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Abstract: In recent times, Microgrids (MG) have emerged as solution approach to establishing resilient
power systems. However, the integration of Renewable Energy Resources (RERs) comes with a high
degree of uncertainties due to heavy dependency on weather conditions. Hence, improper modeling
of these uncertainties can have adverse effects on the performance of the microgrid operations. Due
to this effect, more advanced algorithms need to be explored to create stability in MGs’. The Model
Predictive Control (MPC) technique has gained sound recognition due to its flexibility in executing
controls and speed of processors. Thus, in this review paper, the superiority of MPC to several
techniques used to model uncertainties is presented for both grid-connected and islanded system.
It highlights the features, strengths and incompetencies of several modeling methods for MPCs
and some of its variants regarding handling of uncertainties in MGs. This survey article will help
researchers and model developers to come up with more robust model predictive control algorithms
and techniques to cope with the changing nature of modern energy systems, especially with the
increasing level of RERs penetration.

Keywords: microgrid; model predictive control; grid-connected systems; isolated systems; renewable
energy resources; uncertainty management

1. Introduction

Due to increased technological advancement, there has been a drastic increase in the
demand for global energy. This demand has been geared towards not only making energy
globally available but also to ensure an adequate and reliable supply of power devoid
of interruptions. The role of the United Nations in trying to make energy accessible and
sustainable for all, including the Paris Agreement, which has led to a great investment and
hence increased thirst for clean, reliable, and sustainable power supply [1]. The traditional
system of power supply has not been in conjunction with the above global consent as it uses
fossil fuels to produce power which is one of the main sources of carbon emission, hence
negatively impacting the environment. The global desire to produce clean energy has been
backed up with improved technologies that have re-branded the ideology of the energy
sector from being completely fossil fuel-based to a mixture of both renewable energy-based
Distributed Energy Resources (DERs) and clean-burning fossil fuel-based generators.

The continuous use of fossil fuels in the conventional power system has posed a
serious threat to the oil and gas reserves and it has been verified that in the next couple of

Electronics 2022, 11, 554. https://doi.org/10.3390/electronics11040554 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040554
https://doi.org/10.3390/electronics11040554
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7517-2171
https://orcid.org/0000-0002-3946-1264
https://orcid.org/0000-0002-1042-5796
https://orcid.org/0000-0002-3455-9625
https://orcid.org/0000-0003-4494-6773
https://doi.org/10.3390/electronics11040554
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040554?type=check_update&version=1


Electronics 2022, 11, 554 2 of 23

years most of these non-replenishable natural occurring energy resources will be completely
depleted. To heal the globe of this situation, global renewable energy markets have evolved
massively within the last few decades [2,3]. DERs comprise Renewable Energy Resources
(RERs), conventional generators, thermoelectrics, Energy Storage Systems (ESSs), and
sufficient ancillary facilities for effective energy supply management and control. RERs
(wind, solar biomass, geothermal, etc.) are resources that are harnessed from nature and has
the ability to replenish themselves. However, they tend to be limited in flow and amount
at any given period of time. A conventional generator uses either propane, gasoline, or
diesel to supply electricity via the alternator. Thermoelectric devices produce electricity
based on temperature differences while energy storage systems store energy produced at
a certain period and use them at a later period to avoid mismatch between demand and
supply. RERs are majorly introduced into the conventional power systems to reduce the
environmental pollution effects of burning fossil fuels and to produce clean energy that is
more environmentally-friendly. Although many countries are adopting the applications of
green technologies, however, some major world leaders are still reliant on fossil fuels due
to policies and regulations. If renewable energy or green technology is to replace fossil fuels
which are the major source of carbon emission in power generation, there must be lucrative
and result-oriented based proposals to convince the regulatory bodies and other market
players in the fossil fuel business so that a competitive and enabling environment can be
created for all [2–4]. Both the global renewable energy transition and growth capacity by
continent are shown in Figures 1 and 2 [4].
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Apart from the environmental sustainability benefit of DERs development, there are
credible technical benefits in terms of loss reduction, reducing the cost of energy trans-
mission, voltage profile improvement, etc. One significant concept for effective DERs
deployment is the concept of Microgrids (MGs) [5–8]. The definition of MG depends on
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individual particular views: The DERs planning point of view differs from the control per-
spective and MG can also be defined based on each DER important characteristics. Firstly,
MG can be defined as an integration of DERs and loads, and secondly, MG can be defined as
a controllable entity that can operate in either grid-connected or islanded mode. According
to the International Council of Large Electrical Systems (CIGRE), MGs are defined as low
voltage distribution networks consisting of interconnected loads (controllable and critical)
and DERs that can work either as a single or multi-controllable unit being connected to a
grid network or islanded [9].

A typical MG consists of RERs like solar PV, wind turbines, fuel cells, Combined Heat
and Power units (CHP), solar thermal units, hydropower, and conventional power sources
like diesel generators and gas turbines. About 34 percent of the world’s MG establishment
can be found in the United States due to the aging energy system being heavily reliant
on fossil fuels. MGs have replaced the fossil system for security and reliability. The Asia
Pacific takes about 40 percent of the total world MG capacity [9]. Since the world is moving
towards getting reliable and sustainable power supply, MGs must be capable of effectively
and efficiently supplying power. Many modern control techniques have evolved to help
MGs successfully achieve their goals. Control techniques help MGs to deliver the required
power due to the intermittencies that emerge from renewable energies. Model predictive
control has been recognized immensely over the recent decade due to its ability to handle
and process multiple disturbances that stem from RERs.

