valid
for all integers up to h, and consider a polynomial πh+1(x) of degree h + 1, and j ≥ h, then
one has that

∆jπh+1 = ∆j−1(∆πh+1),

and ∆πh+1 is a polynomial of degree less or equal to h and the induction hypothesis can be
applied.

Proposition 2. The polynomals K(j)
n (x) and Kp,N

n (x) coincide for every 0 ≤ n ≤ j.

Proof. Let n ≥ 1 and consider any polynomial π` of degree 0 ≤ ` < n. Then, in view of
Lemma 1 and the definition of 〈·, ·〉λ,µ one has〈

Kp,N
n (x), π`(x)

〉
λ,µ

=
〈

Kp,N
n (x), π`(x)

〉
= 0.

This concludes the proof.

Figure 1 illustrates the Krawtchouk–Sobolev type polynomials for the values N = 10,
p = 1/2, and with j = 1. Observe in this case that the first ones coincide with the classical
Krawtchouk polynomials in view of Proposition 2.
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Figure 1. Graph of K(1)
n for n = 0, 1, 2, 3, 4.

For the sake of a more compact writing of the forthcoming properties associated with
such a family of polynomials, we put

C
(j)
2,n (x) = −

D
(j)
1,n−1(x)

β
p,N
n−1

,

D
(j)
2,n(x) = C

(j)
1,n−1(x) + C

(j)
2,n (x)

(
α

p,N
n−1 − x

)
,

E
(j)

1,n (x) = x∇C
(j)
1,n (x) + nC

(j)
1,n (x− 1)−

(n− 1)p(N − n + 2)D (j)
1,n(x− 1)

β
p,N
n−1

,

F
(j)
1,n(x) =

x∇D
(j)
1,n(x) + np(N − n + 1)C (j)

1,n (x− 1)

+
(n− 1)p(N − n + 2)

(
x− α

p,N
n−1

)
D

(j)
1,n(x− 1)

β
p,N
n−1

+ (n− 1)D (j)
1,n(x− 1),

and

E
(j)

2,n (x) = −
F

(j)
1,n−1(x)

β
p,N
n−1

,

F
(j)
2,n(x) = E

(j)
1,n−1(x) + E

(j)
2,n (x)

(
α

p,N
n−1 − x

)
.

We observe that the choice of the elements involved in the definition of the Krawtchouk–
Sobolev type orthogonal polynomials is implicitly made, and will be omitted for simplicity.
The properties of the sequence {K(j)

n (x)}n≥0 determine analogous properties for this novel
sequence of orthogonal Sobolev-type orthogonal polynomials.

Proposition 3. Let {K(j)
n (x)}n≥0 be the sequence of monic Krawtchouk–Sobolev orthogonal poly-

nomials defined by (6). Then, the following statements hold.

1. Hypergeometric representation. Given positive integers n ≤ N and j, one has

K(j)
n (x) = pn−1(−N)n−1h(j)

n (x) 3F2

 −n,−x, f (j)
n (x)

p−1

−N, f (j)
n (x)− 1

,
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where

f (j)
n (x) =

np(N − n + 1) C
(j)
1,n(x)

D
(j)
1,n(x)

− n + 1,

and
h(j)

n (x) = −
(

p(N − n + 1) C
(j)
n (x)−D

(j)
n (x)

)
.

2. Structure relations.

Θ(j)
n (x)∇K(j)

n (x) + Λ(j)
n (x; 2, 1)K(j)

n (x) = Λ(j)
n (x; 1, 1)K(j)

n−1(x)

and
Θ(j)

n (x)∇K(j)
n−1(x) + Λ(j)

n (x; 1, 2)K(j)
n−1(x) = Λ(j)

n (x; 2, 2)K(j)
n (x),

where

Θ(j)
n (x) = x

∣∣∣∣∣C
(j)
1,n (x) C

(j)
2,n (x)

D
(j)
1,n(x) D

(j)
2,n(x)

∣∣∣∣∣,
and

Λ(j)
n (x; i, k) = (−1)k

∣∣∣∣∣E
(j)
k,n (x) C

(j)
i,n (x)

F
(j)
k,n (x) D

(j)
i,n (x)

∣∣∣∣∣, i = 1, 2, k = 1, 2.

