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Abstract: The increasing popularity of the Internet of Things (IoT) has significantly impacted our
daily lives in the past few years. On one hand, it brings convenience, simplicity, and efficiency for
us; on the other hand, the devices are susceptible to various cyber-attacks due to the lack of solid
security mechanisms and hardware security support. In this paper, we present IMIDS, an intelligent
intrusion detection system (IDS) to protect IoT devices. IMIDS’s core is a lightweight convolutional
neural network model to classify multiple cyber threats. To mitigate the training data shortage
issue, we also propose an attack data generator powered by a conditional generative adversarial
network. In the experiment, we demonstrate that IMIDS could detect nine cyber-attack types (e.g.,
backdoors, shellcode, worms) with an average F-measure of 97.22% and outperforms its competitors.
Furthermore, IMIDS’s detection performance is notably improved after being further trained by the
data generated by our attack data generator. These results demonstrate that IMIDS can be a practical
IDS for the IoT scenario.

Keywords: intrusion detection system; Internet of Things; generative adversarial network

1. Introduction

Recent years have witnessed the proliferation of the Internet of Things, aiming to bring
every physical object into the digital world, resulting in billions of IoT devices connected to
the Internet. IoT is anticipated to provide innovative solutions to boost profit in several
industries (e.g., healthcare, manufacturing, retailing, security, and transportation). Accord-
ing to a recent study [1], the total IoT market worldwide was worth around 389 billion
US dollars in 2020 and is projected to reach more than one trillion US dollars by 2030.
Moreover, the number of IoT devices deployed worldwide is forecast to triple during this
duration and generate zillions of bytes of data crossing the Internet every second.

The explosion of IoT devices introduces non-trivial security challenges due to the lack
of safety mechanisms and hardware security support. Indeed, the limited computational
capability of IoT devices makes them insufficient for traditional protection methods. Thus,
simplifying these methods is a common solution, but it may lead to serious security flaws at
multiple levels [2]. For example, insecure physical interface, low-level Sybil, and spoofing
attacks occur at the operating system level; replay attacks, sinkhole, and wormhole attacks
occur at the network level. More seriously, attackers can exploit these flaws to create botnets
and launch Distributed Denial of Service (DDoS) attacks [3] to disrupt Internet services by
overwhelming the processing capability of the target with a flood of Internet traffic. For
instance, the Mirai virus infected more than 65,000 IoT devices in its first 20 h after breaking
out on 1 August 2016, and reached 200,000–300,000 infections [4]. In September 2016, the
website of a security consultant named Brian Krebs was attacked with 620 Gbps of traffic
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using the Mirai botnet. Meanwhile, a more significant DDoS attack targeted a French cloud
service provider, OVH [5], peaking at 1.1 Tbps. Just one month later, in October 2016, a
variant of Mira shut down hundreds of websites for several hours [6], including Twitter,
Netflix, Reddit, and Github. After Mirai was released in August 2016, DDoS attacks [7]
have occurred more frequently. The above examples indicate that IoT devices possess
many vulnerabilities that attackers can exploit to compromise and create botnets for illegal
purposes. According to reports from Security Today and Threat Post, the number of IoT
devices in 2020 was around 31 billion, but half of them are vulnerable to severe attacks [8,9].
Therefore, an efficient and powerful defensive mechanism for cyber-attacks is necessary.

To mitigate security threats from IoT devices, deploying intrusion detection systems
in the network is a potential solution. The IDS detects any signs of cyber-attacks by contin-
uously monitoring inbound and outbound network traffic generated by IoT devices. Its
attack detection method is classified into signature-based and anomaly-based. A signature-
based attack detection adopts the rules created from typical patterns of already known
attacks, and it identifies a threat if observed events match these rules. In contrast, an
anomaly-based method trains a model using the normal behaviors of the system. This
model is then used to detect the attack by calculating the difference between observed
and learning behaviors. The major issue of these methods is that they only model a very
limited number of system behaviors that is insufficient for IoT networks consisting of
heterogeneous device types. Indeed, different device types may generate various network
behaviors, resulting in degraded attack detection accuracy. Motivated by the success of
deep learning in several fields, it is envisaged that deep learning-based IDS could overcome
existing issues and increase the attack detection quality. Indeed, the deep learning model is
good at learning complex and non-linear features in the network traffic, making it more
efficient than other machine learning algorithms. However, training these models requires
a massive amount of labeled data containing both normal and abnormal network traffic.
The labeling process is time-consuming and laborious; thus, continuously maintaining the
labeled datasets is impractical.Moreover, high-quality datasets for training the IDSs are
hard to obtain, although they play an essential role in enhancing IDS detection performance.
The main reason for this shortage is privacy concerns [10–12]. Following [13], enriching the
network information for IDS datasets requires the neglect of privacy and security issues.
Thus, these datasets are customized to remove the sensitive network information before
publishing, leading to several defects in network flows. Moreover, most of the existing IDS
datasets are out-of-date and lack labeled attacks [14]. For example, the worms attack in
the UNSW-NB15 dataset, a well-known dataset used in our experiment, has only 174 sam-
ples, compared with 44,525 samples for the exploit attack. This significantly degrades the
effectiveness of the training process.

