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Abstract: This study presents a literature review on the concept of power system flexibility in terms
of its definition, indices, algorithms, implementation, economic impacts, operational impacts, and
security. Although there are tremendous reviews on this subject in the literature, each paper discusses
specific aspects of flexibility. Moreover, the literature is devoid of a comprehensive review of the latest
improvements in terms of implementation, operation, and economics, which are addressed by the
collections presented in this study. This paper, therefore, surveys some improvements that have been
made in recent decades. Furthermore, we highlight the impact of the high penetration of renewable
energy and energy storage systems towards enhancing the improvement of power system flexibility.

Keywords: flexibility; flexibility improvement; power system; energy storage; renewable energy

1. Introduction

There is no denying the fact that electricity is crucial for the world economy to thrive
in this and the coming centuries. The demand for electricity increases not only because the
human population increases, but also because the social-economic activities of humans are
rapidly shifting from manual processes to automated processes, which are essentially driven
by electricity. Therefore, electricity becomes inevitable for the sustainability of modern
civilization because it has found its way to the root of many human establishments [1,2].
Electricity can be generated from various sources and its generation from many sources
is desired to boost the total generation capacity to meet the ever-growing demand. As
electrical power cannot be stored, instantaneous balancing becomes a necessity and it is
considered a key design parameter in power systems [3].

The increased demand, generation, multiple sources of generation and absolute depen-
dence on electricity call for a high reliability and security and consequently high flexibility
of the power system. Power system flexibility requires a control structure that ensures a
spatial and temporal balancing of the electricity generation and consumption at all times;
therefore, flexibility should be an integral part of the planning and operation of power
systems [4].

1.1. Definition of Power System Flexibility

Power system flexibility has been defined in the literature and the definition encom-
passes the usefulness and purpose of flexibility in various applications of the power system.
It was mentioned in [5] that these definitions have been provided by various organizations
such as North American Electric Reliability Corporation (NERC) and International Energy
Agency (IEA). Reference [5] further mentioned that different research groups defined it
based on the major field of study. The flexibility studies have been classified into two:
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short-term operational flexibility and long-term planning flexibility. In [6,7], power system
flexibility is defined as the ability of the power system to model the feed-in and feed-out
power across the grid over time so that variations in net load can be accommodated. In [6],
flexibility is defined as the ability of a system to exploit all resources to respond to the net
changes in demand. Babatunde et al. [2] mentioned that the concept of flexibility should
include flexible demand-side management and demand response, the reinforcement of
distribution and transmission facilities, ESS, electric vehicles, generator output curtailment,
and unit commitment. Hence, power system flexibility is described in [8] as the power
and ramp capability required to adjust generation in response to demand within a specific
time interval. It enables the system to adjust the demand and generation in response to
deliberate or accidental aberrations that occur within power systems [9]. A flexible power
system is described in [10] as a system that is able to competently respond to some form of
diversion in the operation of a power system determined by risk-management criteria.

1.2. Component of Power System Flexibility

A flexible power system should possess certain facilities that enable it to overcome
uncertainties in addition to being able to compensate for deviations in generations and
demands whilst maintaining the system’s reliability [11,12]. The key components of flexibil-
ity (Figure 1) are (i) supply, (ii) demand, (iii) network and (iv) system. These components
interact together to form a power system. Electricity is supplied through the use of various
generation sources, with VRE becoming more popular in these systems. The generation
system also includes energy storage systems.

Figure 1. Interaction between the key components of flexibility.

A power system is governed by some operational rules; these rules may be difficult to
implement for the power system, but they are imperative to ensure the system’s security,
reliability, and economic operation [13]. The power system operations should be flexible to
absorb disruptions [14]. The demand is partly controllable and is usually controlled by the
consumers in response to signals from the system operators. This provides some flexibility
to compensate for the uncertainty in generation from the VRE sources [15,16].
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1.3. Effects of and Need for Increased Penetration of VRE in Power Systems

The electricity sector is the biggest contributor of carbon (IV) oxide [17], accounting
for almost 43% of the world carbon (IV)oxide emissions [2]. This amount is expected
to decrease drastically to achieve the Paris agreement, which aims to lower the global
temperature rise to below 2 ◦C [18]. Diversifying electricity generation from fossil fuels
based on other sources that are harmless or produce no emissions is already identified as
a potential solution and variable renewable energy sources (VRES) are at the forefront of
this move [19,20]. Additionally, other possible measures that could be taken are to improve
the efficiency of existing power plants, the adoption of demand-side management, the use
of energy storage systems, and the formulation of special policies or techniques that can
minimize the consumption of power. For example, the authors in [21] proposed a technique
for the flexible operation of microgrid using the battery energy storage system. The strategy
allows a reliable power balance between the demand and supply while ensuring that the
BESS is safely operated within its operating time horizon.

One of the critical challenges of the electricity industry is achieving a balance between
the power demand and power supply [20,22,23]. Technically, the power systems with more
distributed methods of generation experience more fluctuations [24–26], and the growth in
the penetration of RES further compounds this problem. Meanwhile, it is reported in [27]
that wind power penetration causes critical instabilities in power systems, different to the
corresponding solar PV penetration. Recent studies that discuss the impact of high wind
penetration in power systems can be found in [28–32] and that of solar PV in [33–36]. The
RES possesses some characteristics which differ from conventional generation systems. These
features are the reasons why they pose serious change to power systems [37]. These include:

1. RES generation is stochastic and is largely dependent on weather conditions [37,38].
Consequently, a high degree of varying penetration results in a drastic disturbance
in the power system [39–41]. Some of this may be due to system clouding [37] and
a variation of system inertia, leading to frequency variation [42], and reference [43]
explained that a high penetration can cause under-reach and over-reach problems in
over-current protection since the fault current changes dynamically with the fluctua-
tion of RES.