Motivation of the Study and Research Gap

Without a doubt, the high penetration of RESs into MGs has helped to reduce environ-
mental problems and financial situations of power systems; it, however, comes with a huge
negative repercussion. Their availability depends on climatic conditions (rainy/cloudy
or sunny days) making them very unpredictable and unreliable. This intermittency has
created huge uncertainties in MG operations like voltage and frequency regulations, in-
creased faults, and difficult protection strategies. Hence, maintaining MG system stability,
reliability and protection become a challenging issue and a crucial area of research focus.
Power stability issues are very low in conventional large power systems compared to
small low voltage power systems (MGs) owning to the fact that large systems have a
self-stabilizing effect from the frictional force inherent, which is not the case for a small
decentralized power system [9]. However, in low voltage decentralized power systems
like MGs, the need for system control is very huge due to the numerous instability issues
that accompanied the intermittent nature of the RERs. Predictive control in large power
systems is very difficult due to large constraints and complex computational analyses but
forecasting of RERs and loads is better and cheap compared to small low voltage systems
where the accuracy of the forecast results tend to be of poor quality if the process is said to
be executed [10]. These uncertainties have created a dynamic environment, making MGs
operation very difficult and requiring advanced control techniques to solve stability issues.

Many advanced computational control techniques have been carried out to deal with
uncertainties or to model uncertainties in MG operations but few have had satisfactory
results in predicting or forecasting demand and RERs [10–23] and if they do, a majority
do not compensate for errors in the prediction or forecasting process [13,14]. This gap has
created a lot of disturbances in MG operations. Some renowned approaches have been
used to model these disturbances which involve assigning probabilities distributions to
solve uncertainty issues but the results have not been quite successful in handling the
uncertainties due to the computational burden of generated scenarios [14,24–28]. Other
optimization approaches have also had an average degree of success in handling these
uncertainties due to the conservativeness of the result [29–32]. Another major issue is the
idea of using groups of uncertainty sets for different uncertainty cases [24,33–35] instead
of using a general or comprehensive uncertainty treatment. This will however lead to the
introduction of certain parameters or variables to control the sensitivity of the optimization
process [36–39].
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Few research works have entirely considered all necessary uncertainties; the majority
of those that claim to include all uncertainties could be on either “all demand” or “all
supply” without considering all uncertainties in both demand and supply [11,40]. Error in
the forecasting of loads and RESs is very prominent among these control techniques [10,41].
There is however a need for more reliable and accurate control algorithm(s) that can
measure uncertainties in MGs. Hence, one of the key control techniques that have gained
an enormous reputation in MG operations is Model Predictive Control Algorithm (MPC).
MPC can handle Multiple Inputs and Multiple Outputs systems (MIMO). The advantage of
its application is that it is a multivariable controller that controls the output simultaneously
by taking into account all the in-fractions between system variables [42–50]. The speed of
the processor enables it to handle multiple complex problems while taking into account the
disturbances created in the system. These features make MPC controllers more superior to
other control techniques as seen in Table 1.

Table 1. Comparison between MPC, stochastic, and robust optimization techniques.

Uncertainty
Optimization Technique Advantages Disadvantages

Stochastic

1. Can provide the expected value of perfect information
and the cost of the stochastic solution
2. Minimise expected cost than minimizing
worst-case cost

1. Computationally demanding for large scenarios
2. Need to assign probabilities for scenario generation
3. Static assumption of uncertainty

Robust 1. No probability distribution
2. Not computationally demanding

1. Need to use a different algorithm for
different uncertainty sets
2. Overconservative solutions

MPC
1. Does not require external applications
2. The model dynamics uses the present information
to predict future output

1. Requires high expertise
2. Relies on historical data or information

MGs have also been exposed to cyber and communication threats over the recent
decade due to natural- and human-induced activities. Many control strategies have been
developed to ensure the resilience of MGs to physical, cyber, and communication delays
and threats but the idea of developing metrics to quantify their resilience has been a difficult
task [51,52]. Other control techniques proved to have a computational burden in trying to
address issues of communication and cyberattacks [53]. Model predictive controllers have
manifested better control effects compared to traditional proportional integral derivative
(PID) controllers in responding to communication delays since the length of communication
delay affects the MGs stability [48,54,55].

The main research direction is to present a comparative review on MPC-controlled
and other uncertainty modeling techniques of microgrid systems. The review considers the
various uncertainties (voltage profile enhancement, power quality improvement, transmis-
sion losses, and frequency stability) as a whole instead of individual capabilities. This is
professed in both grid-connected and islanded microgrid modes. The organization of the
remaining paper is as follows: Section 2 presents the basic architecture of MG in terms of
both operations and control. Section 3 presents the basic operating principles and concepts
of MPC. Section 4 discusses recent applications of MPC to both grid-connected and islanded
microgrids design. Section 5 gives an overview of MPC superiority in MG management
and the paper is concluded in Section 6.