The motivation of this work arises from a basic observation: it is non-trivial to enhance
the attack detection quality while retaining the model’s simplicity. This observation is
described in several research papers about IDS, in which authors tend to introduce novel
attack detection models to increase the detection accuracy regardless of their complexity,
but we believe that high-quality training data also play a critical role in achieving an
effective model. Thus, the main technical goal of this paper is to detect various cyber-attacks
accurately by providing an efficient IDS along with an artificial method to generate valuable
training data. In more detail, this paper introduces IMIDS, an effective intrusion detection
system powered by a CNN model. IMIDS comprises two key components, the feature
extractor and attack detection model , with the former capturing raw network packets
and transforming them into network features, while the latter detects malicious activities
from these features. We note that IMIDS could not only differentiate the normal and
abnormal activities, but identify the type of cyber-attacks hidden behind these activities. To
enhance the IMIDS’s detection performance, we also propose a novel attack data generator
leveraging a conditional generative adversarial network. This network is constituted
of conditional generators that could learn the conditional distribution of samples in the
dataset. The experimental results show that IMIDS could detect nine cyber-attacks with
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an average F-measure of 97.22%. In addition, IMIDS’s detection performance is notably
improved after being further trained by the training data generated by our attack data
generator. For example, the accuracy of detecting worms and analysis attacks increases
from 35.58% to 70.94% and 49.12% to 83.64%, respectively. The main contributions of this
work are summarized as follows:

• We present IMIDS, an intrusion detection system powered by a CNN model that
can not only differentiate normal and abnormal activities but identify the type of
cyber-attack hidden behind these activities. The evaluation results on two popular IDS
datasets show that IMIDS could detect nine types of cyber-attacks with an average
F-measure of 97.22% and 96.34%.

• We introduce a novel attack data generator leveraging a conditional generative ad-
versarial network. In our evaluation, IMGAN’s detection performance is notably
improved after being further trained by the training data generated by our attack
data generator. For example, the accuracy of detecting worms and analysis attacks
increases from 35.58% to 70.94% and 49.12% to 83.64%, respectively.

• We perform an extensive experimental evaluation to show that IMIDS significantly
improves the detection performance on two different intrusion datasets (UNSW-NB15
datasets and CICIDS2017) and outperforms its competitors.

The remainder of this paper is organized as follows: Section 2 reviews the most recent
related literature. Section 3 delves into the details of the proposed IDS, while Section 4
presents an extensive analysis of the evaluation results. Finally, we draw our conclusions
in Section 5.

2. Related Works

Cybersecurity has attracted more attention recently due to the evolution of information
technology, so the domain of implementing intrusion detection systems and improving
them with machine learning has been intensively studied [15]. Mojtaba et al. proposed
Passban IDS, an intrusion detection system optimized by unsupervised learning to detect
anomalies and applied on a limited hardware environment [16]. In [17], the authors
introduced an IDS for online intrusion detection using AutoEncoders algorithms. The
authors in [18] examined the ANN, as well as other classification algorithms, for the
problem of network intrusion detection and suggested a solution based on an ensemble of
classifiers utilizing connection-based methods. In [19], the authors presented a hierarchical
approach consisting of multiple layers, such as an anomaly detection layer created by a
series of ANN classifiers. The authors of [20] modified the backpropagation to speed up
model training time. The authors in [21] employed multiple machine learning classifiers
to detect several types of attack. To increase the detection performance, Moustafa et
al. proposed a feature selection model that ignores all the irrelevant features and only
keeps the significant ones before passing the data into the classification models [22]. The
proposal uses a combination of the association rule mining technique and the central point
of attributes values. The overall results showed improved performance (accuracy and
false alarm reduction) and a significantly low processing time. Adopting the same idea
of feature selection, the authors in [23] proposed a new model based on a customized
generic algorithm and least squares support vector machine. The evaluation results show
the low false-positive and high positive rates in anomalies classifications. A Reduced Error
Pruning Tree algorithm was introduced in [24]. The proposed model contains a feature
selection layer based on the user’s requirements, a sub-layer to group network flows by
protocol (TCP, UDP, or others), a layer of anomaly detection, and a layer to inspect the
detected abnormalities.

