
����������
�������

Citation: Tibaldi, M.; Palermo, G.;

Pilato, C. Dynamically-Tunable

Dataflow Architectures Based on

Markov Queuing Models. Electronics

2022, 11, 555. https://doi.org/

10.3390/electronics11040555

Academic Editors: Juan M. Corchado,

Javid Taheri and Stefanos Kollias

Received: 31 December 2021

Accepted: 9 February 2022

Published: 12 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Dynamically-Tunable Dataflow Architectures Based on Markov
Queuing Models
Mattia Tibaldi , Gianluca Palermo and Christian Pilato *

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy;
mattia.tibaldi@polimi.it (M.T.); gianluca.palermo@polimi.it (G.P.)
* Correspondence: christian.pilato@polimi.it

Abstract: Dataflow architectures are fundamental to achieve high performance in data-intensive
applications. They must be optimized to elaborate input data arriving at an expected rate, which
is not always constant. While worst-case designs can significantly increase hardware resources,
more optimistic solutions fail to sustain execution phases with high throughput, leading to system
congestion or even computational errors. We present an architecture to monitor and control dataflow
architectures that leverage approximate variants to trade off accuracy and latency of the computational
processes. Our microarchitecture features online prediction based on queuing models to estimate the
response time of the system and select the proper variant to meet the target throughput, enabling the
creation of dynamically-tunable systems.

Keywords: dataflow; Markov queue; hardware accelerator

1. Introduction

Modern applications require the elaboration of massive amounts of data, e.g., in
realtime video streaming for entertainment or surveillance applications, or network com-
munications [1,2]. To achieve high performance, such applications demand heterogeneous
System-on-Chip (SoC) architectures with specialized hardware components. Thanks to
customization, these architectures can significantly minimize the cost, while hardware
parallelism can optimize the execution time [3].

Due to their distributed nature, modern applications may need to support variable
behavior, where input data are not always available at the same speed [4]. In such cases,
designers must guarantee not only a high quality of the result (e.g., a nice video experience)
but also a continuity of the service (e.g., continuous streaming in surveillance). Latency-
insensitive protocols can be used to ensure correct execution in case of changes in the
surrounding behavior, for example by stalling the execution of the component when the
data are not available [5]. However, hardware accelerators have limited flexibility. Their
entire behavior must be defined and implemented at design time. After that, they cannot
implement a new functionality. Furthermore, the execution time is fixed and depends
on the microarchitecture. In case of variable behaviors, one can design the components
considering the fastest speed that can support all behaviors (“worst-case” approach) but
the resulting component would be underutilized in most of the cases or can even create
congestion on the next components, since it produces the results too fast. Targeting an
average speed, instead, would lead to congestion on the inputs when the component cannot
keep pace with the input data. These situations have been exploited to reduce the power
consumption with dynamic frequency and voltage scaling (DVFS) [6]. and they can also be
used for implementing adaptive behaviors.

In software, designers can achieve adaptivity by approximating the execution of some
phases, provided that the application designers can accept a minimal degradation of the
outputs [7]. When multiple approximate alternatives are available for the same code, the

Electronics 2022, 11, 555. https://doi.org/10.3390/electronics11040555 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040555
https://doi.org/10.3390/electronics11040555
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1113-3987
https://orcid.org/0000-0001-7955-8012
https://orcid.org/0000-0001-9315-1788
https://doi.org/10.3390/electronics11040555
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040555?type=check_update&version=2


Electronics 2022, 11, 555 2 of 14

system can select dynamically which version to be executed. Such systems are called
multi-variant [8]. When applied to hardware, approximation can either save resources
(i.e., less logic is used to perform the same computation) or improve the performance
(i.e., some computation can be executed faster, improving the hardware microarchitecture
or performing the operations in a different way). While many software approximation
techniques can be easily applied to hardware accelerators (e.g., variable-to-constant opti-
mizations [9]), multi-variant hardware systems are more difficult to be designed since they
need to (1) design efficient hardware modules able to support all variants and (2) detect the
proper variant efficiently and correctly based on the given workload.

In this paper, we focus on the second aspect of the problem, assuming that the designer
applies existing approximation techniques to generate multi-variant hardware components.
With our control approach, we enable the creation of dynamically-tunable dataflow archi-
tectures by managing multi-variant accelerators that can dynamically adapt their execution
speed to the surrounding conditions. This system allows modulating the hardware to
use the approximate versions of a given functionality only when strictly necessary. We
start from components that implement multiple variants trading off accuracy and latency.
Such variants (also called configurations) can be generated with different approximation
solutions and merged to reduce area overhead. We extend the multi-variant hardware
module with a microarchitecture to automatically select the proper configurations based
on the system workload. Such microarchitecture monitors the input data, estimates their
arrival rate based on queuing models, and accordingly adjusts the speed of the component.
Our main contributions are:

• A microarchitecture for online predictions of system workload based on queueing
models (Section 4);

• A framework for the creation of dynamically-tunable dataflow architectures that
integrate a hardware implemention of the prediction model (Section 5); and

• An evaluation of the proposed method in different workload conditions (Section 6).