2. Microgrid Architecture

Several factors have to be considered in establishing a MG, such as the geographical
location, financial availability as MG construction requires huge initial capital investments,
load demand, and historical knowledge of the existing electrical system of such envi-
ronment [56]. Hence, for a MG to effectively and efficiently deliver the required power
for consumption, the design architecture must support both the operational and control
patterns. A typical MG configuration consists of DERs, storage systems, and standard



Electronics 2022, 11, 554 5 of 23

communication and control systems as seen in Figure 3 below. Depending on the purpose
of establishment, it can be either grid-connected or islanded and the point of changing
from one mode to another is the point of common coupling. The situations of the energy
market and availability of RESs initiate the idea of power trading with the main grid and
the consideration of the energy storage systems for uninterrupted power supply. Microgrid
tends to engage in power trading in two facets: (a) When the available energy supply
from the Distributed Energy Resources (DERs) are in excess and (b) when the grid cost of
electricity is cheaper than the generation from the DERs. Instead of curtailing the excess
energy produced, especially from RERs, it is better to sell to the grid. In addition, the price
of electricity from the grid should be monitored to know the periods of lowest tariffs. This
power trading improves both the financial and resilient characteristics of the microgrid.
The local and central controllers tend to help in shifting the mode of the MGs with the
help of power electronics devices [2,3]. Conventional large power systems have used AC
configuration owning to the fact that the AC system exhibits an inherent characteristic that
supports the characteristic of fossil fuel-driven generators. This makes stability issues a
low priority compared to small power systems (MGs) that have huge instability issues.
This concept gave birth to the DC MG system where power electronics devices are predom-
inantly used to eradicate issues of stability, reliability, and protection from uncertainties
created by RESs. Many other MGs have used hybrid systems where both AC and DC
systems are used. The hybrid MG is depicted in Figure 4 below.
 

2 

 

 

Figure 3. A typical MG architecture [2].
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Figure 4. Hybrid MG architecture [3].
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3. MPC Operating Concept and Control Strategy

The idea of MPC dated as far back as the 1970s as it was then centered mainly in
process industries. Due to its ability to solve problems of complex dynamic systems, its
concept has been widely used in other areas of research, especially in power systems
optimization. It is a universal control algorithm that houses a wide range of control tools.
It has been one of the main control algorithms because of several inherent characteristics;
it can process information of complex systems in the shortest duration (seconds), it can
handle systems with multivariable cases, has the tendency of introducing a feedforward
control to take responsibility for measurable disturbances, and is very useful when future
references are known [57,58]. It has a fast processor with a large memory that solves an
online optimization problem at each time step. The control strategy of an MPC is based on
the fact that it uses the model of a system to predict what exactly the future outcome will
be over a prediction horizon. It then predicts a set of future outcomes from prior historical
data based on reference to a particular cost function given by the equation below:

C = ∑ λi

(
K∗i − Kp

i

)2
(1)

where:

K∗i = reference trajectory;
Kp

i = predicted value for variable;
Xi = variable;
λi = weighting factor;
i = number of variables.

At a particular sampling point or time k, the algorithm executes a set of input values
that gives a predicted outcome. Only the first sampling of input is implemented moving
the supposed horizon where a new optimal plan will take responsibility for disturbances
acting or have acted on the system [59]. The optimization algorithm is repeated at time
k + 1 using new measures or estimates, establishing a feedback mechanism which is seen in
Figure 5 [60].

The success of the strategy depends on the structure of the MPC algorithm as seen
in Figure 6 [37]. The efficiency of an MPC strategy depends on the process model and
optimizer. A model with good prediction characteristics can lead to a good performance
of the controller. Based on both historical and available data, the process model captures
the dynamics of the system and predicts control outcomes or actions [37] in line with
a reference trajectory. The optimizer provides the control mechanism for the algorithm.
Both the cost function and constraints available are being controlled by the optimizer. The
optimizer ensures that the optimization cost function is analyzed to satisfy the objective
function of the optimization problem without violating the necessary constraints acting on
the system, and it has the ability to track the errors made in the predictions by the model of
the system to avoid forecast errors.
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Figure 5. MPC control strategy [37].
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Figure 6. Basic structure of MPC.

4. MPC-MG Operations

Managing the optimal planning of a microgrid is a very difficult task due to the
fact that they are small decentralized low voltage systems with small demand and a
high rate of disturbances from intense penetration of RERs. MPC has been applied to
both grid-connected and isolated MG systems to help deal with several parameters as
seen in Figure 7. Many scholarly works have been done to minimize the operating cost or
maximize the revenue generation of microgrids but accurately implementing the mentioned
objectives has been difficult due to numerous factors. These factors could be as a result
of the intermittency posed by nature (weather conditions), error in trying to predict the
situation of nature, and the computational complexities that are associated with optimizing
the situation to get an optimal plan. According to [61], there are two standard methods
or approaches used to solve the problem of uncertainty in MGs: Reactive approach and
preventive approach.
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The reactive method depends on a priori information or historical or predefined
deterministic data (MPC and rolling horizon approaches) and the preventive method
depends on scenario generations (stochastic and robust optimizations). Majority of both
the reactive and preventive optimization techniques carried out in MGs are centered on
grid-connected systems compared to isolated MGs [62]. The preventive approaches have
proven to be ineffective and not reliable for uncertainty considerations.

The stochastic optimization approach requires assigning probabilities for scenario
generations, which is sometimes computationally demanding with the static assumption of
uncertainty. The robust optimization becomes over-conservative for measurements and
requires different algorithms for different uncertainty sets. This is not the case of MPC;
it works on inputs of a system considering the internal dynamics to give or predict an
output by capturing forecast error to compensate for unforeseen initial forecasting, making
it ideal for uncertainty consideration [63–65]. A comparison between MPC and preventive
optimizations is given in Table 1.

Many times, MPC has been combined with either of the two preventive methods
to prevent or reduce uncertainties in many scholarly articles. When MPC is combined
with stochastic optimization to give the Stochastic Model Predictive Control (SMPC), the
stochastic scenarios are used to execute the optimization process by assigning probabilities
without much or totally considering the disturbances in the process. The MPC technique
helps to reduce the computational time and takes account of the uncertainties without
assuming by implementing a feedback scenario where compensation is done to eradicate
the external influences of the integration of renewable technologies.