2. Another argument is that government policies across the world serve as strategies
favoring the production of RES. Comprehensive policies and strategies including
long-term and short-term strategies are reported in [44,45].

In a bid to solve this problem [46], many other issues ranging from technical and
economic problems arise. In this study, we present the classification of flexibility impacts in
power systems. We identified and presented some of the studies on flexibility based on five
major aspects that affect power system flexibility, as described in Figure 2. Furthermore,
we report many studies that have good insights into the various aspects discussed, and
then provide a conclusion and recommendations.

The remainder of this study is organized as follows: Section 2 presents the need for and
consequences of power system flexibility. Section 3 presents the power system flexibility
indices. Section 4 presents a flexibility requirement assessment. Section 5 discusses the
classification flexibility impact in power systems. The flexibility improvement based on
RES is given in Section 6, the flexibility improvement based on DSM is given in Section 7,
the flexibility improvement based on ESS is given in Section 8, the flexibility improvement
based on energy forecasting is given in Section 9, the flexibility improvement based on
economic impact is given in Sections 10 and 11 concludes the study.
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Figure 2. Approach to power system flexibility in this study.

2. Need for Flexibility Study in Power System

The need for PFS increases as power demand increases, which necessitates the need
for more generation systems. However, the need for clean sources of energy necessitates
VRG [47–49]. Consequently, the power systems become more complex, making the systems
more susceptible to fluctuations and variations and leading to poor power quality [50,51].

2.1. Consequence of Nonflexible Systems

If the power system is unable to maintain stability or ensure a continuous supply of
electrical power to the end-users due to some form of disturbance, such a power system
becomes inflexible [39,51–53]. Additionally, there is an increase in faults and failures when a
power system is spread over a large region due to power transmissions leading to instability
and uncertainty in the power system [53,54]. One of the most critical consequences of the
inflexibility of power systems is blackouts [6,55–57]. The authors of [51] have highlighted
the consequences of power system failure due to a lack of flexibility. These consequences
have social, political, and economic impacts on the daily activities of humans. This makes
the concept of PSF very crucial in modern power systems.

2.2. Drivers of Power System Flexibility

As power systems shift from conventional systems to VRG-based systems, the need for
PSF increases and the methods of achieving PSF change gradually [2]. Various techniques
that are adopted for realizing PSF are listed in [2,58] mentioned the various PFS options.
Some of the sources of flexibility include: distributed generation, demand response, grid
interconnection, multi-mode operation of combined cycle units and ESS.
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2.2.1. Distributed Generation

A distributed generation offers flexibility to power systems in local networks when
responding to system uncertainty [59]. The distributed generators connected to the local
power networks are able to respond to a system’s dynamic imbalance and varying condi-
tions [60]. Furthermore, it helps to improve the self-healing capability of the power system,
allowing the system to respond faster than the usual operations [61].

2.2.2. Demand Response

There are several techniques of demand response that have been used in the literature.
Consumers are tactically encouraged to change their power consumption patterns to enable
flexibility in the overall demand of the power network [62,63]. This helps consumers to
reduce their energy usage [64].

3. Parameters for Measuring Flexibility (Flexibility Indices)

It will be interesting to review the terms used to measure flexibility along with the
equations that have been used to model flexibility in power systems. The indices of
flexibility in power systems have been categorised as energy capacity (Ce), power capacity
(Cp) and ramping limit (δ) [37].

3.1. Energy Capacity

This refers to the energy of a power source, and it may also refer to the fuel supply to
a power source. The (Ce) is categorised as finite and infinite [65]. Dispatchable distributed
generation, ESS and fuel supply in the case of central generating unit have a significant
effect on the energy capacity. It is demonstrated in [66] that the available generating
capacity of a system essentially represents the mechanical reliability of the equipment,
which makes it statistically interdependent not only the generation sources alone but also
on the loads. Additionally, instead of Ce, the authors of [8] identified ramp duration as an
index of flexibility. The time duration is the time period during which a unit has its output
continually changing.

3.2. Power Capacity

The power capacity, Cp, is the limits of (minimum or maximum) power outputs of a
generation source and is usually bounded by inequality constraints. The Cp is an essential
parameter in evaluating the adequacy of a generating system [67].

3.3. Ramping Limit

This refers to the maximum allowable change of a unit on its operation point at a
specific time. The term ramping limits refer not only to the generation sources but also to
some industrial loads whose operation have significant effects on the demand response.

The relationship between Ce, Cp and δ is represented in (1). It should be noted that
each index is a successive integral of the previous one. Additionally, the rate duration (4R),
as defined in [8], is described by (2).

Cp =
∫

Ce =
∫ ∫

δ (1)

4R =
4P
4T

(2)

3.4. Determination of Flexibility Requirements

As noted in the literature, the triads (magnitude, ramp rate and ramp duration) are
jointly interrelated and are useful in the modeling of deviation in the net load [8,68–70].
For example, if the ramping is not enough, it may cause further capacity requirements.
According to the study of [8], the optimization of flexibility requirements of a set of net
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load deviations, classified into (i) primary, (ii) secondary, and (iii) tertiary intervals, can
be represented by a three dimensional (3-D) space to show the three categorizations of
deviations. The coordinate of each of the 3-D models on rectangular parallel pipes are the
4P,4R, and4T, as shown in Figure 3. Each rectangle is sized and positioned according
to the possible deviation, di, and also the flexibility requirements. Furthermore, the boxes
covered the regulation intervals for positive, negative, ramp rate duration, ramp rate,
magnitude up, and magnitude down. Depending on the values of each of these triads at
any position in the box, the volume data inside the box Vin and the data outside Vout can
be measured and be used to determine the probability of being outside or inside. In this
approach, if a point lies outside the box, it means that the requirements are not satisfied at
that point.