3. Second-order difference equations.

F (j)
n (x)∇2K(j)

n (x) + G(j)
n (x)∇K(j)

n (x) +H(j)
n (x)K(j)

n (x) = 0,

and
F̃ (j)

n (x)∆∇K(j)
n (x) + G̃(j)

n (x)∆K(j)
n (x) + H̃(j)

n (x)K(j)
n (x) = 0,

where
F (j)

n (x) = Θ(j)
n (x)Θ(j)

n (x− 1),

G(j)
n (x) = Θ(j)

n (x)(∇Θ(j)
n (x) + Λ(j)

n (x− 1; 2, 1) + Λ(j)
n (x; 1, 2))

−∇Λ(j)
n (x; 1, 1)(Θ(j)

n (x) + Λ(j)
n (x; 1, 2))Θ(j)

n (x)

Λ(j)
n (x; 1, 1)

,

H(j)
n (x) = Θ(j)

n (x)∇Λ(j)
n (x; 2, 1) + Λ(j)

n (x; 1, 2)Λ(j)
n (x; 2, 1)

−∇Λ(j)
n (x; 1, 1)Λ(j)

n (x; 2, 1)(Θ(j)
n (x) + Λ(j)

n (x; 1, 2))

Λ(j)
n (x; 1, 1)

−Λ(j)
n (x− 1; 1, 1)Λ(j)

n (x; 2, 2),

F̃ (j)
n (x) = F (j)

n (x + 1), and H̃(j)
n (x) = H(j)

n (x + 1),

and
G̃(j)

n (x) = G(j)
n (x + 1) + H̃(j)

n (x).

4. The recurrence relation for the classical Krawtchouk monic orthogonal polynomials determines
that, for the Krawtchouk–Sobolev type orthogonal polynomials, as follows:

Θ̃(j)
n (x)K(j)

n+1(x) = Ξ(j)
1,n(x)K(j)

n (x) + Ξ(j)
2,n(x)K(j)

n−1(x), n ≥ 0, (10)

where
Θ̃(j)

n (x) = Θ(j)
n (x)Λ(j)

n+1(x; 2, 2),
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Ξ(j)
1,n(x) = Θ(j)

n (x)Λ(j)
n+1(x; 1, 2)−Θ(j)

n+1(x)Λ(j)
n (x; 2, 1),

and
Ξ(j)

2,n(x) = Θ(j)
n+1(x)Λ(j)

n (x; 1, 1),

with initial conditions K(j)
−1(x) = 0, and K(j)

0 (x) = 1.

In the remaining part of this Section, we complete the previous properties with the
norm of the elements in {K(j)

n (x)}n≥0, stated in Theorem 1. This result is derived from the
Proposition 4, whose proof is a direct result of the following technical Lemma, together
with (6).

Lemma 2. For every p, q ∈ P one can apply the definition of the inner product to arrive at〈
[x− N]j+1[x]j+1 p(x), q(x)

〉
λ,µ =

〈
p(x), [x− N]j+1[x]j+1 q(x)

〉
λ,µ

=
〈
[x− N]j+1[x]j+1 p(x), q(x)

〉
(11)

=
〈

p(x), [x− N]j+1[x]j+1 q(x)
〉
.

Proposition 4. Let {K(j)
n (x)}n≥0 be the sequence of monic Krawtchouk–Sobolev orthogonal poly-

nomials defined by (6). Then, one has

[x]j+1[x− N]j+1K
(j)
n (x) = Φ(j)

1,n(x)Kp,N
n (x) + Φ(j)

2,n(x)Kp,N
n−1(x), n ≥ 0, (12)

where

Φ(j)
1,n(x) = [x]j+1[x− N]j+1 + [x− N]j+1

j

∑
k=0

a(k)1,n[x]k + [x]j+1

j

∑
k=0

a(k)2,n[x− N]k (13)

and

Φ(j)
2,n(x) = [x− N]j+1

j

∑
k=0

b(k)1,n [x]k + [x]j+1

j

∑
k=0

b(k)2,n [x− N]k, (14)

with a(k)i,n and b(k)i,n given in (7)–(8) and (9), respectively.