Thus, combining model predictive control with robust optimization gives a better
result compared to robust optimization because instead of employing different algorithms
which require time and more expertise, MPC does a single consideration of all the uncer-
tainties or disturbances acting on the system. The optimizer in the MPC algorithm has
the ability to trace errors made by the process model in predicting future outputs based
on the dynamics of the system. Conservatism is highly reduced by the action of the MPC
compensation process.

4.1. MPC for Grid-Connected MG Applications

More work of MPC applications to MG is centered on grid-connected systems than
isolated systems because the cost of implementing measurements, automation, forecasting,
and information processing is very small compared with the derived economic benefits
as opposed to isolated systems [10]. Accuracy of the forecast of load and RERs is of
better quality in grid-connected systems. Decentralizing power systems through the
establishment of MGs has led to an increase in demand and accessibility of energy but
comes with uncertainties of demand and RERs.
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Barrios et al. proposed an MPC approach for unit commitment in MG in the presence
of high uncertainties associated with demand and RESs [66]. A particular type of energy
market is considered so that the MG can provide the required demand of load and RERs.
An MPC technique is applied at every time step to cover demand regarding uncertainties
introduced due to prediction. The main objective of the MPC technique adopted in the
work is to reduce the operational cost. Two conditions are considered in the study, which is
the conventional unit commitment and unit commitment based on MPC. Prediction errors
increased the operation cost of the conventional system but a reduced cost is seen for the
MPC unit commitment due to the feedback mechanism.

Parisio et al. proposed that the decentralization of the power system has led to an
increase in energy demand and therefore requires new methodologies to model a smart
grid environment [67]. The work is focused on minimizing overall MG operational costs
to match predicted demand for a certain day by obeying the complex constraints. Four
different strategies are considered, which are heuristics, Mixed-Integer Linear Programming
(MILP), MILP-MPC, and benchmark. It is supposed that the demand for load and RERs
are known with certainty. The proposed MILP-MPC gives less violation because of the
feedback mechanism introduced by the MPC, giving a result closed to the benchmark. The
cost function is given as:

j
(

xb
k

)
= min

ukT−1

T−1

∑
j=0

[
cu′(k + j)u(k + j) + cz

′z(k + j)−OMbF′(k + j)u(k + j)−OMb f ′w(k + j)
]

(2)

subject to:

Si · Pi(k + j) + si < σi(k + j);= 1 . . . Ngxb[ k
b ] = xb(k) (3)

where:

Si, si = disturbances vectors;
w(k + j) = assumed to be known over prediction horizon for j = 0 . . . T − 1;
OMb f ′(k + j) = independent of objective function;
Cz, Cu = column vectors;
(k + j) = time step.

Xie and IIic proposed an MPC algorithm to dispatch all the available resources
to supply fluctuating loads at a minimum cost due to consideration of the prediction
model [68]. The output of the controllable units is adjusted to compensate for uncertain-
ties. Kou et al. [69] proposed a Stochastic Model Predictive Control (SMPC) approach that
works in a two-layer step. The top layer ensures that there is a balance of power in the
system and the bottom layer considers the uncertainties emerging from both supply and
demand ends. The main objective of the proposed approach is to ensure optimal power
scheduling with total consideration of disturbances acting on the system. The special
attribute associated with this proposed approach is the consideration of all uncertainties
from both demand and supply sides. The uncertainties from wind generation and PEV
charging both have different distribution characteristics but the MPC controller in the
system handles both uncertainties simultaneously instead of treating them as separate
uncertainty sets.

Despite MPC’s ability to compensate for disturbances in the RERs system, some
violations have been experienced in scheduling optimal resources. In order to mitigate,
these violations, forecasting errors have to be taken into consideration. Y. Zhang et al.
proposed an MPC approach, considering forecasting uncertainties and forecast errors of
load, wind, PV, and electricity price [70]. The work incorporated stochastic analysis where
scenarios are generated to approximate forecast errors and uncertainties. The objective is to
minimize operation costs. Three different states of the art approaches are compared to the
proposed stochastic MPC; a Deterministic Day Ahead programming (D-DA), a Stochastic
Day Ahead programming (S-DA), and Deterministic Standard MPC (D-MPC). Simulation
results show that S-MPC yields the lowest cost compared to D-MPC. This is because both S-
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DA and D-DA are open-loop systems where optimization takes place only at the beginning
of the scheduling. Both D-MPC and S-MPC are closed-loop where optimization is executed
once for each time step. S-MPC considers all uncertainties affecting the system while
D-MPC assumes that the system is stable with known demand and no disturbance.

Gulin et al. proposed an approach of a power flow optimization in a Direct Current
(DC) MG that accounts for predictions uncertainty [71]. Unlike other methods of uncertainty
consideration, here a chance-constrained method is used to account for power prediction
uncertainties. The work is done on the idea of allowing violations of constraints in line
with predefined probability levels, allowing the utility grid to compensate for error(s) on
the prediction horizon. Two different approaches are used to deliver a minimum cost;
D-MPC and S-MPC. D-MPC did not account for uncertainties while S-MPC accounted
for uncertainties and gives a lower cost by allowing a tradeoff between constraints being
violated and prospect. Both approaches are defined below.