Our systems can efficiently reach a target throughput with less error than using preset
configurations using minimal additional hardware resources.

The remainder of this paper is structured as follows. Section 2 provides a simple
example that motivates our effort, while Section 3 briefly describes the related works on
the topic. Sections 4 and 5 introduce the proposed method describing the different phases
involved at run-time and for the module hardware module generation. Section 6 reports
the experimental results obtained adopting the proposed method with respect to state of
the art techniques. Finally, Section 7 concludes the paper.

2. Motivating Example

Dataflow architectures are widely used to implement hardware systems that can
elaborate a set of incoming data to produce the corresponding results. They are based on a
set of concurrent hardware modules that communicate through First-In-First-Out (FIFO)
buffers with a producer–consumer paradigm. An example is shown in Figure 1. Such
buffers implement a latency-insensitive protocol [5] that guarantees correct computation
when the producer is not able to provide enough data (leaving the buffers empty) or
when the consumer is not able to consume enough data (leading to data accumulation
in the queues). Both these cases can lead to system congestion or poor performance. A
traditional solution is to design the accelerator by considering the worst-case scenario,
aiming at supporting the fastest input rate. In many cases, it is impossible to optimize the
accelerator in this way and the designer needs to use approximated implementations. While
approximated solutions are fast and can avoid system congestion for the input buffers, they
introduce errors in the output results. Furthermore, since the execution becomes faster than
before, the congestion can move to the output buffers. We, thus, need a smarter way to
create dynamically tunable accelerators, i.e., architectures that can dynamically change the
execution speed (and corresponding error) based on the current workload conditions.



Electronics 2022, 11, 555 3 of 14

A

B

C

FIFO buffers

FIFO buffers

Data arrival time Frequent data and congestion Rare data and system underutilization

Figure 1. Dataflow architecture with variable input rate.

Example 1. Consider a moving-average filter as a case study. The size of the sampling window
can be dynamically adjusted to read more or fewer values, leading to different execution times and
errors in the computation of the average. Our goal is to understand how to adjust the window size
to achieve a given throughput while minimizing the approximation error. In this case, using the
fastest solution for the entire computation leads to achieving the given throughput, but the error
is around 90%. An alternative approach uses a threshold control system that determines the best
configuration for the accelerator based on the number of elements in the buffers. For example, we
can use a system where:

W1 = sizebu f f er/Ncon f

Wi = W1 ∗ (i)

where sizebu f f er is the size of the input buffer, Ncon f is the number of available configurations, Wi
is the maximum number of elements allowed in the buffer for configuration i (threshold), and i
ranges between i and Ncon f . When the buffer number exceeds a threshold, the accelerator is moved
to the next (and faster) configuration. This system reduces the error, but it does guarantee that
the constraint on the response time is respected. Furthermore, an accelerator can continuously
change its configuration when the number of buffer elements fluctuates around one of the thresholds
(hysteresis loops).

In this paper, we aim to model the problem as a Markov Decision Process to correctly
set the controller’s thresholds while minimizing the approximation error. In queuing
theory, an M/D/1 (Markov/Deterministic/1) queue [10] represents a single server queuing
process in which the jobs arrive with a Poisson distribution, and the overall service time is
deterministic. The jobs are served in their order of arrival (as in FIFOs), and the successive
job forms a m-state Markov chain {0, 1, 2, 3,. . . }, where the value corresponds to the number
of entities in the system (the configurations in our case). So, arrivals move the process from
position i in the chain to position i + 1. Queues based on Markov processes may occur
in practice when a service adjustment is required (such as the case of inputs arriving at a
variable rate). If we count the service time of a job and its time in the system, the different
service times correspond to transitions in the Markov chain (i.e., our configuration changes).

3. Related Work

Approximate systems are widely used to reduce the area, power consumption, or
latency of a circuit, when the given application can tolerate a certain computational error.
Approximate systems are created both at hardware and software levels [7,11]. Hardware
approximation can achieve larger benefits, for example, the generation of smaller circuits.
On the contrary, software approximation is more flexible and can be tuned more easily
based on application requirements.

Software-level approximation trades off accuracy and performance [12–14]. Mem-
oization speeds up computation by storing the results of expensive function calls with
the same inputs [15]. Skipping some iterations of a loop (loop perforation [12]) or even
entire tasks (task skipping [16]) can significantly reduce execution time. Software ap-
proximation enables the creation of multiple variants (e.g., alternative codes) that can be



Electronics 2022, 11, 555 4 of 14

dynamically selected based on the workload conditions and the application requirements
(multi-versioning [17]). This technique is difficult to directly apply in hardware, since it
requires additional resources for each variant.

Customizing data precision is a popular approximation to create smaller components.
For example, Gao et al. [18] determined the effects of data-precision manipulation on
outputs. Vayerka et al. [19] used genetic programming to create a library of approximate
components (e.g., adders and multipliers) to be used in HLS. However, approximating
an entire circuit with this method is unfeasible due to its exponential complexity. Lee
et al. [20] leveraged an HLS-based method to reduce the circuit latency by eliminating or
rescheduling operations (similar to task skipping). Nepal et al. [21] used a greedy approach
on the hardware behavioral specification to generate a Pareto-optimal set of alternative
approximate implementations. Li et al. [22] presented a comprehensive solution for preci-
sion optimization, scheduling, and resource assignment during HLS. Any approximation
method requires estimating the error that can be obtained with statistical estimations [23] or
with RTL simulations. All these approaches can be used to the create the approximate con-
figurations. However, since such implementations are often structurally similar, datapath
merging methods enable the creation of multi-variant hardware components [24,25].