Pout =
Vout

Vin + Vout
(3)

Equation (3) computes the probability of a point being outside the box. It, therefore,
means that to reduce the number points where the requirements are not satisfied, then Pout
should be made to be at its minimum value.

Figure 3. Flexibility requirement by a set of net load deviations over three regulation intervals:
(i) primary, (ii) secondary, and (iii) tertiary.

4. Assessment of Flexibility Requirement

While serious efforts have been made to keep the power output from different genera-
tion sources modest enough to reduce the errors resulting from a mismatch between sources
and demand, the controllable loads offer even more flexible means to compensate for these
errors [8], the uncertainty in loads can be minimized by using rolling scheduling [71,72]
good forecasting techniques [73]. The authors of [74] modeled a 24 h unit commitment to
computing the absolute value of real-time power imbalance for a day within some regula-
tion intervals. This study obtained, over multiple time scales, the variability in stochastic
generation. The turning point of load variability was found in [68] using the swinging
window method. The hourly requirements for capacity, ramping duration, and ramping
capability were obtained.

Dvorkin et al., in [8], showed that any deviation, dk, of index k existing between the
actual and forecasted net loads is a function of4Pk,4Rk and4Tk, expressed in (4). The
parameters responsible for said deviation were obtained from the analysis of the historical
data of the system within a specific operating interval.

dk = f {4Pk,4Rk,4Tk} (4)



Electronics 2022, 11, 581 7 of 25

Furthermore, the study of [8] proposed Equation (5) to measure the deviation between
the metered net load (Pmet) and the forecasted size (P f ) at every minute m.

Pd(m) = Pmet(m)− P f (m) (5)

where Pmet(m) is the net load characteristics obtained after accounting for flexibility due
to RE curtailment and controllable loads. The Pd is then analyzed at different time scales
4T to ensure that all the characteristics of the deviation are captured. Additionally, the
difference between deviation—4P at the beginning and 4T at the end of the time—is
measured as in (6).

4P = Pd(m +4T)− Pd(m) (6)

The interesting thing about the outcome of4P is its sign, which tells us whether the
system requires up flexibility (4P is positive) or down flexibility (4P is negative). The up
flexibility can be achieved by adjusting the loads to ensure a reduced consumption or by
subjecting the generators to more loads. The reverse of this process is carried out when
down flexibility occurs.

Many studies have made attempts to investigate the consequence of a high renewable
penetration on the power system ramping characteristics [11,69,75,76]. However, a better
understanding of ramp characteristics in power systems could be achieved by studying
both load and net load [69]. Additionally, different renewable sources present different
characteristics of ramping in net loads [77] and a large amount of flexibility is required by
the power system to reduce the balance or mismatch in the power system [32].

Characteristics of Ramping Events by Wind and Solar Sources

In the literature, renewable power ramp events (RPRE) for wind and solar have been
grouped into three and two groups, respectively [69,78,79]. Wind power renewable events
(WPRE) have been grouped into wind power ramp forecasting (WPRF), wind power ramp
detection (WPRD), and wind power ramp application (WPRA) [80]. Tinghui et al. [81]
predicted wind power ramp events based on residual correction with an improved swinging
door algorithm to improve both the wind power prediction and ramp prediction [69].
Zhang et al., in [82,83], extracted ramp events from wind power time series using the swing
door algorithm to improve the performance ramp detection. The authors of [83] extend this
topic to a forecasted wind power series in addition to the actual wind power time series.
Ramping in wind generation has been determined using the method of feature selections
in [84–86]. In recent studies, wind power ramping forecasting problems being modeled as
stochastic processes are solved using neural networks [87]. The probability distribution of
three properties of wind power ramping events was investigated in [88] using the neural
network and scenario generation method to realize the stochastic process in wind power
generation. Additionally, in [89], a wind power ramp event was considered while studying
coordinated dispatch processes for energy storage systems; the process was used to achieve
an improved economic dispatch of units of ESS. A method for the optimal control of ramp
events characteristics using the ESS is presented in [90]. This study proposed a strategy to
determine an appropriate ESS size that can be reserved for anticipated WPRE. The study
of [91] presented a strategy to exit the operation of an offshore wind turbine but under
extreme weather such as the occurrence of a typhoon in an offshore wind power system.

Solar ramp events have been categorized into solar power ramp events (SPRE) and
solar irradiance ramp events (SIRE). While SPRE helps in the management of balanced
ramp events, SIRE is critical for the dispatch and operation of solar power plants [92]. Ramp
decreases or increases in the rate of output to follow net load as its capability [93] and can
respond to needed variations in expected or unexpected demand [94]. It is reported in [69]
that SPRE usually occurs during midday when the solar generation output is peak, and
this coincides with hours of high demand in most cases. The study of [95] used the BESS
to reduce the rate of SPRE and also addressed frequency fluctuations. Recent studies that
discussed the role of ESS in analyzing the SPRE can be found in [96–98]. Table 1 highlights
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some articles that discussed the characteristics of ramping events from wind, solar and
ESS sources.

Table 1. Highlights of articles that discussed the characteristics of ramping events from wind and
solar sources.

References Model Applied/Method Highlights/Strategy

[69,78–80] ANN Studied WPREs and classifications

[81–83] improved swinging door algorithm Prediction of WPREs

[84–86] Feature selections Ramping in wind power generation

[87,88] ANN, stochastic process WPRE forecast

[89–91] WPRE with ESS

[96–98] SPRE , SIRE with ESS

[69,92,93] Definition and characteristics of SIRE

[95,98] SIRE with ESS

5. Classification of Flexibility Impacts on Power Systems

Many studies have attempted to classify the impact of flexibility on power systems.
The most general classification found in [11,37] is based on the duration impacts. These
include long-term, mid-term, short-term, and super-short-term impacts.