The authors in [25] presented a cascade structure of ANN for multi-class detection
(CANIDS). The model was evaluated using the UNSW-NB15 and KDD99 datasets, giving
overall accuracy of 86.40% and 94,96%, respectively. Al-Zewairi et al. used deep learning
classifiers based on a multilayer feedforward artificial neural network that is optimized by
backpropagation and stochastic gradient descent in more detail [26]. Aiming to optimize
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the ANN model, the authors in [27] reduced the costly resource expense of the algorithm
by employing an effective feature selection algorithm. The evaluation results on the
UNSW-NB15 and NSL-KDD datasets show that the proposed ANN model achieves an
accuracy score of 95.45% and outperforms the state-of-the-art algorithms. To protect
the model network, Nguyen et al. proposed an attack detection model applying a multi-
class cascade of ANNs [28]. The results on the UNSW-NB15 dataset are approximately
95.84% accuracy, 83.40% precision, and 79.19% recall. To detect web application attacks,
Moustafa et al. presented an anomaly-based detection system [29] consisting of a real-world
network data collector, a dynamic feature selection module for web application data using
association rule mining, and an optimized Outlier Gaussian Mixture classification module.
In [30], the authors proposed an IDS to protect cyber-physical systems. The proposed IDS
combines the hidden Markov model and beta mixture model to detect security threats. The
model performance over the UNSW-NB15 dataset achieved a 95.89% detection rate, 96.32%
accuracy, and a 3.82% false-positive rate. Chowdhury et al. presented a model based on
the combination of simulated annealing and support vector machine [31]. The detection
accuracy of the proposed model is around 98.76%, higher than the original SVM, which
is only 88.03%. The authors in [32] evaluated several well-known algorithms, including
decision and regression trees, naïve Bayes, and support vector machines, to reveal the lack
of real-life evaluation of current IDS works. The evaluation results on the UNSW-NB15
and ISOT datasets indicate that the attack detection performance of current IDSs may vary
in different evaluation environments.

Research on applying generative adversarial networks in networking security is still in
the early stage. In [33], Chuanlong Yin et al. employed GAN to build Bot-GAN, a security
framework to detect botnet attacks. In Bot-GAN, the generative model is used to improve
the amount of data to bypass the original IDS acting as a discriminator. In [34], the authors
proposed a GAN-based framework to evaluate cyber-attacks on the smart energy grid. The
framework employs a GAN generator to generate abnormal traffic to evaluate the existing
system defender. JooHwa Lee et al. presented a high-performance network intrusion
detection system based on an autoencoder-conditional GAN (AE-CGAN) model [35]. The
AE-CGAN uses an unsupervised learning model autoencoder and GAN to solve the
imbalances between normal and abnormal traffic to increase the detection performance.
Similarly, a Flow-WGAN model was introduced in [36] to generate new network traffic data
from original datasets to enhance the amount of training data and protect the user’s privacy.
The authors in [37] proposed G-IDS to address the lack of training data for IDSs in cyber-
physical system (CPS) contexts. In G-IDS, GAN is responsible for generating synthetic
samples, which are then combined with real data to train the attack detection model.
Ref. [38] presented a novel fog-based FID-GAN, an unsupervised intrusion detection
system for CPSs using GAN to detect cyber-attacks with low latency requirements. To
protect the ad hoc networks, Huang et al. proposed an imbalanced generative adversarial
network-based IDS (IGAN-IDS) [39]. In IGAN-IDS, the authors added imbalanced data
filters and convolutional layers to a typical GAN model to generate more data samples for
minority classes. Zhao, Shuang et al. used GAN to generate adversarial attacks against
black-box IDSs [40]. Studies in [41,42] have shown the importance of protection systems for
IoT devices, including developing an effective IDS, along with ensuring data privacy. On
the other hand, researching and testing IDSs on incomplete datasets may yield inaccurate
results [43], as shown in Ref. [44] in the case wherein these datasets are unbalanced. To
address imbalance in training data, researchers focus on feature selection specifically, as
in [43,45,46].