D-MPC scheme is defines as:

U∗ = arg min
u

J(u, xo, c, v). (4)

Subject to:
PG

min ≤ PG
k ≤ PG

max, . . . 0 ≤ k ≤ N − 1. (5)

S-MPC scheme is defined as:

U∗ = arg min
u

J(u, xo, c, v). (6)

Subject to:
‖SiW ∗ σk‖φ−1(1− αi) ≤ si − Si(Duk + Vvk) (7)

where:

J = Economic criterion;
u = Linear function;
U∗ = Optimization control sequence;
(u, xo, c, v) = Initial storage state;
PG

min, PG
k , PG

max = Minimum grid availability, grid availability at time instant k, and maximum
grid availability.

Dao et al. proposed a hierarchical and distributed MPC approach for the energy
management of a microgrid. The main objective of the proposed approach is to provide
an economic management framework to maximize the benefits of the system. In order to
ensure that forecast errors are taken into consideration and that uncertainties are effectively
and efficiently handled to enhance maximum benefits, a negotiation activity or process
is carried out between the hierarchical and distributed MPC algorithms to compensate
for forecast errors within the system [72]. Gambino et al. proposed an economic dispatch
problem for an integrated microgrid (heat and electricity generation). The main objective
of the proposed approach is to optimally dispatch resources so as to minimize the overall
cost of the microgrid. Microgrids that normally incorporate dual derivatives, as the case of
combined heat and power to solve economic dispatch problems, are prone to uncertainties
from loads, energy prices, and weather forecasts. A feedback mechanism generated by the
MPC controller compensates for uncertainties associated with time-varying loads, energy
prices, and RERs power outputs [73].
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Bella et al. proposed a hierarchical MPC (two-layer control system) control scheme
that constitutes of dynamic decoupled subsystems. The main objective of the approach
is to optimally share resources among the various subsystems so as to satisfy the overall
demand and account for disturbances acting on the system [74]. Scheduling takes place
in the upper layer and each subsystem is adjusted or designed in a way that at any time
instance, an independent control action can be executed from the internal request or a
neighboring subsystem based on the MPC. At the end of every time step, the supervisor
checks the system for either a deficit or excess demand in each subsystem. A compensation
activity is initiated by the supervisor in the subsystem(s) that exhibit shortages due to
disturbances or uncertainties so as to ensure the overall system demand is achieved.

The majority of researchers have focused on exogenous factors or external factors
(customer loads, wind speed, PV, and price profile) in considering uncertainty measure-
ments with few works or no work being done considering endogenous factors (types of
equipment, and storage). Prodan and Zio proposed a predictive control framework that
takes into account uncertainties modeling. The work is focused on including internal (state)
dynamics and structural properties of the individual components of RESs (solar and wind,
on-site storage) which may change (stochastically) due to degradation, failure, and aging
effects. By considering both factors, the operating cost of the system can be reduced [75].
Nassouron et al. proposed an MPC approach for an economic dispatch problem considering
heterogeneous systems (system with different computational applications) [76]. Owning
to the fact that several heterogeneous generators and storage elements are used in the
approach, the dispatch problem cannot be solved using classical optimization methods due
to the differences in characteristics of the generators and storage elements. Two techniques
are used to optimally schedule the resources: MPC tracking and Economic MPC (EMPC).
The Economic MPC yields a better cost compared to the tracking MPC. Table 2 shows the
summary of recent approaches of MPC applications to grid-connected systems.

From Table 2, it is evident that the introduction of MPC, either as an independent
operation or a combination of MPC and other modeling techniques gives a better and
desirable outcome of handling the various uncertainties compared to the various preventive
techniques. The table presents a summary of different objectives and uncertainty handling
strategies but what is more unique is the capability of MPC to model the disturbances
and achieve the desired goals. This explanation is also applicable to Table 3 in the case of
islanded systems.

4.2. MPC for Isolated MG Applications

Many utility companies and government-sponsored electric power systems have been
implementing or providing incentives or demand-side management opportunities for their
customers to establish on-site Distributed Generators (DGs) and energy storage systems to
increase the number of isolated MGs in the supply of power. However, these efforts have
proven to be quite expensive or not cost-effective at all. Hence, several research efforts have
been devoted and are continuously being devoted to achieving the cost-effective operation
of the isolated microgrid.
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Table 2. Summary of recent MPC applications to grid-connected systems.

Ref. Proposed Approach Main Focus Gap Parameters
to Be Optimized Uncertainty Handling

[77]
Mixed Integer
Programming (MILP),
MPC

Power dispatching, reducing computational
burden introduced by non-linear MILP and
disturbances

Power, current Influence of disturbances on RES is mitigated by receding horizon
strategy

[78] MPC, Gaussian
process forecasting

Optimal operation planning for EMS to
minimize cost of energy from grid

Results did not consider
environmental and electricity
tariff

Energy cost At each sampling time predictions are calculated for an MPC
execution based on predictions

[49]
Hierarchical and
Distributed MPC
(HDMPC)

Main objective is to provide an economic
management to maximize benefits

Automatic construction of
day-ahead user profile,
iterative negotiations between
layers and integration of low
level controls

Profit A negotiation phase between the hierarchical and distributed MPC
is enhanced to compensate for forecast errors in the system

[79] Distributed MPC (DMPC)
Cooperative MPC (CMPC)

Maximizing RERs utilization and reducing cost
and computational time Power, cost Each controller has a private predicting model that can solve global

cost function

[46] Stochastic MPC (SMPC),
DMPC

A hierarchical predictive control approach
to coordinate wind generation and PEV
charging

Power balance Power preferences are computed by uncertainties in both supply and
demand

[80] MPC
Integrated method is proposed connecting
people’s behavior, appliances, grid behavior,
price

Should include price based
control devices Voltage, peak load MPC close the control loop from power generating to people

behavior leading to reduce generation and distribution method

[81] MPC
Control the interlinking converter to enhance
stable voltage supply, flexible power regulation,
and grid support.