We denote || · ||λ,µ the norm associated with the product 〈·, ·〉λ,µ.

Theorem 1. Let {K(j)
n (x)}n≥0 be the sequence of monic Krawtchouk–Sobolev orthogonal polyno-

mials defined by (6). Then, for every λ, µ ∈ R+, j ∈ N, 0 < p < 1 and n ≤ N the norm of these
orthogonal polynomials with respect to (5),

||K(j)
n ||2λ,µ = ||Kp,N

n ||2 + (b(j)
1,n + b(j)

2,n)||K
p,N
n−1||

2, (15)

where b(j)
1,n and b(j)

2,n are determined in (9).

Proof. It is straightforward to check that

||K(j)
n ||2λ,µ =

〈
K(j)

n , [x]j+1[x− N]j+1 πn−2j−2(x)
〉

λ,µ
,

for every monic polynomial πn−2j−2 of degree n− 2j− 2. In addition, from (11) we have〈
K(j)

n , [x]j+1[x− N]j+1 πn−2j−2(x)
〉

λ,µ
=

〈
[x]j+1[x− N]j+1 K

(j)
n , πn−2j−2(x)

〉
λ,µ

=
〈
[x]j+1[x− N]j+1 K

(j)
n , πn−2j−2(x)

〉
.
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Next we use the connection Formula (12). Taking into account that Φ(j)
1,n(x) (see (13))

is a monic polynomial of degree exactly 2j + 2 and Φ(j)
2,n(x) (see (14)) is a polynomial of

degree exactly 2j + 1 with the leading coefficient b(j)
1,n + b(j)

2,n we deduce

||K(j)
n ||2λ,µ =

〈
Φ(j)

1,n(x)Kp,N
n (x), πn−2j−2(x)

〉
+

+
〈

Φ(j)
2,n(x)Kp,N

n−1(x), πn−2j−2(x)
〉

,

=
〈

Kp,N
n (x), xn

〉
+ (b(j)

1,n + b(j)
2,n)
〈

Kp,N
n−1(x), xn−1

〉
,

which leads to (15).

3. Weighted Krawtchouk–Sobolev Type Polynomials

This section is devoted to define the so-called weighted Krawtchouk–Sobolev type
polynomials, and describe their main properties, which will be used in Section 5 in an
application to watermarking schemes. The knowledge of the norm obtained in Theorem 1
is of great importance in order to define such weighted Krawtchouk–Sobolev type poly-
nomials. It is worth remarking that, despite their name, the elements of the sequence of
weighted Krawtchouk–Sobolev type polynomials are no longer polynomials. We have
maintained this and other denominations to maintain the one used in applications such as
that of Section 5. We refer to [22] for more information in this concern.

As in the previous sections, we fix the parameters defining the norm of a Krawtchouk–
Sobolev sequence of monic orthogonal polynomials.

Definition 4. Let {K(j)
n (x)}n≥0 be the sequence of monic Krawtchouk–Sobolev orthogonal polyno-

mials defined by (6) and let (15) be the norm of such polynomials. The weighted Krawtchouk–Sobolev

type polynomial K(j)
n (x) is defined by

K(j)
n (x) = K(j)

n (x)

√√√√ ρ(x)

||K(j)
n ||2λ,µ

, (16)

for every n ≥ 0.

In the next result, we obtain the asymptotic behavior as λ and µ approach zero, which
leads to the asymptotic behavior of the matrix of orthogonal direct moments, as defined in
Section 5.

Lemma 3. Let {K(j)
n (x)}n≥0 be the sequence of weighted Krawtchouk–Sobolev type polynomials

defined by (16). Then, it holds that

lim
(λ,µ)→(0,0)

N

∑
x=0

K(j)
m (x)K(j)

n (x) = δm,n.

Here, δm,n stands for the Kronecker delta.