5.1. Super-Short-Term Impacts

These are millisecond control systems, such as reactive power control, low-voltage
ride-through [99,100], voltage control, ramp rate control, supervisory control and data
acquisition, power electronic control [101,102], and dynamic modeling of prime movers of
turbines in large wind plants.

5.2. Short-Term Impacts

For utility and plant operators to ensure an adequate quality of balanced supply and
demand, they must understand, in depth, the level and kind of uncertainties that are
introduced by the latest innovations in the short-term operation of the power systems [103].
Additionally, an important system metric is the system’s ability to respond to short-term
changes in system load, net load changes, and variable generation units’ outage in long-
term planning context [6]. There are three short-term flexibility impacts, as identified
in [88,104]. These three are minimum output limits, increasing needs for reserves, and
increasing requirements for ramping. The reserves are the extra capacity on stand-by to
account for the future possibility of an insufficient generating capability, which may occur
when demand is higher than expected or if some generation is unexpectedly unavailable. In
a thermal plant, the increase in net load changes forces the plant against its ramp rate limits.
An adequate reserve allocation must be in place to mitigate the uncertainty in demand and
supply arising from the imperfect forecasting of either of each or both. Regulation service
and load following are used to maintain flexibility in the short term (seconds or minutes).

5.3. Mid-Term Impacts

In large power systems, there is a high penetration of VRES, such as wind powers.
There are increased needs for the system to undergo frequent starts-up or ramping. This
is called cycling [11]. An empirical approach to study the impact of VRE penetration on
cycling is presented in [105]. It is reported that cycling can cause serious damages within
the power plant components, which necessitates an increase in maintains and outages
within the power system [106]. It may even resort to corrosion, erosion, or thermal shock,
which in turn increases the cost of the maintenance of the generators. Additionally, frequent
cycling essentially leads to a loss of revenue due to a persistent shut down of plant units
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and the reduced efficiency of the systems [107]. Hence, the use of ESS to mitigate these
effects should be explored.

5.4. Long-Term Impacts

Some technologies, such as nuclear and geothermal technologies, have little flexibility
in operation because they have limited output levels and ramping rates. The low flexible
characteristics of these technologies mean that they remain shut down for a long time,
leading to a low return on any investment that is dependent on such facilities. Moreover, it
is noted that some nuclear plants can ramp around their power output. However, this ca-
pability is limited due to reasons such as the economy or security in terms of contingencies.
Alternative means such as ESS or demand-side management should be explored.

6. Flexibility Improvement with Renewable Energy Sources

Technically, flexibility improvement concerns both the supply and the demand sides
of the power system since it is largely related to the maintenance of the balance of the
share of variable RE generations within the RE-penetrated power system while ensuring
the continuous production of stable and high-quality electricity [108]. However, flexibility
improvements based on the renewable energy system have a significant impact on both
sides because the RE powers are usually integrated at both the supply end and the demand
end of the power system.

As the campaign for green energy grows, there is a rapid increasing penetration of
RES, such as wind power, solar power and hydrogen power, in the form of fuel cells in
the electricity grid. Moreover, there has been a steady usage of individual residential
microgrids in the form of rooftop solar PV, wind turbines and hybrid systems, whose
capacities range from tens of kW to 1000 kW [109]. In essence, the new system of the energy
market is placing more responsibility in the hands of private investors, such as renewable
energy planners, generation companies and individual residential microgrid owners, not
just to meet the future electricity demand but to also guarantee system security [110].

Salman et al. present strategies to conduct a techno-economic analysis and assessment
of wind power generation in the microgrid. In [111], the authors investigated the impact of
RE integration based on long-term load expansion and, in [112], the authors sized an ESS
for its optimization and placement in solar PV-integrated network. In [113], the authors
investigated the future adoption of RE in balancing power mismatch while maintaining
deep decarbonization in a city-level energy system. This study further investigated the
possibility of producing zero emissions for the city of Helsinki by the year 2050. Das
et al. [114] presented the flexibility requirement for the integration of a large-scale RE in the
Indian power system. This study identified technological policies and modeling options
feasible for the power system in India. In addition, they also included the market design
regulatory mechanism and some policy structures that would support flexible sources
that would enhance the country’s national development goal. The flexible pathways
for the integration of RE in the power system of China, which is heavily coal based,
has been suggested in reference [115]. The authors presented a balanced RE-integration
analytical framework and technical economic performance of the major flexible sources.
This study provided recommendations for the adoption of the framework and how it would
enhance the flexibility of their power system. The authors of [116] presented a quantitative
evaluation of a power system’s flexibility based on an improved universal generating
function using Zhangjiakou as a case study. The authors built a multi-state probabilistic
model of main components in the power system and proposed flexibility metrics for the
analysis of the measures proposed. More studies on RE-based flexibility strategies and
challenges for power systems are reported in [117–120].

Furthermore, the authors incorporated demand-side management (DSM) in the model
using electric vehicles (EV) and flexible load in the form of a chilled water thermal storage
air-conditioning system (CSACS). The problem was formulated based on total profit maxi-
mization and the MILP was used to solve the optimization problem, with the result proving
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satisfactory. Diag Wang et al. [121] presented a study investigating the role of hydrogen in
the improvement of flexibility in the energy sector. In particular, this study quantified the
interaction between fuel-cell electric vehicles, hydrogen production for fuel cells and the
electric power grid.