Voltage, power Flexible reactive power is injected onto the main grid for grid support

[82] SMPC, DMPC
MPC is applied with the aim of saving fossil
energy and evaluate the potential for component
downsizing leading to cost minimization

Power balance Introducing an affine feedback correction due to uncertain weather fore
-cast

[83] Distributed Economic
MPC (DEMPC)

A distributed control theory is developed to
coordinate individual subsystems leading to
suboptimal performance in the MG

State of charge,
power balance, price

Each controller can optimize its operation for state of charge, predicted
load and electricity price

[84] MPC
The proposed model helps the network MGs to
coordinate with each other. This minimizes the
power produced by the micro gas turbine

Distributed control scheme
will be considered in future
analysis

Power balance Uncertainty is avoided when one MG sells power to another where
generation is greater than demand (G > D)

[50] MPC
An optimal dispatch problem of controllable
loads and generators of an integrated MG
is proposed to minimize cost

Accuracy of the proposed
model will be correlated in
further studies

A feedback mechanism compensates for uncertainties associated with
time varying loads, energy prices and RERs power outputs
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Table 2. Cont.

Ref. Proposed Approach Main Focus Gap Parameters
to Be Optimized Uncertainty Handling

[85] MPC, MILP
Operation cost is minimized by optimally
scheduling generating units while satisfying
complex constraints

Will include DMPC and SMPC
in further work Electricity price A MILP is optimized at each time step based on short term forecast

and incorporated into MPC to reduce forecast errors

[86] MPC
To generate suitable decisions for all the
source and electrical storage components to
fulfill load demands

Interconnected MG and
combination between
multi-agent approaches will be
applied in further studies

Power consumption,
generation profile,
cost

Fault tolerant strategies are inserted to ensureproper amount of energy
in storage devices for customers’ demand

[87] MPC
Combined economic and environmental energy
management to minimize daily generation
cost and emission

Dynamic model including
electrical components will be
included in future work

Cost, emission Prediction curves, energy generation, load demand are gotten from
historical recording data with stochastic uncertainty processing

[9] MPC
A hierarchical control scheme is proposed to
compute control action needed by a subsystem
or neighboring subsystem

Stochastic scenario, direct
negotiations should be included
in further studies

Voltage, frequency The supervisory level checks for shortages or excesses of control and
also compensate for errors to satisfy the required demand

[88]
Dual
Decomposition
DMPC

Focuses on solving economic dispatch at
runtime while reducing potential deviations
schedules

Stochastic techniques to tackle
challenges will be included in
further studies

Power balance Formulation is solved by every power plant to enhance granularity
of agent

[45] Rolling Horizon (RH)
MPC

Energy management system(EMS) is developed
to minimize daily operation cost and enhance
local self consumption of RERs

Real time pricing scheme will
be considered in further work. RERs Design and implementation of controller to control accuracy of battery

energy storage

[89] EMPC
Including an economic cost index and explicit
constraint to optimally dispatch power to
minimize cost

State of charge of
battery

Design of a central control capable to handle multivariable
constraints and predictions

[90] SMPC A two layer algorithm is developed for
optimal EMS of the MG

Thermal energy needs of the MG
will be considered in further studies RERs SMPC regulator at lower layer runs at higher

frequency to compensate for uncertainties

[91] DMPC
A distributed MPC algorithm is proposed to
schedule MG internal devices and optimal
power trading

Power balance Reactive power balance is established
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Parissio et al. proposed an MPC approach for energy management of multiple res-
idential MGs having DERs, electrical storage systems with both thermal, and electrical
loads [92]. The objective of the proposed MPC approach is to reduce energy costs and
improve customers’ comfort through a demand-side management scheme. An optimal
plan is computed to compensate for imbalances affecting the system based on the weather
forecast. The demand-side management scheme can help customers to know when to have
an affordable cost of uninterruptable power.

Most of the works in predictive algorithms have considered favorable conditions
(where generation is greater than demand). According to [93], a nonlinear MPC algorithm
is developed or proposed for an Energy Management System (EMS) of an isolated MG with
DERs in which automated load shedding of non-critical loads is done when the system fore-
sees power imbalances that could affect the stability of the MG. This predictive algorithm is
proposed to identify upcoming generation problems when MG is operating in an islanded
mode. The objective is to predict and manage constraints in states and control signals.
Hans et al. proposed a control technique that can give better prediction accuracy while
minimizing cost. Comparison is presented between an open-loop minimax approach and
closed-loop minimax MPC approach considering the worst-case cost evaluation in trying
to get better prediction accuracy and uncertainty handling [94]. The open-loop system
gives a very conservative solution because it did not implement a feedback mechanism.
The closed-loop Minimax MPC strategy however employed the theory of paramterization
(choosing parameters) of future inputs on the predicted disturbance leading to accurate
predictions and lower cost. This is due to the presence of the MPC strategy that normally
uses a predefined input to make accurate future predictions.

Gu et al., proposed an MPC technique for Combined Cooling, Heat, and Power micro-
grid (CCHP) with feedback correction to reduce running cost and handle uncertainties [95].
A two-stage optimization approach is executed in this work of which the first stage is based
on forecasting the required load and renewable energies integration. The second stage
focuses on compensating for the error in the prediction process. The MPC ensures that
forecast is repeated for every time interval to get accurate data to be in line with rapid
changes that take place in load and RERs demand. If, however, there is a disturbance
in the system due to inaccurate forecasting, a feedback correction is done to eliminate
the disturbance.