Many research groups have followed the success of machine learning, integrating
machine learning into NIDS to leverage attack detection quality. Refs. [42,47] provided
a detailed overview of machine learning technologies adopted in cyber security over the
last decade, including intrusion detection, malware detection, and spam detection, which
cover both legacy and IoT systems. A brief assessment of machine learning models on IDS
datasets has been presented in [48,49]. Ref. [21] proposed a two-layer network classifier:
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the first used REP Tree and the JRip algorithm, while the second used Forest PA, which
took initial features and first layer results in addition as inputs. Refs. [50,51] leveraged
the success of convolutional neural networks in image and network environments and
proposed an IDS based on the LeNet-5 CNN model, adopting normalization and one-hot
encoding to improve the stability; the overall accuracy was 97.53% when evaluated on the
KDD Cup99 dataset. Ref. [52] introduced a deep neural network (DNN)-based IDS. The
authors in [53] implemented Apache Spark distributed computing, integrated with the
Keras deep learning library and Apache Spark Machine Learning ensemble techniques,
and the highest accuracy for multi-class classification was achieved by the DNN, which
reached 97.01% on the UNSW-NB15 dataset and 99.56% on the CICIDS2017 dataset.

The authors in [45] have made comparisons between several machine learning and
deep learning algorithms, including decision tree, random forest, K-nearest neighbors,
logistic regression, naïve Bayes, support vector machine, and ANN. However, the authors
focus more on the feature selection problem, so the above classification algorithms have
not been evaluated thoroughly. A comparison of many machine learning models was
performed in [54], and the results were evaluated on UNSW-NB15. Here, REPTree had
the best overall accuracy of 87.37% and the lowest false alarm Rate. Ref. [55] provided a
stacking ensemble of machine learning algorithms, including the first layer of random forest,
logistic regression, and KNN, and the second layer optimized support vector machine. The
result showed 94.27% accuracy in UNSW-NB15 binary classification and 82.22% accuracy in
multi-class classification. Ref. [56] also proposed a two-stage network intrusion detection
system on the UNSW-NB15 dataset. The first stage uses data mining techniques such as
logistic regression, gradient boost machine, and support vector machine to perform binary
classification; the second stage deploys multinomial classifiers for categorizing attack types
using decision trees (C5.0), naïve Bayes, and multinomial support vector machines. The
accuracy achieved for each model was 72.72%, 60.70%, and 70.21%, respectively. Ref. [57]
proposed Dendron IDS, which evaluated decision trees and genetic algorithms to generate
new detection rules. The experiments conducted on KDDCup99, NSL-KDD, and UNSW-
NB15 yielded results of 98.85%, 97.55%, and 84.33%, respectively. The authors in [58]
exploited incremental machine learning to build an effective network intrusion prevention
system for IoT. The proposed system includes an online-cluster algorithm powered by
the self-organizing incremental neural network and multiple support vector machines to
classify the attacks. The evaluation results on the NSL-KDD dataset show that this system
achieves 89.67% detection accuracy. Similarly, Ref. [59] used network profiling and a
machine learning-based IDS to secure the IoT network. In more detail, the networking
behaviors of connected IoT devices are defined as profiles. Any high deviation of these
profiles is considered an attack sign and transferred to an attack detection model based on
the MobileNet convolutional neural network. In the experiments on the testbed, the overall
accuracy is reported at 98.35%.

To cope with novel cyber-attacks and increase the detection quality, the mentioned
IDS works tend to employ highly complex machine learning models trained by public
network traffic datasets. This complexity significantly affects the feasibility of these works
because IDSs are mainly deployed on resource-constrained network devices (e.g., routers,
switches, and firewalls) [60]. In addition, enhancing the detection accuracy of these models
by generating more training data was not discussed. This paper introduces an effective
intrusion detection system powered by a CNN model, namely IMIDS, and a novel attack
data generator leveraging a conditional generative adversarial network. IMIDS could
not only differentiate the normal and abnormal activities, but identify the type of cyber-
attacks hidden behind these activities. Furthermore, IMIDS’s detection performance is
notably improved after being further trained by the training data generated by our attack
data generator.
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3. The IMIDS IDS

In this section, we explain how IMIDS works. First of all, the operation of IMIDS
is divided into the training and prediction phases, the flow direction and key compo-
nents of which are illustrated in Figure 1. In more detail, IMIDS is composed of the
following components:

• Network capture block: It captures the raw network packets from network traffic
and extracts network flows from them by using external libraries (e.g., afpacket [61],
tshark [62]).