Finally, dynamically changing the “speed” of hardware components to reduce con-
gestion requires online monitors and controllers. For example, Mantovani et al. [6] used a
local controller to exploit dynamic voltage and frequency scaling (DVFS) in NoC-based
architectures. We use a similar approach to analyze the “congestion” on the communica-
tion buffers and determine when the component can change implementation, thus, the
approximation level. However, as discussed in Section 2, this threshold-based approach is
inefficient, because it can create unnecessary configuration changes. Table 1 summarizes
the advantages and disadvantages of the presented works. We aim at implementing a
smarter approach based on queue models, which have been successfully used for runtime
resource allocation in multicores [10]. This paper describes how to create the corresponding
hardware microarchitecture that efficiently changes the accelerator’s configuration.

Table 1. Overview of the main characteristics for the related works.

Systems Description Advantages Disadvantages

Gao et al. [18], 2017 data-precision
manipulation

A runtime system.
Approximate the

minimum necessary.
Great energy savings.

Controller at software
level.

Vayerka et al. [19],
2016

Genetic programming
to create a library of

approximate
components

Automatic generation
of optimized hardware
libraries. Work at HLS

level.

No runtime support.
Static approximation.
Unfeasible on entire

circuit.

Lee et al. [20], 2017
Rescheduling

operations to reduce
circuit latency

The transformations are
at the HLS level. Much

faster than other
rescheduling

methodologies. Higher
energy savings.

No runtime support.
Near-optimal result.

Not applicable
directly in hardware.

Nepal et al. [21],
2014

Greedy approach to
generate approximate

implementations

Automatically
discovers approximate

design. Area and
power savings.

Applicable to generic
circuits. Is transparent

to the design flow.

No runtime support.
Static approximation.



Electronics 2022, 11, 555 5 of 14

Table 1. Cont.

Systems Description Advantages Disadvantages

Li et al. [22], 2015
Solution for precision
optimization at HLS

level

Simple. Provides an
ILP formulation for

precision optimization.

Not applicable to
cases that are both
data-intensive and

control-intensive. No
run time support.

Unfeasible on
complex systems.

Mantovani et al. [6],
2016

A controller for
exploiting dynamic

voltage and frequency

Enables pre-silicon
tuning and design

exploration.
Implemented in

hardware. Higher
power savings.

Creates unnecessary
configuration changes

due to thresholds.
Focuses on power

optimization rather
performance.

4. Hardware Architecture and Model for Online Predictions

We assume a hardware dataflow accelerator similar to the one in Figure 1. The
accelerator has input and output FIFO buffers to decouple computation and communication
with latency-insensitive protocols [5]. We also assume that each dataflow accelerator
supports dynamic tuning, i.e., it has a set of input parameters that can be used to select an
approximated configuration. Each accelerator has K configurations (k = 1, 2, 3..., K). Each
configuration k is characterized by an execution time τk and an execution error εk. The
entire set of configurations can be obtained by combining approximation techniques and
design space exploration as discussed in Section 3. Execution time and error are known at
design time and can be obtained analytically or with RTL simulation.

4.1. Key Idea and Architecture

We associate a controller to the dataflow accelerator to be dynamically tuned. The
controller selects the configuration to be executed and provides the corresponding identifier
to the component. In case of dataflow accelerators composed of multiple sub-components
that can be individually tuned, the configuration is characterized by a set of parameters to
be provided at the same time to each sub-component. The designer needs to identify in
advance configurations (i.e., a combination of parameters) that are inefficient (e.g., due to
large errors) and exclude them from the list. However, this process is part of the design
exploration process that selects the Pareto set configurations. We add logic to delay the
selection until the start of the component’s iteration (i.e., when it reads data from the input
FIFOs) to avoid inconsistencies during the computation. The approach is valid for both
ASIC and FPGA implementations. In case of FPGA implementations, this approach is
much faster than partial dynamic reconfiguration, since the hardware is deployed on the
configuration logic only once, and it does not require any further changes during execution.

The controller includes the logic to detect congestion and to “speed-up” the computa-
tion, and it is parametric with respect to the number of configurations in the Pareto set of
the supervised component. To monitor the execution, each controller is connected to the
input FIFO buffers with full, almost-full, and empty signals. The status of the input queues
is monitored at regular interval (called observation time). When one of the input FIFOs
is almost-full, the controller selects a faster configuration for the component to facilitate
emptying the queue. Instead, when the input queue becomes empty, the controller can
select a more accurate but slower configuration to improve the accuracy. Figure 2 shows an
example of the resulting hardware architecture.



Electronics 2022, 11, 555 6 of 14

Waiting
Queue ACC

Data Stream Sampled Data Completed Jobs

LUT

Nwait

PlannerSymptom

Conf. 
Signals

Controller

Figure 2. Proposed hardware architecture of our dynamically-tunable accelerators.