7. Use of Demand-Side Management for Improving Flexibility

The DSM has been classified as one of the low-cost methods of improving the flexibility
of PSF [122]. Although Qin Wang et al. opined that implementing demand response (DR)
resources in an energy market can substantially improve the grid flexibility, such techniques
have been implemented in building automation, plug-in electric vehicles (PEV), thermostats,
etc. [123]. However, there is a clear difference between DMS and DR. While DMS seeks
to maintain balance between the demand and supplied energy from the sides of system
operators, utilities and consumers, the DR does the same only from the consumer’s end.
It is therefore sufficient to view the impact of DSM on PFS without a special reference
to the to DR. In DSM, some high-demand customers (heavy manufacturing industries)
are offered special contracts where a part of their loads are required to be disconnected
within a specific time-frame and occasionally to help the utility minimize costs or certain
network constraints [124]. The typical DSM explained here is uncommon because the
it usually requires a high load; however, its impact on flexibility improvement is felt
in the network since it requires a large amount of power. A special type of DSM is
needed for lower-demand customers, such as the residential consumers, which is proposed
in [125–127]. However, a large amount of residential loads are needed to make aggregated
loads which have a potential tremendous effect in improving the flexibility of the power
system [128]. The study of [129] introduced a probabilistic method of generating load
profiles for residential and non-residential buildings. Said study performed a quantitative
evaluation of the benefits of demand optimization.

The authors of [122] present a comprehensive review of market-based flexibility
ramping products and how they are implemented in optimization frameworks involving
energy and ancillary services. They further identified different industrial strategies in the
implementation of market-based flexibility ramping products in different market structures.
Pierluigi et al. [123] present a survey of the benefits of demand response (DR) in smart grids,
with a focused analysis on industrial research and installed projects. The survey identified
some key elements of a smart grid that can potentially enhance the efficiency of a smart
grid, which would consequently improve system flexibility. Some of the components of the
smart grid identified include: communication systems, energy controllers, smart meters,
and well designed programs that would facilitate the implementation of DR. Examples
of such programs include direct load control programs, critical-peak pricing, real-time
pricing and time-of-use pricing. The other strategies identified are spinning reserve and
day-ahead prediction. Moreover, there is also a need to understand and factor in the
consumption styles of the consumers. Customers have been categorized into residential,
large commercial and industrial, small commercial and industrial, individual PEV and fleet
PEV customers. By understanding the behaviors of these customers, it would be easy to
identify the appropriate strategy for each customer.

Daniel, in [124], explores the use of demand-side resources to achieve a fast flexibility
in PSF. The approach presented in this study is based on an extended unit commitment
optimization strategy, formulated as mixed-integer linear programming considering short-
term and long-term investments and operation costs. The unit commitment is used to
minimize the cost of scheduling the cost of designated generators within a given time
horizon. A year horizon is split into component weeks of four seasons with an additional
special case of an extreme winter season, tagged the worst-case scenario. The other seasons
are encoded with the number of weeks; these include autumn (13 weeks), spring (9 weeks),
summer (13 weeks), winter (16.75 weeks) and extreme winter (0.25 weeks). Out of a
number of units considered, the model optimization ascertains the type and optimum
number of units, for which the minimum sum of investment and annual operating cost
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is obtained. Furthermore, a part of the loads are allowed to be curtailed for some hours
but are recovered later in the same day by this technique, and the DSM (which is a fraction
of the demand at some hours shifted to be supplied at other hours) is implemented in
the model. Equation (7) was used to maintain power balance (between PD(t), PG(t) and
DSM(t)) and it is one of the key constraints to the proposed objective function.

PD(t)− DSM(t)−
I

∑
i=1

PG(t) ∀t ∈ 1, T (7)

where PD(t) is the power demand, PG(t) is the generated power and DSM(t) is the ag-
gregated capacity of the DSM scheme. Additionally, the reserve constraint is presented
in (8):

I

∑
i=1

ui,t × (ωDSM(t) + ωPG(t)) ≥ SR(t) (8)

where ωDSM(t) and ωPG(t) are the capacity still available for DSM and PG, respectively,
and are both defined as in (9) and (10). DSMmax and Pmax

G maximum DSM and maximum
PG, respectively.

ωDSM(t) = DSMmax − DSM(t) (9)

ωPG(t) = Pmax
G − PG(t) (10)

A scheduling strategy was proposed by Illia et al. [130] to unpin the flexibility power
system in Europe. The strategy adopts a day-ahead multi-timing strategy to procure ramp
products in real time with a simultaneous utilization or optimization of energy and reserves
over hour intervals. This study further presents a probabilistic approach for quantifying
the flexibility requirements. Table 2 summarises the ideas and references of articles that
discussed the use of DSM for flexibility enhancement.

Table 2. Highlights of flexibility approach based on DSM.

References Model Applied/Method Highlights/Strategy

[122,125–127] Review DSM classification, market flexibility

[123] Review DR applied in grid flexibility, automation, PEV

[128–130] Probabilistic approach Flexibility in residential and non-residential sector

[124] MILP Flexibility with DSM, model optimization for
short-term and long-term

8. Use of Energy Storage System for Improving Flexibility

The ESS has been used to improve the flexibility of a high-VRE-power
systems [131–133]. It can be used to mitigate imbalances in power and voltage devia-
tions to improve the power indices [134,135]. Reference [136] has classified the flexibility
capabilities of ESS based on individual responsiveness. The classification includes: a fast
response, mid-response and electric vehicle, as described in Figure 4. The study of [133]
improved the flexibility of coal-fired power plants using the integration of thermal energy
storage (TES). This study developed a dynamic power plant model in the Dynamola simu-
lation environment to decouple the firing rate and net rate, and the TES enables an easy
initiation of the start-up process and control of power. Niu et al. [132] studied the dis-
patch of a building energy system using the TES and BESS. They proposed a linear model
to predict dynamic cooling load while developing complexity-evaluation and accuracy-
evaluation indices as criteria for selecting a building thermal model. Furthermore, this
study uses MILP to develop and test the flexibility capacity of both battery and building
thermal storage. The problem is formulated as an optimization problem, with the objective
to minimize electricity and maintenance costs. This accounts for all supplies and loads in
the building. The maintenance costs are made up of the expenses of the power subsystem



Electronics 2022, 11, 581 12 of 25

and cooling subsystem, which are key components of the model because the effectiveness
of the thermal storage is stochastically model around several parameters, including the
behavior of the building occupants, weather parameters and other controllable parameters.
Some of the parameters were constrained for the objective function together with power
systems, photovoltaic and battery energy constraints. This study found that a compromise
exists between flexibility enhancement and increasing investment on infrastructure. Ad-
ditionally, an accurate forecast of the dynamic cooling load in buildings could potential
enhance the flexibility dispatch of power using the building thermal storage.