• Feature extraction block: This component is responsible for calculating network flow
statistics and extracting network features from network flows. Its output is a set of
network features compatible with the attack detection model.

• Train/load model block: In the prediction phases, the attack detection model, a ten-
layer convolutional neural network, detects abnormal activity by monitoring current
network traffic. In contrast, the training phase is used to offline update this model
by retraining it with labeled network data consisting of 197 network features. After
training, the model is temporarily saved in storage until the administrator triggers the
deployment process, replacing the running model with the trained model. To maintain
the detection accuracy, we frequently retrain the model with novel attack data via a
web-based management interface. Indeed, it is updated offline. This means that the
model is offline trained with novel collected network data after a certain duration.
This model is then saved in model storage before deployment in the IDS device via a
web-based management interface controlled by network administrators.

Figure 1. Main operational phases of IMIDS.

3.1. Attack Detection Model

Motivated by the success of the convolutional neural network (CNN) in several
domains (e.g., computer vision, natural language processing), most well-known image
classification models are built based on CNN architecture, such as Resnet, EfficientNet, and
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MobileNet. In addition, compared with recurrent neural network (RNN) and deep neural
network (DNN), CNN is much faster in classifying imagery data. Aiming to minimize
the attack detection model’s complexity while maintaining high detection accuracy, we
designed IMIDS’s attack detection model based on CNN architecture that has only ten
layers and 890.826 parameters. The ten layers include convolutional, max-pooling, and
fully connected layers, and its operation is separated into two phases:

• Feature extraction phase : The input layer receives network features with (197, 1) shape.
After going through double 1D convolutional layers and the activation function ReLU,
we obtain the feature map with 64 filters. This feature map passes a max-pooling
layer to reduce the dimension from (197, 64) to (98, 64). It then goes through two
convolutional layers and a max-pooling layer to receive a new feature map with shape
(48, 128).

• Attack classification phase: The feature map is flattened to 6272 vector features and
passes two fully connected layers to calculate the probability of 10-dimension outputs
corresponding to 10 labels. The dropout value of the first fully connected layer is set
at 0.5 to prevent overfit. The model architecture is shown in Figure 2.

The details of each layer and activation function are described below:

• Convolutional layer: This aims to extract the advanced features by using multiple
kernels, which have the training weight and bias, to compute the feature maps. These
maps of each kernel are the result of a region in the previous layer. Let (x, y) and
(n, m) with n ≤ x, m ≤ y denote the size of sample s and kernel w, respectively. The
convolutional process is described as follows:

Convx,y =
n.m

∑
i

Wi · si (1)

Then, bias is added to the output before applying the non-linear activation function h

Convx,y = h

(
n.m

∑
i

Wi · si + bias

)
(2)

In our model, the activation function h is the rectified linear units (ReLU) function,
defined as:

h(x) = max(0, x) (3)

• Fully connected layer: After passing the max-pooling layer, which reduces the di-
mensions of the previous output layer by keeping the maximum value in a block, the
feature map is flattened and sent to the fully connected layer to compute the feature
distribution. In this layer, every input unit connects to all activation units. To avoid
overfitting, we drop 50% of connections by setting the weight of these connections
to zero.

• Output layer: The output layer receives the result from the fully connected layer
to compute the loss and update the weight of kernels. In our model, we employed
categorical cross-entropy in the loss function, which is defined as:

L = − 1
N

N

∑
i=1

C

∑
c=1

Lyi∈Cc log Pmodel [yi ∈ Cc]

The term Lyi∈Cc is the indicator function of the ith observation belonging to the cth
category, and the Pmodel [yi ∈ Cc] is the probability predicted by the model for this
ith value. When there are more than two categories, the neural network outputs a
vector of C probabilities, each giving the probability that the network input should be
classified as belonging to the respective category.
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Figure 2. Structure of proposed convolutional neural network.