Deterministic unit commitments have proven inappropriate for island MGs because
their small scale demands are hard to predict and RERs generation is highly variable.
Y. Zhang et al., proposed a Robust Model Predictive Control (RMPC) approach to solve the
operating cost of an islanded MG by minimizing cost [57]. The work states that of recent
times, both chance-constrained and scenario-based stochastic optimization methods have
been used to minimize MG cost. It has however, been concluded that these two methods
involve high or huge computational burden and uncertain parameters and forecast errors
are not accurately accounted for and as a result, have posed a high negative impact on
MG cost.

However, another method is the robust optimization used to solve an optimal schedul-
ing problem with uncertain parameters. The conservativeness of this approach is a huge
concern for cost minimization by MG operators. In this proposed RMPC approach, an MPC
is introduced to reduce the conservativeness of the RO due to the rolling up manner and
feedback mechanism that it exhibits. Two control strategies are considered in the approach
used; a conventional 2-stage RO and RMPC-based optimization. The results for the cost
function of RMPC is lower than the conventional two-stage RO since a feedback control
action is generated to consider the forecast uncertainties. This is justified by the RO cost
function with the uncertainty budget given below.

Minimize cx (8)
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subject to:
∑

j
aij + ziΓi + ∑

jεæi

Pij≤bi
. . . ∀i (9)

Zi + Pij ≥ lij . . . ∀j (10)

li ≤ xi ≤ ui (11)

Pij ≥ 0, Zi ≥ 0 (12)

where:

Pij, Zi = auxiliary variables.

Sach et al. proposed a stochastic model predictive control approach for a rural isolated
microgrid. The main focus or objective of the proposition is the development of an advanced
control technique to improve robustness towards predictions error and uncertainties acting
on the system. For normal MPC operation, a control technique is implemented for a one-
time step and subsequent control actions rely on the dignity of the previous time step [96].
This proposed stochastic MPC considers the probability of a constraint violation over
several time steps. A probability distribution approach based on the stochasticity of the load
and renewables is used to compensate for the disturbances on the system. Jaboulay et al.
proposed a controlled algorithm based on MPC with the objective of minimizing operation
cost and maintaining power balance in the system [97]. The controller takes into account
the physical constraints of the system while scheduling the required resources. Instead
of making a few decisions as opposed to other control techniques for every time step, the
MPC takes multiple decisions for every updated forecast because it can handle multiple
inputs and outputs. Scenarios are run in parallel on a semi-physical platform to compensate
for uncertainties.

According to [10], the cost of forecast service and power quality using automation is
very high in isolated systems compared to grid-connected systems. Zhang et al. proposed
an EMS for multi-isolated MGs connected by a centralized system to minimize the overall
cost of the EMS [47]. An MPC technique is introduced with the intent of considering or
reducing the impacts of forecast errors of the load and RERs, hence reducing overall cost.
Berkel et al. proposed a hierarchical MPC for a smart MG to solve the power stability issue.
Two (2) levels of management are presented where the first level solves the frequency issue
and the second level solves the cost function. The objective of the hierarchical MPC is to
make accurate predictions of load and RERs by rejecting disturbances from penetration
and to handle constraints to guarantee stability and performance of the smart MG [9].
The summary of recent approaches of MPC applications to isolated systems is shown in
Table 3 below.
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Table 3. Summary of recent MPC applications to islanded systems.

Ref. Proposed Approach Main Focus Gap Parameters to Be Optimised Uncertainty Handling

[98]
Mixed integer non
linear programming
(MINLP)

Developing an advanced model optimization
approach using MPC framework to reduce
cost and improve robustness of control towards
prediction errors and uncertainties

State of charge, power
balance

Inclusion of detailed component model limits
uncertainties and adaptive forecast algorithm
reduces errors

[99] MPC, sliding mode
control

To stabilize MG system and maintain output
voltage in a layer that can enhance current
sharing

Voltage, current Voltage references are tracked by the sliding
mode control

[100] DMPC Optimization problem is solved by incorporating
economic dispatch in secondary layer

Economic efficiency and
frequency control performance
will be considered in further
work

Frequency Uncertainty effects of RERs is solved by applying
MPC online with rolling optimization

[101] MPC Limiting converter current under overloading
conditions Voltage and current Decoupling of control channels for each DG

[102] MPC
To maintain network variables, provide
flexibility and coordination and account for
energy storage reserves.

Voltage, frequency The primary layer modulates DG units in order to
limit voltage and frequency from nominal values

[103] MPC Control voltage and frequency at the generating
unit and supply energy for balance load Voltage, frequency Addition of fault detection and diagnosis module

to MPC structure

[104] SMPC
To provide a solution that can reduce
conservativeness by taking into account
stochasticity of loads and RERs.

Stochastic and worst case
approaches will be consider in
further studies

RERs Models for time series forecast are employed

[72] SMPC
Development of advanced control to improve
robustness towards prediction errors and
uncertainties

Power Probability constraints are assumed on the battery
state of charge

[105] MILP-MPC An optimization strategy is proposed to attain
an optimal generator start up sequence

Transient processes will be
treated in further work Power Uncertainties are modeled by discretizing the said

probability distribution of forecast errors

[106] MPC Minimize voltage unbalance, improve current
limiting, and prevent active power overload.