Figure 4. Flexibility response of energy storage system.

As part of the network component to enhance the flexibility of active distribution
networks, ESS was explored in [134] in a quantification of node analysis. ESS showed a
potential strength in improving the power imbalance and voltage deviation of the distribu-
tion system. In [135], the authors demonstrate the role of ESS in the interaction between
conventional generation and renewables in a market environment. A variety of structures
for the participation of ESS in such a market were investigated. This study proposed a
multi-period market equilibrium model, capturing generator ramping constraints, which
indicate generator flexibility and inter-temporal storage. This model is made up of a bi-
level, multi-period spot-market equilibrium and is divided into upper level problems and
lower level problems. While an upper level problem depicts a profit-maximizing generator
and energy storage operators in offering capacity to the market, the lower level is the
spot market that is cleared by the market operator. While solving the bi-level problem,
the lower level is addressed first, and the lower level problem is replaced by necessary
and sufficient optimal conditions, resulting in a mathematical problem of equilibrium
constraints (MPEC). Then, all MPECs of the firms are combined to obtain an equilibrium
program with equilibrium constraints (EPEC) for the profits. This formulation forms a
series linearized problem and it is solved using a mixed-integer linear program (MLIP).
The process involved in the formulation of the problem includes many equations and is
reported in the appendix of the article.

Gang-Gai and Mun-Kyeom [131], demonstrated the use of pump hydroelectric storage
(PHES) for flexibility improvement in power systems. A flexible-based reserve scheduling
method was proposed for PHES to improve flexibility. While implementing the strategy,
this study considers ramping capabilities and related risks involved in the modeling of the
proposed system. It evaluates flexibility using a risk index identified as ramping capability
shortage expectation (RSE). The RSE, which is defined in [137], is described in terms of
ramping capability. The ramping capability is the ability of a generator to change its power
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output within a targeted period. The SRC(t) defined in [131] is given by (11), while the
ramping capability requirement RCR is modeled in (12).

SRCt = ∑
i=1

Ai,t−4tOi,t−4tmin(Pmax,i − Pi,t−4t, rri4t) (11)

where Pi,max is the maximum output of the generator, Pi,t−4t is output of the generator at
hour t and target period, Ai,t−4t measures the generator uncertainty calculate from the
Markov chain generator model, and rri4t is a characteristic unique for each generating unit.
One interesting thing about Equation (11) is that it models the unavailability generation
schedule of each unit based on the transition rate between each individual generator’s state.

RCRt = PNFE
t + PF ∑

i=1
Ai,t−4tOi,t−4tPi,t−4t (12)

where PNFE is the net load forecast error defined by (13).

PNFE
t = PF

t − PVGFE
t (13)

PF, VGFE represent the load forecasted and variable generation forecast error, respec-
tively, and both follow a stochastic Gaussian distribution.

It can be inferred from Equation (12) that increases in failures or unexpected failures
of the generators lead to the need for more ramping capabilities. Consequently, a power
imbalance can occur if the satisfaction of RCRt is not met by SRCt, as noted in [131,137].

Joseph et al. [110] presented a methodology for applying ROA to a BESS project for
private investors in order to determine the optimal energy capacity and investment time of
the BESS; it was found that the BESS capital expenditure has a significant effect on energy
sizes but a smaller effect on investment timing. The influence of the time horizon was
studied in [138] by comparing a 48 h time horizon with a 24 h horizon; an energy arbitrage
performance of a residential MG was evaluated. This study revealed that a 48 h time
horizon generates more profit for a residential MG operator than the 24 h based horizon.
Furthermore, the 48 h horizon strategy leads to an overall reduction in the operation of
such an MG.

The authors of [139] proposed a stochastic control energy management strategy for
smart homes using solar panels and plug-in hybrid vehicles (PEV) with the aim to minimize
energy bills and meet the power requirement of the demand and PEV charging. In [140], the
authors present a battery-based multi-objective home energy management system (EMS).
Batteries are used to decrease home energy consumption bills during the peak hours of
consumption of the home. The performances of different ESS technologies were evaluated
in [141] in an electricity market, while also measuring the economic effect of a PV-based MG
both in the grid-connected mode and stand-alone mode. A strategy for evaluating the ESS
depreciation cost was studied in [142]. The authors of [143] present a similar study but use
the depth of discharge (DoD) as a function battery depreciation cost function while [142]
uses the C-rate evaluation for energy arbitrage to model ESS depreciation costs. Table 3
captions a number of articles where the application of ESS in a power system flexibility
have been studied.

Issues of power system flexibility are linked to power dispatchability, economics, relia-
bility and stability are also serious concerns to system planners, operators, and researchers.
In a hybrid system, with wind and solar renewable energy sources (RES), for example,
there is the advantage that the maximum supply can be tracked at all times, which would
enhance flexibility in the network. For example, solar power is available and picked during
the day, while wind power may be available through the day and night. The peak periods
could be targeted for maximum power dispatch and profitability. Furthermore, in order
to reduce the charging/discharging operation of the BESS, the hybrid system could be
allowed to operate in different penetration modes, which can further help to enhance the
flexibility of the microgrid.
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Table 3. Highlights of the flexibility approach based on ESS.