The controller does not require specific information on the configurations, because it
assumes they are ordered from fastest to slowest (e.g., configuration i is the fastest with
no approximation error). This approach is similar to the use of fine-grained DVFS with
integrated voltage regulators [6]. The selection of the next configuration requires avoiding
hysteresis loops around the buffer thresholds (see Section 2). For this reason, our controller
is based on queue models.

4.2. Queue Modeling for Predicting the Response Time

The proposed model aims at providing a suitable runtime policy for configuring the
accelerator to minimize the approximation error while meeting a specified constraint on
the response time. In this work, we model average response time R using the theory
of queuing networks. We model the accelerator as a single resource service station (see
Figure 3). The accelerator is the resource that serves the transaction, while its queue is
modeled as the waiting line of the station. The service time of the station is modeled as the
execution time tk in each one of the different configurations k, while the expected service
rate is calculated as µk = 1/τk. Given the balance equation, the job arrival rate λ of an
application represents the throughput required by the user. It is measured in Job/s, and it
depends on the activity to be monitored at runtime.

Waiting Queue

Acc

Data Stream

Completed Jobs

Figure 3. Queuing system for single accelerator.

To enable runtime management, as described previously in the paper, the controller has
to maintain and dynamically evaluate the expected average response time. If we consider
that the job arrival times can be modeled as a continuous-time Markov process, and, in
particular, job interarrival times are exponentially distributed with the mean λ = 1, we can
produce a prediction model for R by modeling the problem as an M/D/1 Markov process,
i.e., arrivals are determined by a Poisson process (M), job service times are deterministic
(D), and there is a single resource service station (1).

In the M/D/1 model, the expected number of jobs in the system (either waiting in
queue or being served) in the steady state is given by:

ρ(µk, λ) = λ/µk (1)



Electronics 2022, 11, 555 7 of 14

N(µk, λ) = ρ(µk, λ) + [ρ(µk, λ)]2/2[1 − ρ(µk, λ)] (2)

where ρ is the system utilization, i.e., the fraction of time in which the system is busy. Given
Equations (1) and (2), we can build a prediction model for R by using Little’s law:

R(µk, λ) = N(µk, λ)/λ (3)

where R only depends on the arrival rate λ and the estimated service rate µk.
We use this model to find the maximum arrival rate that guarantees a response time

under a user-defined bound in each configuration. So, from configuration k we derive the
estimated λmax,k that matches a specific amount of jobs (elements) Wk in the waiting queue:

Wk = λmax,k ∗ obstime (4)

where λmax,k is predicted from the inverse of Equation (3), and obstime is the observation
time of the queue, i.e., the frequency in which the controller samples the status of the queue.
Wk represents the maximum number of elements that can be stored in the queue for which
the system is able to achieve the response time R by using configuration k. Once the values
are computed for each configuration k, we can generate a lightweight logic that changes
the accelerator configuration k to k + 1 when the number of elements detected in the input
buffer exceeds the corresponding bound Wk (and vice versa).

5. Generation Methodology for the Online Controller

Our framework requires the user to specify the characteristics of the K individual
configurations along with the execution time τk for each of them. It also needs the sizes
of the input buffers and the required observation time obstime of the controller. Finally, it
requires the description of the accelerator configuration ports and the control signals to
correctly apply the decisions.

From these data, the framework computes the M/D/1 model, i.e., the values Wk for
each configuration. The solution for configuration k is admissible if the corresponding
value Wk is smaller than the size of the input buffers. Otherwise, it means that the input
buffers cannot store enough values to achieve the response time. If all models can be
computed (i.e., all values Wk, our generator automatically produces the Verilog description
of the corresponding controller as shown in Figure 2. In particular, the input buffers are
extended with logic to count the number of elements currently in the queue (Nwait). The
resulting structure is called the smart waiting queue.

At runtime, the controller samples the waiting queue at regular intervals defined by
the observation time. It reads the amount of data stored inside the queue and automatically
determines the next configuration for the accelerator, given the current configuration and
the number of elements in the queue. The values Wk are stored in a lookup table. Assuming
the controller is in configuration k, we have three possible cases (represented by the signal
symptom in Figure 2:

1. Nwait < Wi−1, i.e., the accelerator is emptying the queue, and it can slow down (going
to configuration i − 1 with more precision;

2. Nwait > Wi, i.e., the accelerator is not able to consume the elements in the queue,
which are accumulating, and must accelerate (going to configuration i + 1);

3. Wi < Nwait < Wi−1, i.e., the accelerator can stay in the current configuration.

The planner can apply the decision to the control signals of the accelerator right before
the next iteration starts (i.e., the next value is read from the input buffers). Since every
iteration is independent of the previous ones, this mechanism ensures the correct execution
of the acceleration when changing the configurations.

We implemented the generator of the controller in PyVerilog [26]. It receives a json
configuration file as input with all necessary information about the target accelerator and
extends the original design with the corresponding controller, directly generated in Verilog.