Distributed control scheme will
be employed in further work Power quality Controls the negative sequence impedance to

reduce voltage unbalance and current sharing error

[107] MPC Presents a dynamic reactive power control
method to control reactive power

Future analyses will consider
large MGs Power, voltage

Time variant reactive capabilities of distributed
generators are used to compensate for reactive
power

[108] MPC, demand side
management (DSM)

Minimize operation cost and maintain power
balance considering uncertainties imposed

Practical implementation of
MG will be included in further
work

Power balance Faster time scale online power allocation is done
to compensate for uncertainties in real time

[68] Minimax MPC
A closed-loop minimax MPC is employed to
yield a better prediction accuracy and lower
cost compared to open loop

Optimal control of MG in a
probabilistic manner will be
considered in further work

RERs By paramterization

[109] MPC
An interactive energy management is proposed
to enhance power balances and uncertainties
handling in multi-MGs

Impact assessment of cyber
risk and large distribution
systems

Power balance Lower layer runs on high frequency to adjust
difference between planned and real time strategies
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Table 3. Cont.

Ref. Proposed Approach Main Focus Gap Parameters to Be Optimised Uncertainty Handling

[110] HDMPC
A hierarchical distributed MPC is proposed to
coordinate power, flexibility, dispatch, and
minimize cost

Robust optimization will be
considered in future work Power balance Back calculation from lower to upper layer is

introduced.

[69] MPC
An online optimization approach of a combined
cooling, heating and power MG is proposed to
reduce running cost and handle uncertainties

Stochastic technique to tackle
challenges will be included in
further work

RERs Online optimal approach using MPC to compensate
for prediction error

[73] MPC The proposed algorithm reduces operational
cost while maintaining power balance

More suitable method will be
consider in further work to
compensate for forecast errors

Power balance Scenarios are run in parallel on a semi-physical
platform

[111] MPC
MPC control strategy is proposed to solve
an optimal power flow problem in a MG where
assumptions are avoided

Power flow Nonlinear variations in charge and discharge
efficiencies of the battery are analyzed

[112] Robust MPC Main contribution is a review of the three proposed
robust MPC techniques to select best approach RERs A single control system is calculated using multi-

scenario MPC

[113] MPC EMS is proposed to minimize daily operating
cost where MPC is used to minimize uncertainties RERs MPC strategy is implemented
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5. Superiority of MPC in Microgrid Designs and Operational Management

Various problems encountered in the operations of both grid-connected and isolated
microgrid systems, as described in Tables 2 and 3 above, are in actual situations quite
challenging to manage. However, the introduction of MPC has helped achieve a better
system design, which considerably reduces the operation cost. As a summary of the various
operation problems discussed above, the following highlights show the MPC’s superiority:

1. In grid-connected microgrids, the prediction of energy market situations is achieved
more accurately in terms of the load demand and generation dynamics, especially in
the face of the uncertainties introduced by RERs. In isolated microgrids, operating
in favorable conditions or deterministic conditions, where demand is known with
certainty, is not possible because of the unpredictable nature of RERs. The effectiveness
of MPC in tracking the disturbances and uncertainties has led to an increase in the
desired operational benefits under these two conditions.

2. In hybrid systems with thermal generators, a conventional unit commitment operation
cannot accurately predict the output of RERs, which increases the effective operational
cost. MPC introduction has, however, helped to achieve better control of prediction
errors by the effects of its superior feedback mechanisms. In standalone systems
and hybrid systems, MPC encourages multiple residential microgrids to interact
effectively. It enhances efficient Peer-to-Peer (p2p) energy trading by cognizant of the
differences in the energy needs and energy produced by connected parties known as
the ‘Prosumers’ [114].

3. Stochastic approaches do not give reliable performances when it comes to forecasting
and forecast errors; combining MPC with this operation condition yields improved
results in the desired outputs. The MPC exhibits superior performances compared
to other options by considering both external and internal factors while solving
uncertainty issues.

Below are also the limitations of MPC:

1. One of the biggest challenges of MPC applications is that, it relies on historical infor-
mation to predict the future. For newly-established energy systems (grid-connected
or islanded), the application of MPC looks extremely difficult or impossible.

2. MPC applications require high modeling expertise which comes with a high cost.
3. The quality and accuracy of the predictive model plays a significant role in the control

process. Having a balanced trade-off between the model accuracy and calculation
complexity is a serious challenge.

4. Another key issue in MPC is the design of the sampling interval. This interval
determines the performance of the model. A better performance can be achieved
considering small sampling time intervals. This will however reduce computational
burden and economy of scale.

6. Conclusions

Recently microgrids have emerged as an approach to make energy easily available to
global demand. This is more prominent to areas that are remote or inaccessible for grid
connections. However, the presence of RERs tend to make the operation of the MG envi-
ronment very uncertain due to the various disturbances that erupt from their penetrations.
The advancement in technology has produced numerous modeling techniques to handle
the uncertainties associated with the penetration effects. Various modeling techniques to
model uncertainties in microgrids are presented in this review exercise but the results show
that there are still deficiencies in the control process. Due to the speed of the processor
along with its ability to adapt to several applications, it has now become a preferential
control technique. A review of two classifications of modeling uncertainties (proactive and
preventive) are presented in this review. The merits and demerits of each of the classifica-
tions were presented, showing the superiority of a proactive approach (MPC and rolling
horizon) to preventative (stochastic and robust).
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This review is limited to only the modeling of power availability from DERs, especially
RERs in the MG environment. Future work could be focused on a specific uncertainty like
voltage or frequency control, faults detection, or other protection control objectives.
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