References Model Applied/Method Highlights/Strategy

[136] Simulation Classification of ESS flexibility capabilities

[133] Dynamola Used integrated thermal energy storage to
improve flexibility

[132] linear model, MILP Dispatch of building energy using TES and ESS

[134] Simulation ESS in distribution network based on
quantification analysis

[135] MILP Role of ESS in between RE and conventional
generation in a market environment

[131] RSE PHES for improving power system flexibility

[131,137] RSE Ramping capabilities in power system

9. Flexibility Based on Energy Forecasting

Demand prediction is an attempt to estimate the future level of demand based on
historical and present knowledge and experience, to avoid both the overproduction and
underproduction of power. The argument here is that the ability to predict demand correctly
in advance will enable system planners and generation companies to prepare adequately
for the amount of power to meet the demand. By implication, it will help to meet the
planning of both utility and generation planners, thereby improving the flexibility of the
power system. Moreover, the accurate prediction of energy demand can potentially reduce
the amount of energy consumption, leading to the availability of more power reserves and
reduced contingencies [144].

There are several methods and techniques that have been adopted for the prediction
of demand. They are categorized into survey methods and statistical methods. Figure 1
shows some of the methods and techniques that have been used to forecast demand in
the literature. We will further discuss the statistical techniques and highlight various
machine learning algorithms that have been used for energy demand prediction. Moreover,
Figure 5 highlights some of the parameters associated with energy demand predictions.
These parameters serve as inputs and outputs to the different machine learning techniques
developed for future prediction.

Salman et al. [145], proposed the artificial neural network (ANN) for the restoration of
different load categories after a fault is cleared. This study adopts a smart and dynamic
prioritization of different load categories, such as commercial, residential, hospital and
industrial, based on the load importance, available power and reliability at a particular
time. These parameters are used to trained the ANN to develop a model for the future
restoration of loads after fault occurs. The model makes intelligent decisions when tested
under different conditions, it is able to make good judgements so as to decide which load
should be isolated or which should never be interrupted. This study proposed a strong
idea based on NN forecasting that could improve the flexibility of power systems.

Yabin et al. [146] presented a comprehensive study for the prediction of energy demand
using seven different meteorological features along with other parameters such as indoor
temperature, time and, operating parameters. The forecasting models were developed
using an ML algorithm, such as a back-propagation neural network, extreme ML, support
vector regression (SVR) and multiple linear regression (MLR). This study further evaluates
the performance of the four models by using the real data of a heating building sourced
from heat pump system. It was found that the extreme ML model performed better than
the other three. Additionally, this study revealed that the thermal response of the building
where this study was conducted took forty minutes. Nikolaos et al., in [147], demonstrated
the capabilities of deep learning in the forecast of aggregated load prediction and compared
it with nine ML techniques. The training parameters include energy, feed price, temperature,
irradiation, wind capacity and wind velocity. This study showed that multilayer perceptron
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(MLP) could perform better than most of the common forecasting techniques if enhanced
with deep learning and appropriate tuning of the algorithm settings.

Figure 5. Methods and techniques for energy demand forecasting.

The study of [144] proposed three ML algorithms for the prediction of charging
demand of plug-in electric vehicles (PEV) in a charging session based on the available
information at the beginning of the charging operation. The three algorithms are SVM, ran-
dom forest (RF) and extreme gradient boosting (XGB). This study expressed the predicted
charging demand as a function of twelve different parameters associated with the charging
system and extracted the dataset collected from a public charging station in Nebraska. This
study found that the XGB algorithm performed better than the other two and 50 percent of
the variance in charging demand at any point is accounted for in the behavior of the users.
A similar study is proposed in [148], by a method called federated energy demand learning
(FEDL) for the prediction of energy demand of EV and charging stations (CS). The learning
data in this study include CS identity, transaction identity, EV charging date, consumed
energy, transaction identity of CS, and EV charging time, where the consumed energy is
the learning target of the model. The FEDL was compared with two other techniques of
federated energy demand (EDL), which are centralized EDL and clustering-based EDL.
It is interesting to learn that each of the EDL algorithms proposed in [144] has a unique
application for a particular scenario as defined in this study. The FEDL, however, pro-
vides the most accurate prediction and, in addition, enhances the communication between
charging stations and charging station providers. The techniques adopted in [144,149] can
be extended to the application of PEV in vehicle-to-grid (V2G) and grid-to-vehicle (G2V)
power systems and would enhance the flexibility of such systems.

In [150], the authors proposed an ensemble learning technique to predict the energy
demand for a residential building. The model combined four ML algorithms, including
extreme learning machine (ELM), multiple linear regression (MLR), XGB and, SVM. Addi-
tionally, the training features include weather data, energy consumption data, time and
unit operation data. The model metrics showed that the ELM is most accurate amongst the
four methods and the ensemble network led to a greater improvement in the prediction
accuracy than any of the four networks. However, this study further showed that the
predictive accuracy of a model can also be influenced by the feature selection of the training
data. Yekuan et al. [151] developed ML models for the prediction of building demand and
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a hybrid advanced controller aimed at enhancing the short forecasting prediction of energy
management in the building. This study employed four ML algorithms, including SVM,
MLR and back propagation neural network (BPN). This study showed that the model with
the cross-entropy function learned with more accuracy and faster than other algorithms;
this study further showed that selecting more training factors and training for a longer time
increased the accuracy of the forecast of energy demand. All of the mentioned strategies
could be used to enhance the flexibility of power systems if appropriately implemented.
Table 4 presents some studies where the application of energy forecast have been employed
to improve power system flexibility.

Table 4. Highlights of flexibility approach based on energy forecast.

References Model Applied/Method Highlights/Strategy

[145] ANN Load prioritization during power system
restoration after fault.

[146] SVM, MLR, MLP Prediction of demand based meteorological
parameters

[144,148] SVM, RF, XGB, Charging demand in PEV in V2G and G2V
applications

[150,151] SVM, BPN, MLR, MLP Prediction of residential demand based on
energy parameters and weather factors.