Electronics 2022, 11, 555 8 of 14

6. Experimental Results

To evaluate our solution, we applied this method to the five accelerators described
in Table 2. We used two signal processing benchmarks (DSP) and two image processing
benchmarks (IP) [9]. The fifth benchmark was a combination of two other accelerators. We
used this example to show how the methodology can be applied to a complex accelerator
composed of sub-components. The same table describes also the input stimuli and the
quality metric used to evaluate the accuracy of the output results. In this work, we used
Mean Average Percentage Error (MAPE) for the DSP applications and Peak Signal-to-Noise
Ratio (PSNR) for the image processing ones. We computed MAPE as

MAPE = 1/N
N

∑
1
(GOi − AOi)/GOi (5)

where GOi is the golden output (i.e., the correct/original one), AOi is the output of the
approximate description, and N is the total number of inputs. We computed PSNR as

PSNR = 10 ∗ log(2552/MSE) (6)

where MSE (Mean Square Error) is defined as

MSE =
1
N

N

∑
1
(GOi − AOi)

2. (7)

We created six different configurations for each benchmark, where CONF0 was the slowest
(with no approximation) and CONF5 was always much faster than the target response time.

Table 2. Benchmark Characteristics.

Circuit Description Application Input Stimuli Quality
Measure

AVE8 Moving Avg
Calculator

Signal
processing

1000 random
integers MAPE

FIR
Finite Impulse
Response Filter

Signal
processing

1000 random
integers MAPE

SOBEL
Sobel Edge

Detector
Image

processing
1920 × 1080

image PSNR

GS Grey Scale Filter Image
processing 256 × 256 image PSNR

GS+SOBEL
Two accelerators

in series
Image

processing 256 × 256 image PSNR

To test the system under dynamic conditions, we created three workload situations,
with highly-congested, congested, and uncongested traffic. In our experiments, we set
the response time R to 1.5 us, which was kept constant across all the benchmarks, and an
observation time of 1.28 us, which was the minimum time to fill half of the input buffers.
The given response time was set to a value that can be never achieved with CONF0 (i.e., the
precise configuration), demanding introducing approximations to achieve it.

In our experiments, we evaluated the FPGA implementations, while the ASIC onesweare
completely equivalent. For each design, we used Xilinx Isim 2018.3 to evaluate the per-
formance and the approximation error and Xilinx Vivado 2018.3 to target a Xilinx VC707
board (equipped with a Virtex-7 XC7VX485T FPGA) with a target frequency of 100 MHz to
evaluate the resource overhead introduced by our controller.

Figures 4–8 show the evolution of the response time of the different accelerators over
time, along with the quality metrics in the case of preset configurations for the accelerators
(from CONF0 to CONF5) or when they used our method (ADA). For clarity, we show only
the extreme cases: highly congested and uncongested situations. In congested systems,



Electronics 2022, 11, 555 9 of 14

the response time grew constantly over time to a maximum value. This value was an
intrinsic characteristic of the system, and it depended on factors such as the size of the
input queue(s), the source of the arrival packets, and the processing speed. Conversely,
in uncongested systems, the response time had a trend with peaks. These two behaviors
depended exclusively on the inbound traffic. In the former, there was a continuous flow of
packets into the system that stopped solely when the queue was saturated. In the latter,
the traffic was sporadic and it always allowed the system to empty the queues. The results
showed our controllers correctly configured the accelerators to satisfy the response time
with a quality metric better or an error less than the ones obtained with fixed configurations.
In all cases, the response time was close to the expected one (exploiting the speed of
approximate configurations (CONF4 and CONF5), while limiting the error as configurations
CONF0 and CONF1.

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,01

0,1

1

10

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(a)
A

p
p

ro
xi

m
at

io
n

 e
rr

o
r

0,00

0,25

0,50

0,75

1,00 conf0 

conf1

conf2

conf3

conf4

conf5

ada

(b)

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,01

0,05

0,1

0,5

1

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(c)

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

0,00

0,25

0,50

0,75

1,00 conf0 

conf1

conf2

conf3

conf4

conf5

ada

(d)

Figure 4. AVE8: Response time and MAPE (low is better) trends. R is the target response time.
(a) AVE8: Response time—highly congested. (b) AVE8: MAPE—highly congested. (c) AVE8: Response
time—uncongested. (d) AVE8: MAPE—uncongested.

Tables 3 and 4 show the corresponding metrics in all three scenarios. The error
was always less than the one obtained from the preset configurations except for GS in
uncongested cases where the controller unnecessary sped up the execution of the accelerator.
This situation happened because, even if the traffic was sporadic, some packet flows re-
filled the input queue. In the graph of Figure 7c, we can see where some CONF0 peaks
exceeded the target response time. The controller interpreted these events by preparing
the accelerator for a continuous arrival of packets, but this did not happen. So for a time
window that corresponded to the observation time, the system went faster than needed,
leading to a slight degradation in the quality of the results. In general, the system adjusted
itself based on the workload conditions, trading off accuracy and speed as needed. For
example, in the highly-congested scenario (Figure 6a,b), the overall SOBEL PSNR had a
value close to the one obtained with CONF1, while only CONF4 met the target response time



Electronics 2022, 11, 555 10 of 14

but with much worse PSNR. Conversely, in the uncongested scenario Figure 6c, the system
adjusted itself to the most precise configuration (CONF0) without any metric degradation.