Proof. From the definition of the Krawtchouk–Sobolev type orthogonal polynomials in (5),
we then observe that

N

∑
x=0

K(j)
m (x)K(j)

n (x)ρ(x) + λ∆jK(j)
m (0)∆jK(j)

n (0) + µ∆jK(j)
m (N)∆jK(j)

n (N)

= ||K(j)
n ||2λ,µδm,n.
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From the previous equality, one can conclude that

N

∑
x=0

K(j)
m (x)

√√√√ ρ(x)

||K(j)
n ||2λ,µ

K(j)
n (x)

√√√√ ρ(x)

||K(j)
n ||2λ,µ

+
1

||K(j)
n ||2λ,µ

[
λ∆jK(j)

m (0)∆jK(j)
n (0) + µ∆jK(j)

m (N)∆jK(j)
n (N)

]
= δm,n.

Therefore,

lim
(λ,µ)→(0,0)

N

∑
x=0

K(j)
m (x)

√√√√ ρ(x)

||K(j)
n ||2λ,µ

K(j)
n (x)

√√√√ ρ(x)

||K(j)
n ||2λ,µ

= δm,n.

The following recurrence relation holds for the sequence of weighted Krawtchouk–
Sobolev type polynomials.

Proposition 5. Let {K(j)
n (x)}n≥0 be the sequence of weighted Krawtchouk–Sobolev type polyno-

mials defined in (16). Then, the following recurrence relation holds:

K(j)
n+1(x) = Ψ(j)

1,n(x)K(j)
n (x) + Ψ(j)

2,n(x)K(j)
n−1(x), n ≥ 0,

where

Ψ(j)
1,n(x) =

||K(j)
n ||λ,µ

||K(j)
n+1||λ,µ

Ξ(j)
1,n(x)

Θ̃(j)
n (x)

and Ψ(j)
2,n(x) =

||K(j)
n−1||λ,µ

||K(j)
n+1||λ,µ

Ξ(j)
2,n(x)

Θ̃(j)
n (x)

.

Proof. A direct application of (10) yields

K(j)
n+1(x) =

Ξ(j)
1,n(x)

Θ̃(j)
n (x)

K(j)
n (x) +

Ξ(j)
2,n(x)

Θ̃(j)
n

K(j)
n−1(x), n ≥ 0.

The previous equation is equivalent to

||K(j)
n+1||λ,µ K

(j)
n+1(x)

√√√√ ρ(x)

||K(j)
n+1||2λ,µ

=

||K(j)
n ||λ,µ Ξ(j)

1,n(x)

Θ̃(j)
n (x)

K(j)
n (x)

√√√√ ρ(x)

||K(j)
n ||2λ,µ

+
||K(j)

n−1||2λ,µ Ξ(j)
2,n(x)

Θ̃(j)
n

K(j)
n−1(x)

√√√√ ρ(x)

||K(j)
n−1||2λ,µ

,

and the result follows from here.

4. Krawtchouk–Sobolev Type Orthogonal Moments

In this section, we briefly describe the mathematical statements to be considered in the
application for a watermarking scheme. For this reason, the notation stated in this section
will be maintained in the last section of applications.
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Assume one considers an image, the cover image, stored in matrix C. Such a matrix is
divided into matrices of size N × N bytes. The k-th image block of C is denoted by C(k,N).
Let us write

C(k,N) =


C(k,N)

0,0 · · · C(k,N)
0,N−1

...
. . .

...
C(k,N)

N−1,0 · · · C(k,N)
N−1,N−1

.

Definition 5. Let C(k,N) be the k-th image block of a cover image C. We define its matrix of
orthogonal direct moments by

M = AC(k,N)At, (17)

where

A =


K(j)

0 (0) · · · K(j)
N−1(0)

...
. . .

...

K(j)
0 (N − 1) · · · K(j)

N−1(N − 1)

, (18)

for some fixed j.

The purpose of a steganographic image, created from a cover image, relies on the fact
that the steganographic image hides some data within it, while maintaining a similar shape
as that of the cover image, hiding secret data in it. The results obtained in Section 3, in
particular Lemma 3, guarantees that AtA u I , where I denote the identity matrix.

The previous fact motivates the following transformation associated toM.

Definition 6. LetM be the matrix of orthogonal direct moments. The matrix of orthogonal inverse
moments is given by

W (k,N) = AtMA. (19)

According to Lemma 3 and (17), one has that

W (k,N) = AtMA = AtAC(k,N)AtA

and therefore, one concludes

lim
(λ,µ)→(0,0)

W (k,N) = C(k,N).

Therefore, one can choose λ, µ such that the watermarked image remains as close as
needed to the cover image.