3.2. Attack Data Generator

Currently, high-quality datasets for training the IDSs are hard to obtain, although
they play an essential role in enhancing IDS detection performance. This is because of
privacy concerns. Thus, sensitive network information in these datasets is removed before
publishing, leading to several defects in network flows. Moreover, most of the existing IDS
datasets are out-of-date and lack labeled attacks. Meanwhile, the generative adversarial
network, first introduced in 2014, has been widely used in synthetic data generation tasks
due to its effectiveness and distinctive architecture. However, network datasets are formed
under tables with discrete and continuous columns that challenge traditional GAN, such
as vallinaGAN [63]. To solve this issue, we present a network data generator powered by
the conditional GAN (ctGAN) that differs from other GAN models [64–67] in the generator
component. Indeed, traditional GAN generators are fed by random data samples from the
dataset, so they are inefficient with imbalanced datasets. In contrast, the ctGAN’s generator
is learned from the distribution of the dataset. In more detail, let K be the value of the
ith discrete column di, which is represented as generated data r̂. The generator learns to
represent the conditional distribution of rows or samples given the exact value and exact
column denoted as r̂ ∼ PG(row|Di = K). The conditional generator should learn the real
distribution of the dataset; then, we rewrite the distribution as:

PG(row|Di = K) = P(row|Di = K)

⇐⇒ Prow = ∑k∈Di
PG(row|Di = K)P(Di = k)

With the aim of generating synthetic discrete tabular data, we propose generators in
CTGAN shown in Figure 3 that include three key factors: conditional vector, generation
loss, and training by sampling.

• Conditional vector: It is necessary to transform the input to a conditional vector before
feeding it to the generator. Conditional vector is interpreted as the condition (Di = K).
Given discrete columns (D1, D2, . . . , D|D|) and the mask vector mj = [m1

j , m2
j , . . . , mK

j ],
for j = 1, 2, . . . , |D|, the condition can be defined as a one-hot vector as follows:

mk
i =

{
1 i f i = j and k = K
0 otherwise

, f or k = 1, 2, . . . , |Di|
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Then, the conditional vector is

Ctvector = m1 ⊕m2 ⊕ · · · ⊕m|D|

while
⊕

is the concatenation symbol. For example, we sample 2 discrete columns
D1 = 1, 2, 3, 4, 5 and D2 = 1, 2, 4, 5 and the condition is (D1 = 5), meaning j = 1
and k = 5 is defined as m1 = [0, 0, 0, 1], m2 = [0, 0, 0, 0]; hence, the Ctvector =
[0, 0, 0, 1, 0, 0, 0, 0].

• Generator loss: During training process, the generator creates the one-hot discrete
vector {m̂1, m̂2, . . . , m̂|D|}. Moreover, given the Ctvector by the condition (Di = K)
from the sample of input, the generator is penalized by loss cross-entropy between mi
and m̂i, the average cross dimensions. The loss function is described as follows:

Loss(x, class) = − log
(

exp(x[class])
∑j exp(x[j])

)

= x[class] + log
(

∑j exp(x[j])
)

Figure 3. An overview of the attack data generator model.

4. Results and Discussion

In this section, we summarize and analyze the evaluation results of IMIDS in terms of
attack detection and attack data generator performance. In more detail, we first introduce
evaluated datasets and evaluation metrics in Section A. The detailed evaluation results and
discussions are presented in Section B.

4.1. Experimental Datasets and Evaluation Metric

In the experiments, we employed UNSW-NB15 and CICIDS2017 because of their
popularity, and they are the most up-to-date datasets about cyber security, aiming to
minimize the drawbacks of popular datasets (e.g., KDDCUP, KDD99, NSL-KDD). The
UNSW-NB15 dataset includes 2,540,044 records with 49 features, including packet-related
features extracted from the packet headers and data fields and more complex features
inferred from a sequence of packets, also called flow-based features. These features are
divided into five categories: straight-from-headers information, basic flow features, content
features, and time features. In UNSW-NB15, the network traffic is categorized into ten
different types, including normal traffic, and nine attacks (e.g., fuzzers, analysis, backdoors,
DoS, exploits, generic, reconnaissance, shellcode, and worms). In more detail, the normal
traffic has 2,218,761 records and overwhelms attack traffic, which has 24,246, 2677, 2329,
16,535, 44,525, 21,5481, 13,987, 1511, and 174 records for fuzzers, analysis, backdoors, DoS,
exploits, generic, reconnaissance, shellcode, and worms, respectively.
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To evaluate the effectiveness of the attack detection model, we used several evaluation
metrics, including the confusion matrix, accuracy, precision, recall, and F1 score. Let TP,
TN, FP, and FN denote true positive, true negative, false positive, and false negative. These
metrics are defined as follows:

• Accuracy is the ratio of correctly predicted packets over the total packets.

Accuracy =
TP + TN

TP + FP + FN + TN

• Precision is the ratio of correctly predicted malicious packets over the total predicted
malicious packets.

Precision =
TP

TP + FP

• Recall represents the ratio of correctly predicted malicious packets over the total
malicious packets.