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,01

0,1

1

10

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(a)

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

0,0

0,5

1,0

1,5

2,0

2,5 conf0

conf1

conf2

conf3

conf4

conf5

ada

(b)

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,05

0,1

0,5

1

5

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(c)

A
p

p
ro

xi
m

at
io

n
 e

rr
o

r

0,0

0,5

1,0

1,5

2,0

2,5 conf0

conf1

conf2

conf3

conf4

conf5

ada

(d)

Figure 5. FIR: Response time and MAPE (low is better) trends. R is the target response time.
(a) FIR: Response time—highly congested. (b) FIR: MAPE—highly congested. (c) FIR: Response
time—uncongested. (d) FIR: MAPE—uncongested.

Table 3. DSP Results.

Test
Highly Congested Congested Uncongested

R MAPE R MAPE R MAPE

AVE8 +30.9% −27.6% +148.1% −92.3% −1.2% −40.7%
FIR +16.9% −16.3% +6.5% −21.3% −36.5% −33.8%

Table 4. IP Results.

Test
Highly Congested Congested Uncongested

R PSNR R PSNR R PSNR

SOBEL +113.2% −21.4% −1.4% −3.5% − −
GS +10.9% −12.5% +9.8% −30.2% −3.4% +0.4%

GS+SOBEL +80.3% −59.8% +53.2% −61.1% +12.8% −62.8%

In the GS+SOBEL, Figure 8, we tested a system with two accelerators in series: gs
followed by sobel. This experiment aimed to show how to apply our controller to a multi-
module system composed of modules that can be approximated independently. In this
benchmark, we used only four configurations, because some of them had Wi larger than
the size of the buffers, making them unfeasible. Furthermore, in this case, the controller
allowed the accelerator to meet the given response time while improving the final error.



Electronics 2022, 11, 555 11 of 14

Note that the overall PSNR degradation was large due to an intrinsic characteristic of the
benchmark rather than a problem in our methodology.

From the synthesis viewpoint, Table 5 shows that the enhanced accelerator took a
negligible overhead and, as expected, its impact decreased as the complexity of the target
module increased. This overhead was significantly less than the one obtained in previous
approaches, because our method was based on a simple lookup table rather than complete
state machines, such as in [6].

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,01

0,05
0,1

0,5
1

5

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(a)

A
pp

ro
xi

m
at

io
n 

er
ro

r

0

10

20

30 conf0
conf1
conf2
conf3
conf4
conf5
ada

(b)

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,05

0,1

0,5

1

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(c)

A
pp

ro
xi

m
at

io
n 

er
ro

r

0

10

20

30 conf0
conf1
conf2
conf3
conf4
conf5
ada

(d)

Figure 6. SOBEL: Response time and PSNR (high is better) trends. R is the target response time.
(a) SOBEL: Response time—highly congested. (b) SOBEL: PSNR—highly congested. (c) SOBEL:
Response time—uncongested. (d) SOBEL: PSNR—uncongested.

Table 5. Controller and Smart Logic Area Overhead.

Circuit Slice LUTs Slice Registers

AVE8 +2.2% +5.5%
FIR +2.1% +6.4%

SOBEL +3.4% +8.7%
GS +0.3% +0.2%

GS+SOBEL +0.3% +0.2%



Electronics 2022, 11, 555 12 of 14

Time (ms)

R
es
p
o
n
se
ti
m
e
(u
s)

0,01

0,1

1

10

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(a)

A
pp

ro
xi

m
at

io
n 

er
ro

r

0

10

20

30 conf0
conf1
conf2
conf3
conf4
conf5
ada

(b)

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,05

0,1

0,5

1

50 100 150 200 250 300

conf0

conf1

conf2

conf3

conf4

conf5

ada

R

(c)
A

pp
ro

xi
m

at
io

n 
er

ro
r

0

10

20

30 conf0
conf1
conf2
conf3
conf4
conf5
ada

(d)

Figure 7. GS: Response time and PSNR (high is better) trends. R is the target response time.
(a) GS: Response time—highly congested. (b) GS: PSNR—highly congested. (c) GS: Response
time—uncongested. (d) GS: PSNR—uncongested.

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,01

0,1

1

10

100 200 300 400 500

conf0

conf1

conf2

conf3

ada

R

(a)

A
pp

ro
xi

m
at

io
n 

er
ro

r

0

10

20

30 conf0
conf1
conf2
conf3
ada

(b)

Figure 8. Cont.



Electronics 2022, 11, 555 13 of 14

Time (ms)

R
es

p
o

n
se

 t
im

e 
(u

s)

0,05

0,1

0,5

1

50 100 150 200 250 300

conf0

conf1

conf2

conf3

ada

R

(c)

A
pp

ro
xi

m
at

io
n 

er
ro

r

0

10

20

30 conf0
conf1
conf2
conf3
ada

(d)

Figure 8. GS+SOBEL: Response time and PSNR (high is better) trends. R is the target response
time. (a) GS+SOBEL: Response time—highly congested. (b) GS+SOBEL: PSNR—highly congested.
(c) GS+SOBEL: Response time—uncongested. (d) GS+SOBEL: PSNR—uncongested.