5. Application: Watermarking Scheme

In this section a watermarking scheme is presented as an application of the Krawtchouk–
Sobolev type orthogonal moments. The embedding algorithm obtaining a watermarked
image W from a cover image C is deduced following the procedure explained in the
previous section. The present work concludes with the experimental analysis of the pro-
posed scheme.

5.1. Arnold Transform

The Arnold transform is an invertible method that can be used for pixel scrambling.
This important transform has been widely used in various watermarking schemes proposed
by several authors. Arnold transform can be used in order to eliminate the high correlation
of pixels, see [23]: [

x̂
ŷ

]
=

[
1 p
q pq + 1

][
x
y

]
(mod N). (20)
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The watermark is scrambled from ω into ω̂. Here, (x, y) y (x̂, ŷ) represent the pixels of ω
and ω̂, respectively. In particular, we take p = 1 and q = η, being η the control parameter,
which is used as a private key during the watermark embedding and extraction processes.

The watermark that will be used in this contribution is that of Figure 2:

Figure 2. Watermark of 64× 64 bits.

Thus, considering Figure 3, it is deduced that the control parameter η should satisfy
that η ∈ [1, 63], since for η = 64 the watermark is recovered in the process of applying the
Arnold transform.

Figure 3. Scrambled watermark and recovered watermark.

5.2. Zigzag Scan

Following the notation considered in [22], we write Z (·) for the operator transforming
a 8× 8 matrix into a vector of length 64 after the ordering given to the elements of the
matrix determined by the zigzag scan (see Figure 4). The inverse operator Z −1(·) sends a
vector of length 64 to a matrix of order 8 with Z −1 ◦Z being the identity sending a matrix
of order 8 to itself, and Z ◦Z −1 is the operator sending a vector of length 64 to itself. The
symbol ◦ stands for the composition operator.
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Figure 4. Path followed in a matrix to transform it into a vector via Z .

5.3. Dither Modulation

Dither Modulation (DM) is a special form of quantization index molulation that is
applied in an image watermarking system in order to assign one bit to each transformation
coefficient. In case of a uniform scalar quantization, see [24,25], the watermarked signal is
given by

yn = Q∆(xn + dm)− dm, m ∈ {0, 1}, n = 1, . . . , L,

where ∆ denotes the quantization step size that controls the embedding strength of the
watermark bit. In addition, Q∆(·) is defined as follows

Q∆(α) = ∆× round
( α

∆

)
,

where round(·) denotes the round function to the nearest integer. Moreover, xn represents
the signal, dm the dither value, m the message, and L denotes the number of elements
of m. In an uncoded case of binary dither modulation with an embedding rate one, the
quantizers are constructed with the constraint

d1 =


d0 −

∆
2

, d0 ≥ 0,

d0 +
∆
2

, d0 < 0,

which complies with the following

−∆
2
≤ d0 ≤

∆
2

.

In particular, in this contribution we have taken d0 = −∆/4.
For this embedding method, the received signal ŷn is a possibly corrupted version

of yn, which is re-quantized with the family of quantizers used during embedding to
determine the bit of the embedded message

m̂ = argminm∈{0,1}|Q∆(ŷn + dm)− ŷn|,

where argmin returns the indices of the minimum values along an axis.

5.4. Embedding and Extraction Watermark Algorithm

First, the embedding watermark algorithm scrambles the watermark by the Arnold
transform (20) for a control parameter η, with 1 ≤ η ≤ 63, see Figure 3, and then it
is organized into a binary sequence {ω̂i}, i = 1, . . . , 64 × 64. Next, this scheme splits
the cover image C into non-overlapping blocks C(k,8) of size 8× 8, where the number of
blocks coincide with the number of watermark bits. On the other hand, it applies the
direct moments (17) to each block of 8× 8. Next, the zigzag scan is applied to the resultant
coefficients block, see Figure 4, with the purpose to align frequency coefficients in ascending
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order. Then, it selects a coefficient of (17), in this case, the coefficient number is 28. Thus,
the secret bits are embedded in the selected coefficient by applying the Dither Modulation
(DM). Finally, the inverse moment transform (19) is applied in order to reconstruct the
image, obtaining the watermarked imageW (k,8).