10. Economic Impact on Flexibility Improvement

The electricity market and its economics have a great economic impact on power sys-
tem flexibility and hence on the security enhancement of the system. Reference [2] empha-
sized the importance of the cost of power plants in maintaining the power system flexibility.
It was opined that the plants should have minimum marginal costs in order for them to
successfully compete as ways to increase flexibility. Additionally, references [5,152,153]
have discussed the interaction between the energy markets and power system flexibility
with an in-depth report of some studies that had conducted investigations on related topics.

There are some concepts and terms in electricity trading that form the basic operation
of the market. The concepts are important in making certain decisions that directly or
indirectly affect the RE power generation, RE power consumption and economic trading
between generation and distribution sectors. Such concepts include renewable electricity,
market models, power purchase agreement, energy balancing, green certificate trading, and
carbon trading or carbon emission rights. The literature is rich with discussions of many of
these terms. The studies of [154–157] have investigated the future development trends of
the electric selling firms and the possible behavior of the participants of the green certificate
trading market. In particular, they examined the effects of green certificate storage, prices
and behavior of market participants in the green certificate trading market.

Additionally, in another concept, RES together with other power sources and loads
are teamed up and aggregated in the form of a virtual power plant (VPP). A VPP is a
cloud-based data control center that uses the aggregated production data from various
DERs. Such data are useful for power plant operators to monitor and control the output
production from the RE generation plants. On the other hand, this enables the utilities to
meet the load requirements of their customers with more production from the RES, thereby
leading to a cheaper, more reliable and a more flexible power supply. The role of VPP in
the improvement of power system flexibility is reported in [110,158–162]. Reference [158]
provides a definition and the types and concepts of VPP in power systems and the flexibility
benefits of VPP and their impact on power systems are discussed in [159,160]. However,
studies have discussed the importance of VPP and the transformation of the microgrid to
VPP [161] and the ESS have been considered as important components of both systems,
even after the transformation.
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A unifying central control of the distributed energy resources (DER) or distributed
power plant (DPP) is the virtual power plant (VPP), which essentially participates in
the electricity market transaction by aggregating distributed wind power generation and
energy storage to promote the consumption of new energy. The VPP is a cloud-based DPP
that aggregates the capacities of heterogeneous DER in order to boost power generation
and the trading power in the electricity market [162]. The VPP also facilitates the trading of
carbon in the carbon-trading market, thereby benefiting the environment [163].

In VPP, issues of dispatchability, economics, reliability and stability are also a serious
concern to system planners, operators, and researchers [164]. In a hybrid VPP system using
wind and solar renewable energy sources (RES), for example, the maximum supply may
be tracked at all times. For example, solar power is available and is picked during the
day, while wind power may be available through the day and night. The peak periods
could be targeted for maximum power dispatch and profitability [165]. Furthermore, in
order to reduce the charging/discharging operation of the BESS, the hybrid system could
be allowed to operate in different penetration modes.

The authors of [166] examined an optimal dispatch model for VPP made up of gas
turbines, PV, wind power and demand response (DR) to include the participation of trading
in carbon emissions. This study uses the probabilistic model to solve the problem of
uncertainties in the output of the RE generation.

In [167], a feasibility study of a green certificate circulation mechanism based on a
quota system is presented. Furthermore, this study discussed the possibility of having
a green certificate transaction deployed on the block-chain and transaction processes in
different chain platforms. The authors of [168] revealed the capability of green certificate
transactions in the promotion of RE generation in market competition. This was achieved
by the implementation of a complementary and a multi-regional green certificate and
power market models.

The authors of [169] proposed a two-level decision-making optimization technique for
internal purchases and electric sales, as well as for the external multi-market. The technique
allows the VPP to participate in the electricity market, green certificate trading market and
carbon-trading market so as to optimize the total income. This study first presents model
for the operation of the VPP by analyzing the various roles of all the distributed energy
resources (DER) and participants in the carbon-trading market and the green certificate
market. Then, this study constructed a two-level optimization model of the VPP which
established the participation of the VPP in the green certificate transaction and power
purchase and sales transactions. This study found that the VPP is capable of increasing the
output of DER and recommends that a coordinated optimization of carbon-trading market
and green certificate market when a VPP is to take part in the market decision making.
In [170], the authors discussed carbon emission rights trading with a special focus on
emission rights and the electricity market trading based on market allocation strategies and
election mechanisms. The authors of [169,171] investigated the relationship between the
stock price of the new and old energy firms and carbon emission rights. It was discovered
that both the new and the old companies were seriously affected by carbon emission rights.
Many of these models and strategies, if properly implemented, would help make some
important decisions regarding generation, transmission and utility, and consequently help
to improve the flexibility of power systems.

11. Conclusions

Power system flexibility is an important concept that has received a large amount
of attention in the literature. This topic becomes more significant as power systems ex-
perience a high penetration of renewable powers. In this study, we have discussed the
various definitions of power system flexibility, its impacts, and methods of enhancing it.
Additionally, we discussed the classification of flexibility impacts on power systems. We
identified and presented some of the research on flexibility based on five major aspects
that affect power system flexibility, including flexibility improvements based on RE, DMS,
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ESS, energy forecasting, and an economic analysis of the electricity market operations.
This study reports many studies that provide good insights into the highlighted areas.
We note that flexibility studies require continuity as the power system architecture and
operation change with advancements in these areas. Moreover, more strategies based on
technical, economic and operational flexibility are required in future research, not just in
the conventional power sources but also in other flexibility sources that have great potential
to improve the flexibility of the power system.
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EMS Energy Management Strategy
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LP Linear Programming
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MILP Mixed-Integer Linear Programming
NLP Non-Linear Programming
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SVM Random forest
XGM extreme gradient boosting
VPP Virtual power plant
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