7. Conclusions and Future Work

We presented a solution to create dataflow accelerators that can dynamically trade
off execution latency and quality of results to meet a given response time in case of inputs
arriving at an unpredictable rate. We modeled the system as a Markov queuing model to
predict the response time and dynamically adjust the speed of the accelerator. Our solution
can meet the response time with a final error that is lower than the one obtained by always
using the fastest implementation. Our solution also has minimal hardware overhead. In the
future, we will work on methods to scale our solution to accelerators composed of multiple
modules, considering the case of queues between individual modules, both on the design
of the single components and the controller(s), and on upgrading the controller to manage
multiple approximation techniques. These extensions contain many challenges, from
selecting approximations and studying their impact on the whole system to coordinating
multiple controllers to ensure correct execution.

Author Contributions: Conceptualization, G.P. and C.P.; Methodology, M.T., G.P., C.P.; Software,
M.T.; Writing—Original Draft Preparation, M.T and C.P.; writing—review and editing, G.P. and C.P.;
funding acquisition, G.P. and C.P. All authors have read and agreed to the published version of the
manuscript.

Funding: This work was partially funded by the Horizon 2020 EU Research & Innovation Programme
under grant agreement No. 957269 (EVEREST project).

Conflicts of Interest: The authors declare no conflict of interest

References
1. Pilato, C.; Bohm, S.; Brocheton, F.; Castrillon, J.; Cevasco, R.; Cima, V.; Cmar, R.; Diamantopoulos, D.; Ferrandi, F.; Martinovic, J.;

et al. EVEREST: A design environment for extreme-scale big data analytics on heterogeneous platforms. In Proceedings of the
Design, Automation & Test in Europe Conference & Exhibition (DATE), Grenoble, France, 1–5 February 2021; pp. 1–6. [CrossRef]

2. Wu, S.; Gutgutia, S.; Alioto, M.; Baas, B. Display Stream Compression Encoder Architectures for Real-time 4K and 8K Video
Encoding. In Proceedings of the Asilomar Conference on Signals, Systems, and Computers (ACSSC), Pacific Grove, CA, USA,
28–31 October 2018; pp. 251–255. [CrossRef]

3. Mantovani, P.; Giri, D.; Di Guglielmo, G.; Piccolboni, L.; Zuckerman, J.; Cota, E.G.; Petracca, M.; Pilato, C.; Carloni, L.P. Agile SoC
development with open ESP. In Proceedings of the ACMM/IEEE International Conference on Computer-Aided Design (ICCAD),
San Diego, CA, USA, 2–5 November 2020. [CrossRef]

4. Babcock, B.; Babu, S.; Datar, M.; Motwani, R.; Widom, J. Models and Issues in Data Stream Systems. In Proceedings of the ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS), Madison, WI, USA, 3–5 June 2002; pp. 1–16.
[CrossRef]

5. Carloni, L.P. From Latency-Insensitive Design to Communication-Based System-Level Design. Proc. IEEE 2015, 103, 2133–2151.
[CrossRef]

http://doi.org/10.23919/DATE51398.2021.9473940
http://dx.doi.org/10.1109/ACSSC.2018.8645369
http://dx.doi.org/10.1145/3400302.3415753
http://dx.doi.org/10.1145/543613.543615
http://dx.doi.org/10.1109/JPROC.2015.2480849


Electronics 2022, 11, 555 14 of 14

6. Mantovani, P.; Cota, E.G.; Tien, K.; Pilato, C.; Di Guglielmo, G.; Shepard, K.; Carlon, L.P. An FPGA-based infrastructure
for fine-grained DVFS analysis in high-performance embedded systems. In Proceedings of the ACM/EDAC/IEEE Design
Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016. [CrossRef]

7. Mittal, S. A Survey of Techniques for Approximate Computing. ACM Comput. Surv. 2016, 48, 1–33. [CrossRef]
8. Cherubin, S.; Agosta, G. libVersioningCompiler: An easy-to-use library for dynamic generation and invocation of multiple code

versions. SoftwareX 2018, 7, 95–100. [CrossRef]
9. Chowdhury, P.; Carrion Schafer, B. Unlocking Approximations through Selective Source Code Transformations. In Proceedings

of the ACM Great Lakes Symposium on VLSI (GLSVLSI), online, 22–25 June 2021; pp. 359–364.
10. Mariani, G.; Palermo, G.; Zaccaria, V.; Silvano, C. ARTE: An Application-specific Run-Time managEment framework for

multi-cores based on queuing models. Parallel Comput. 2013, 39, 504–519. [CrossRef]
11. Sampson, A. Hardware and Software for Approximate Computing. Ph.D. Thesis, University of Washington, Seattle, WA,

USA, 2015.
12. Sidiroglou-Douskos, S.; Misailovic, S.; Hoffmann, H.; Rinard, M. Managing Performance vs. Accuracy Trade-Offs with Loop