Algorithm 1 describes the procedure explained in Section 4 at the time of watermarking
a cover image C.

Algorithm 1 Embedding Algorithm

1: Input: Cover image C, watermark {ωi ∈ {0, 1} : i = 1, 2, . . .}
2: Output: Watermarked imageW
3: {ω̂i} ← scrambled watermark by the Arnold transform (20).
4: Divide C into non-overlapping blocks of 8× 8 bytes
5: for each C(k,8) ∈ C do
6: M← AC(k,N)At: according to (17)
7: νk ← Z (M): Apply the zigzag scan
8: νk

28 ← νk
28 watermark bit ω̂k is embedded in the selected coefficient νk

28 by using
Dither Modulation.

9: M← Z −1(νk)

10: W (k,N) ← AtMA: According to (19)
11: end for
12: return W

The extraction process is similar to the embedding process detailed above.

5.5. Experimental Analysis

In this section we describe the experimental results of the proposed scheme. Changes
in the cover image pixel values appear due to the cover image being altered to embed the
secret data. The changes made on the image need to be analyzed since it directly affect the
imperceptibility of the output stego image.

For the experimental analysis several color images of size (512× 512) were used from
two different datasets: a first image dataset of 1500 RGB-BMP images, transformed from
Caltech birds’ dataset in JPEGC format [26] (Dataset I) and a second image dataset of 1500
RGB-BMP images, transformed from NRC dataset in TIFF format [26] (Dataset II). Since the
cover images are of size 512× 512 and the watermark is 64× 64 bits, see Figure 2, then the
watermark bits are distributed in each block throughout the original image. The algorithm
proposed in the present work is implemented in Python 3.8.10.

The results of the experimental analysis are displayed in the following figures in
which the PSNR values of the watermarked images corresponding to each of the two
datasets are considered. More precisely, we show the values of PSNR of Krawtchouk
polynomials (K) and the proposed Krawtchouk–Sobolev type polynomials (KSX), where
X ∈ {1, 2, 3} determines the value of j in the definition of such polynomials. In addition, a
comparison of the proposed method for Krawtchouk moments (KMs, p = 0.5) with respect
to the method proposed for Krawtchouk–Sobolev type orthogonal moments (KS1Ms with
p = 0.5, λ = µ = 10−7, KS2Ms with p = 0.5, λ = µ = 10−10, and KS3Ms with p = 0.5,
λ = µ = 10−11) is included in this section.

Moreover, a comparison of the proposed moments with respect to the moments
proposed by Yamni et al., Fractional Moments of Charlier (FrCMs) [27] and Yamni et al.,
Fractional Moments of Charlier–Meixner (FrCMMs) [28] is included in this section. The
following attacks to measure robustness were applied: Cropping noise, Gaussian noise,
Salt & Pepper noise, and Median filter noise.

In order to make a fair comparison with the FrCMs and FrCMMs moments in relation
to KMs, KS1Ms, KS2Ms, and KS3Ms, the quantization steps ∆ = 30 and ∆ = 50 were
chosen for the experiments, maintaining a PSNR value close to 50 dB. For the moments
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KMs, KS1Ms, KS2Ms, and KS3Ms, ∆ = 50 was used. The performance of the proposed
approach has been studied using the following of statistical measures.

5.6. Imperceptibility Test

The measure of the quality of the watermarked image is made in terms of PSNR (Peak
Signal to Noise Ratio) of different datasets. PSNR is widespread and a top notch metric
is used in order to measure the quality of the watermarked image. It analyzes the mean
squared error value, comparing the cover and the stego image [29].

PSNR is defined by

PSNR = 10 log10

(
Ξ2

MSE

)
,

with
MSE = (N2ρ)−1 ∑

fl∈Γ
‖C(fl)−W(fl)‖2.

C andW represent the cover image and the stego image, respectively, of size N2ρ, with
C,W ∈ {0, 1, . . . , Ξ}, and Ξ = max(max(C), max(W)).