Recall =
TP

TP + FN

• F1 score measures the harmonic mean of precision and recall; it is a single weighted
metric to evaluate detection performance.

F1 =
2× (Recall × Precision)

Recall + Precision

4.2. Results and Discussion

Attack detection performance: The evaluation results of detecting nine attack types
and two datasets in Table 1 show that all evaluation metrics of IMIDS are higher than 95%.
In more detail, IMIDS achieves accuracy of 96.69% and 95.92% on average for UNSW-NB15
and CICIDS2017, respectively. To gain better insights into the detection performance for
each cyber-attack, we illustrate the confusion matrix in Figure 4. From this figure, we note
that our proposal could detect reconnaissance, generic, and shellcode attacks with accuracy
of 80.24%, 97.27%, and 80.98%, respectively, whereas its detection accuracy for backdoor
and analysis attacks is low and recorded at around 14.77% and 35.58%. By investigating
further, we find that the low detection quality results from the lack of training samples,
which total 2677 and 2329 for backdoors and analysis, respectively. This issue motivates us
to develop a network attack data generator powered by a generative neural network.

Attack data generator performance: The proposed attack data generator aims to
enhance the detection quality for attacks pre-trained by public datasets. As shown in
Figure 5, the detection accuracy of backdoors, analysis, and worms is significantly improved
after we retrain the attack detection model with 10.000 synthetic samples generated by our
generator for each of these attack types. In detail, the accuracy of detecting analysis and
backdoors attacks increases from 35.58% and 14.77% to 70.94% and 37.08%, respectively.
To further investigate the changes in model performance after the additional training, we
show the model’s confusion matrix after training with synthetic samples of backdoors
attacks in Figure 6. We can see minor changes in the detection performance for other
attack types. For example, the detection accuracy of generic and worms attacks slightly
changes from 98.38% and 49.52% to 97.36% and 54.55%, respectively. The largest change
is found in the DoS attack, which decreases by 9.22% from 74.96% to 65.74%. This is
because approximately 572 DoS attack samples are recognized as backdoor attacks. These
experimental results demonstrate the effectiveness of our attack data generator in enhancing
the attack detection quality.
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Table 1. The attack detection performance of IMIDS.

Dataset Accuracy Recall Precision F1 Score

UNSW-NB15 0.9669 0.9828 0.9669 0.9722

CICIDS2017 0.9592 0.9592 0.9720 0.9634

Figure 4. Identifying attack type confusion matrix, which shows how the predicted attacks compare
against the actual ones.
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Figure 5. Comparing the attack detection accuracy of IMIDS before and after training with synthetic
data generated by the proposed attack data generator.
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Figure 6. The attack detection model’s confusion matrix after training with synthetic samples of
backdoors attack.

Comparing baselines: We examine several deep learning models (e.g., support vector
machine (SVM), k-nearest neighbors (KNN), linear discriminant analysis (LDA), artificial
neural network (ANN)) and state-of-the-art IDSs. A comparative analysis of detection
quality, shown in Tables 2 and 3, shows that IMIDS has comparable detection accuracy with
the best of the competitors in each type of attack. For example, as reported in Table 2, GRU
and ANN achieve the best accuracy in detecting generic and fuzzers attacks, with 97.93%
and 78.78% accuracy; equivalently, the values of IMIDS are 97.27% and 77.60%. It should
be noted that there are no existing IDSs that could effectively identify all attacks. On the
other hand, IMIDS outperforms its competitors in detecting DoS, reconnaissance, analysis,
shellcode, and worms. For instance, its accuracy in detecting analysis and worms attacks is
70.94% and 83.64%, whereas the best competitors yield values of 47.62% and 78.18%. As
shown in Table 3, the detection performance of our proposed system outperforms existing
IDSs. In more detail, the average detection accuracy of IMIDS is around 74.28%, whereas
the best of the competitors is 63.61%. For each type of attack, IMIDS has a competitive
result with the best of the competitors. For example, the proposed IDSs in [55,56] have
the best accuracy in detecting generic and reconnaissance attacks, with 98.33% and 80.77%
accuracy, whereas the values of IMIDS are 97.27% and 80.24%, respectively. In summary,
the comparative analysis of detection quality reported in Tables 2 and 3 shows that our
proposal could accurately detect various cyber-attacks and outperform its competitors.