Perforation. In Proceedings of the ACM SIGSOFT Symposium and the European Conference on Foundations of Software
Engineering (ESEC/FSE), Szeged, Hungary, 5–9 September 2011; pp. 124–134. [CrossRef]

13. Sampson, A.; Dietl, W.; Fortuna, E.; Gnanapragasam, D.; Ceze, L.; Grossman, D. EnerJ: Approximate Data Types for Safe and
General Low-Power Computation. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), San Jose, CA, USA, 4–8 June 2011; pp. 164–174. [CrossRef]

14. Samadi, M.; Lee, J.; Jamshidi, D.A.; Hormati, A.; Mahlke, S. SAGE: Self-tuning approximation for graphics engines. In Proceedings
of the Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Davis, CA, USA, 4–11 December 2013; pp.
13–24. [CrossRef]

15. Tziantzioulis, G.; Hardavellas, N.; Campanoni, S. Temporal Approximate Function Memoization. IEEE Micro 2018, 38, 60–70.
[CrossRef]

16. Rinard, M. Probabilistic Accuracy Bounds for Fault-Tolerant Computations That Discard Tasks. In Proceedings of the Annual
International Conference on Supercomputing (ISC), Cairns, Australia, 28 June–1 July 2006; pp. 324–334. [CrossRef]

17. Zhou, M.; Shen, X.; Gao, Y.; Yiu, G. Space-Efficient Multi-Versioning for Input-Adaptive Feedback-Driven Program Optimizations.
In Proceedings of the ACM International Conference on Object Oriented Programming Systems Languages & Applications
(OOPSLA), Portland, OR, USA, 20–24 October 2014; pp. 763–776. [CrossRef]

18. Gao, M.; Qu, G. Energy efficient runtime approximate computing on data flow graphs. In Proceedings of the IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), Irvine, CA, USA, 13–16 November 2017; pp. 444–449. [CrossRef]

19. Vaverka, F.; Hrbacek, R.; Sekanina, L. Evolving component library for approximate high level synthesis. In Proceedings of the
IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8. [CrossRef]

20. Lee, S.; John, L.K.; Gerstlauer, A. High-level synthesis of approximate hardware under joint precision and voltage scaling. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March
2017; pp. 187–192. [CrossRef]

21. Nepal, K.; Li, Y.; Bahar, R.I.; Reda, S. ABACUS: A technique for automated behavioral synthesis of approximate computing
circuits. In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 24–28
March 2014; pp. 1–6. [CrossRef]

22. Li, C.; Luo, W.; Sapatnekar, S.S.; Hu, J. Joint precision optimization and high level synthesis for approximate computing.
In Proceedings of the ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 8–12 June 2015.
[CrossRef]

23. Su, S.; Wu, Y.; Qian, W. Efficient Batch Statistical Error Estimation for Iterative Multi-Level Approximate Logic Synthesis.
In Proceedings of the ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 24–28 June 2018.
[CrossRef]

24. Souza, C.C.d.; Lima, A.M.; Araujo, G.; Moreano, N.B. The Datapath Merging Problem in Reconfigurable Systems: Complexity,
Dual Bounds and Heuristic Evaluation. J. Exp. Algorithmics 2005, 10, 2. [CrossRef]

25. Fanni, T.; Sau, C.; Meloni, P.; Raffo, L.; Palumbo, F. Power and Clock Gating Modelling in Coarse Grained Reconfigurable Systems.
In Proceedings of the ACM International Conference on Computing Frontiers (CF), Ischia, Italy, 8–10 May 2016; pp. 384–391.
[CrossRef]

26. Takamaeda-Yamazaki, S. Pyverilog: A Python-Based Hardware Design Processing Toolkit for Verilog HDL. In Proceedings of the
International Symposium on Applied Reconfigurable Computing (ARC), Bochum, Germany, 14–17 April 2015; pp. 451–460.

http://dx.doi.org/10.1145/2897937.2897984
http://dx.doi.org/10.1145/2893356
http://dx.doi.org/10.1016/j.softx.2018.03.006
http://dx.doi.org/10.1016/j.parco.2013.04.002
http://dx.doi.org/10.1145/2025113.2025133
http://dx.doi.org/10.1145/1993498.1993518
http://dx.doi.org/10.1145/2540708.2540711
http://dx.doi.org/10.1109/MM.2018.043191126
http://dx.doi.org/10.1145/1183401.1183447
http://dx.doi.org/10.1145/2660193.2660229
http://dx.doi.org/10.1109/ICCAD.2017.8203811
http://dx.doi.org/10.1109/SSCI.2016.7850168
http://dx.doi.org/10.23919/DATE.2017.7926980
http://dx.doi.org/10.7873/DATE.2014.374
http://dx.doi.org/10.1145/2744769.2744863
http://dx.doi.org/10.1145/3195970.3196038
http://dx.doi.org/10.1145/1064546.1180613
http://dx.doi.org/10.1145/2903150.2911713

	Introduction
	Motivating Example
	Related Work
	Hardware Architecture and Model for Online Predictions
	Key Idea and Architecture
	Queue Modeling for Predicting the Response Time

	Generation Methodology for the Online Controller
	Experimental Results
	Conclusions and Future Work
	References