The index set fl = (`1, `2, `3) sums over the set

Γ = {1, . . . , m} × {1, . . . , n} × {1, . . . , ρ},

where ρ = 1 for gray scale images and ρ = 3 for 24-bit color images.
In the first experiment, we use the PSNR as a measure to evaluate the level of impercep-

tibility and distortion as well as to measure the difference between cover and watermarked
images. The experimental results showed that the proposed moments produced good
quality watermarked images with good PSNR values, see Figure 5, which is in correspon-
dence with the heuristic values of PSNR. On the other hand, in Figure 5, it is possible to
observe that as the quantization step increases, the average PSNR decreases. Moreover, this
experiment showed that for the two datasets, the results of imperceptibility corresponding
to the KMs, KS1Ms, KS2Ms, and KS3Ms are similar. This is interesting, since a priori
no differences are shown. However, the next study demonstrates the strength of KS1Ms,
KS2Ms, and KS3Ms in relation to KMs.
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Figure 5. PSNR values of Datasets.
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5.7. Robustness Test

The robustness is measured as the bit error rate (BER) corresponding to incorrectly
formed binary values of the watermark image. The BER value is calculated by using the
equation

BER =
1
L

L−1

∑
n=0

{
1, ω(n) 6= ω(n),
0, ω(n) = ω(n),

where ω(n) and ω(n) are binary bits (0 or 1) of the original watermark and the extracted
watermark. Moreover, L is the number of bits of the watermark.

In order to evaluate the robustness, the following attacks were applied: Cropping
noise, Gaussian noise, Salt and Pepper noise, and Median filter noise. Their parameters
appear in Table 1.

Table 1. Information of the applied attacks

Attacks Parameters

Cropping noise 5%, 10%, 12%, 15%, 17%, 20%, 23%, 25%, 27%, 30%, 33%, 35%, 37%, 40%.
Gaussian noise Percent noise: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08

Salt and Pepper noise Density: 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08
Median filter noise Kernel size: 2 × 2, 4 × 4, 6 × 6, 8 × 7, 10 × 10, 12 × 12, 14 × 14, 16 × 16, 18 × 18, 20 × 20

In this experiment, it is shown in the results displayed in Figures 6–8, that robustness
of the watermarking scheme based on KS1Ms, KS2Ms, and KS3Ms is much higher than that
of the schemes based on KMs, KMs, and FrCMs. Moreover, the KMs do not resist well to
the attacks performed in this contribution since the BER values are higher, see Figures 9–10.
On the other hand, for Salt & Pepper noise displayed in Figure 11, the moments FrCMs
and FrCMMs seem to be more robust with respect to the schemes based on KS1Ms, KS2Ms,
KS3Ms, and KMs.

The BER values are close to zero, obtained after applying the attacks (Cropping noise
and Gaussian noise), corresponding to KS1Ms, KS2Ms, and KS3Ms. This means that the
extracted watermarks are recognizable and very similar to the original watermarks, see
Figures 9 and 10.

The noises (salt & pepper noise and median filter noise) were more aggressive in all
cases, so that the studied moments are less robust to these attacks, see Figures 8 and 11.
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Figure 6. Cropping noise.
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Figure 9. Extracted watermarks under Cropping attacks. The first row corresponds to KS1Ms, KS2Ms,
and KS3Ms while the second row corresponds to KMs, FrCMs, and FrCMMs.
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Figure 10. Extracted watermarks under Gaussian attacks. The first row corresponds to KS1Ms,
KS2Ms, and KS3Ms while the second row corresponds to KMs, FrCMs, and FrCMMs.

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Salt and pepper noise

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Th
e 

av
er

ag
e 

BE
R

KS1Ms
KS2Ms
KS3Ms

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Salt and pepper noise

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Th
e 

av
er

ag
e 

BE
R

KMs
FrCMs
FrCMMs

Figure 11. Salt and pepper noise.

6. Discussion

In this work, we have proposed a new procedure to create watermarked images by
using Krawtchouk–Sobolev type polynomials. The results obtained undertake a promising
future direction of research in which the variation of the parameters involved in the
definition of the polynomials can vary in order to give optimal results, compromising a
secure watermarking scheme and the similarity of the cover and the watermarked image.

A future work in this direction is to obtain optimized values for the parameters
involved in the definition of the Sobolev type polynomials. According to the results
obtained, the case of j = 2 seems to give better results and should be analyzed separately.
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