Statistical significance: To evaluate the statistical significance of the proposed approach,
five related IDSs over ten attack types were considered and subjected to experiments using
the ANOVA test. The null hypothesis states that all IDSs are similar, and thus their
population means should be equal. The test result in Table 4 shows that the ANOVA test
rejected the null hypothesis because the p-value is 0.009 and lower than 0.05. In addition,
the F-value is more significant than F-critical, which are reported at approximately 3.07 and
2.21, respectively. Therefore, we reject the null hypothesis, and the evaluation results are
statistically significant.
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Table 2. Comparing the attack classification accuracy between IMIDS and recent models for IDSs.

ANN LSTM GRU SVM K-Nearest
Neighbors LDA IMIDS

Normal 98.26% 98.44% 97.59% 97.79% 97.04% 97.72% 98.38%
Exploits 41.22% 46.73% 43.17% 43.93% 47.45% 42.49% 41.71%
Generic 97.38% 94.42% 97.93% 97.33% 97.31% 97.34% 97.27%

DoS 23.53% 54.42% 43.03% 69.60% 39.49% 44.91% 74.96%
Fuzzers 78.78% 77.55% 75.61% 69.45% 69.12% 58.58% 77.60%

Reconnaissance 77.38% 78.54% 76.61% 70.75% 77.87% 64.99% 80.24%
Backdoors 59.39% 14.91% 31.14% 5.97% 18.06% 30.69% 37.08%
Shellcode 57.76% 66.07% 41.16% 27.57% 63.93% 53.69% 80.98%
Analysis 27.91% 33.66% 34.80% 45.96% 47.62% 22.53% 70.94%
Worms 9.43% 34.43% 10.26% 9.09% 21.82% 78.18% 83.64%

Average Accuracy 57.10% 59.92% 55.13% 53.74% 57.97% 59.11% 74.28%

Table 3. Comparing the attack classification accuracy between IMIDS and recent articles.

Rajagopal
et al. [55]

Meftah et al. [56]
Decision Trees

Meftah et al. [56]
Naïve Bayes

Meftah et al. [56]
SVM

Roy
et al. [54]

Papa
et al. [57] IMIDS

Normal 91.83% 74.93% 64.54% 62.41% 100% 97.39% 98.38%
Exploits 85.07% 90.08% 24.97% 85.22% 92.84% 76.22% 41.71%
Generic 98.33% 96.96% 96.29% 96.24% 98.21% 81.37% 97.27%

DoS 25.07% 8.33% 0% 1.07% 10.23% 14.29% 74.96%
Fuzzers 60.98% 55.24% 36.28% 76.26% 88.91% 64.42% 77.60%

Reconnaissance 74.87% 80.77% 49.57% 68.44% 75.47% 46.07% 80.24%
Backdoors 10.79% 4.97% 22.47% 0% 10.60% 67.32% 37.08%
Shellcode 58.23% 60.84% 1.32% 0% 75.29% 36.39% 80.98%
Analysis 11.09% 0% 0% 0% 23.1% 20.45% 70.94%
Worms 37.5% 72.72% 38.64% 0% 61.54% 18.37% 83.64%

Average Accuracy 55.37% 54.53% 33.41% 38.96% 63.61% 52.23% 74.28%

Table 4. ANOVA results for accuracy rate of network attack classifiers.

Source of Variation SS df MS F p-Value F-Crit

Between groups 1.928515 9 0.214279 3.072905 0.009884 2.210697
Within groups 2.091956 30 0.069732

Total 4.020471 39
SS: sum of squared deviations about mean; df: degrees of freedom; MS: variance.

From these detection performance results, we can conclude that the proposed IDS has
fairly high detection efficiency compared to previously introduced algorithms, and the data
generated from ctGAN help to increase the efficiency of attack detection quite significantly,
which opens up a novel direction in the field of network security.

5. Conclusions

In this paper, we propose a CNN-based IDS named IMIDS to accurately detect multi-
ple types of cyber-attacks, and we construct a novel attack data generator powered by a
generative neural network. We first detail the design of IMIDS, which comprises two key
components: feature extractor and attack detection model. The feature extractor is respon-
sible for extracting network features from captured network packets. The attack detection
model is in charge of detecting malicious activities according to a novel convolutional
neural network. To enhance the detection performance, we then retrained the detection
model with several synthetic datasets about specific attacks (e.g., analysis, worms, and
backdoors) created by our generator. The evaluation results on two popular IDS datasets
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show that IMIDS could detect nine types of cyber-attacks, with an average F-measure of
97.22% and 96.34%. In addition, its detection performance is notably improved after being
further trained by the training data generated by our attack data generator.
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