
����������
�������

Citation: Saghezchi, F.B.; Mantas, G.;

Violas, M.A.; de Oliveira Duarte,

A.M.; Rodriguez, J. Machine Learning

for DDoS Attack Detection in

Industry 4.0 CPPSs. Electronics 2022,

11, 602. https://doi.org/10.3390/

electronics11040602

Academic Editors:

Constantinos Kolias,

Georgios Kambourakis and

Weizhi Meng

Received: 21 January 2022

Accepted: 13 February 2022

Published: 16 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Machine Learning for DDoS Attack Detection in Industry
4.0 CPPSs
Firooz B. Saghezchi 1,*, Georgios Mantas 1,2, Manuel A. Violas 3, A. Manuel de Oliveira Duarte 3 and
Jonathan Rodriguez 1,4

1 Instituto de Telecomunicações, University of Aveiro, Campus Universitário de Santiago,
3810-193 Aveiro, Portugal; gimantas@av.it.pt (G.M.); jonathan@av.it.pt (J.R.)

2 Faculty of Engineering and Science, University of Greenwich, Chatham Maritime ME4 4TB, UK
3 Department of Electronics, Telecommunications and Informatics, University of Aveiro, Campus Universitário

de Santiago, 3810-193 Aveiro, Portugal; manuelv@ua.pt (M.A.V.); duarte@ua.pt (A.M.d.O.D.)
4 Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK
* Correspondence: firooz@av.it.pt

Abstract: The Fourth Industrial Revolution (Industry 4.0) has transformed factories into smart Cyber-
Physical Production Systems (CPPSs), where man, product, and machine are fully interconnected
across the whole supply chain. Although this digitalization brings enormous advantages through
customized, transparent, and agile manufacturing, it introduces a significant number of new attack
vectors—e.g., through vulnerable Internet-of-Things (IoT) nodes—that can be leveraged by attackers
to launch sophisticated Distributed Denial-of-Service (DDoS) attacks threatening the availability of
the production line, business services, or even the human lives. In this article, we adopt a Machine
Learning (ML) approach for network anomaly detection and construct different data-driven models to
detect DDoS attacks on Industry 4.0 CPPSs. Existing techniques use data either artificially synthesized
or collected from Information Technology (IT) networks or small-scale lab testbeds. To address this
limitation, we use network traffic data captured from a real-world semiconductor production factory.
We extract 45 bidirectional network flow features and construct several labeled datasets for training
and testing ML models. We investigate 11 different supervised, unsupervised, and semi-supervised
algorithms and assess their performance through extensive simulations. The results show that,
in terms of the detection performance, supervised algorithms outperform both unsupervised and
semi-supervised ones. In particular, the Decision Tree model attains an Accuracy of 0.999 while
confining the False Positive Rate to 0.001.

Keywords: Industry 4.0; cybersecurity; intrusion detection system (IDS); DDoS attack detection;
machine learning; SCADA; industrial control system (ICS); cyber-physical system (CPS)

1. Introduction

Recent advancements in information and communications technologies, notably
the emergence of Internet-of-Things (IoT), cloud-, fog-, and edge-computing networks,
Machine-to-Machine (M2M) Communications, Artificial Intelligence (AI), Machine Learn-
ing (ML), and Big Data, along with the offer of Ultra-Reliable Low Latency Communication
(URLLC) services by Fifth-Generation (5G) mobile operators to private industries, have
transformed factories into intelligent, massively interconnected Cyber-Physical Production
Systems (CPPSs), laying out the Fourth Industrial Revolution (Industry 4.0) [1], where
man, product, and machine are fully interconnected across the whole value chain from the
suppliers of the raw materials to the production plant and the front office.

This digitalization helps enhance the transparency of all production stages from the
time when the order is dispatched until the end of life of the product. It further enables
customized production and agile reconfiguration of manufacturing processes to respond
to any change in the customer’s requirements in a timely fashion [2]. It further allows

Electronics 2022, 11, 602. https://doi.org/10.3390/electronics11040602 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040602
https://doi.org/10.3390/electronics11040602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11040602
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040602?type=check_update&version=1

Electronics 2022, 11, 602 2 of 14

monitoring and tracking of the final goods even after they leave the production line. That
is, the data can be collected and analyzed in real time to serve different purposes such as
predictive maintenance, quality control, root-cause analysis, and so on, with no or minimal
human intervention [3].

Along with this digitalization, the security landscape in the industrial production envi-
ronment is evolving rapidly. First and foremost, connecting traditionally isolated factories
to the Internet means that they are no longer protected by the “air gap” philosophy [4].
Wireless communications and cloud services are increasingly adopted in CPPSs to intercon-
nect different stakeholders across the supply chain, which significantly expands the attack
surface. Moreover, smart factories rely not only on resource constraint IoT nodes, but also
historically installed legacy equipment that lacks security capabilities. These vulnerabilities
can be leveraged by attackers to penetrate into the system and trigger larger consequences,
e.g., shutting down the whole production line or manipulating the production processes,
e.g., to compromise the quality of the delivered goods [5]. Hence, deploying an effec-
tive Intrusion Detection System (IDS) is crucial to safeguard the network perimeter while
allowing different subsystems to interact openly without imposing unnecessary access
control restrictions.

In computer networks, Distributed Denial-of-Service (DDoS) flooding attacks are
deliberate attempts to deny the access of legitimate users to network services. In this type
of attack, the offenders take control of a large number of computers (zombies) to build up an
attack army (Botnet). Once the Botnet has been established, they start launching coordinated
and large-scale attacks against one or more vulnerable targets in the network. The attackers
also usually hide the real locations of the zombies by forging their IP addresses. The target
of a DDoS attack can be either a host computer or a communication link. Consequently,
the resulting attack is referred to as a destination flooding attack or a link flooding attack,
respectively [6].

In this paper, we propose an ML-based IDS for DDoS attack detection in a real-world
Industry 4.0 CPPS. For benign data, we collect network traffic data (PCAP files) from
Infineon’s semiconductor production facilities (this dataset was provided by Infineon Tech-
nologies of Austria in the context of H2020-ECSEL Semi40 project). For the malicious
data, we use DDoS attack fingerprints and samples of actual attacks (e.g., PCAP and NF-
DUMP files) from the DDoSDB (https://www.csg.uzh.ch/ddosgrid/ddosdb/, accessed
on 20 January 2022) database of the University of Twente (the Netherlands). We use the
NetMate tool [7] to extract 45 bidirectional flow features from PCAP files (e.g., packet
length, flow duration, and packet interarrival time) and construct labeled datasets for train-
ing and testing the proposed IDS. We apply feature selection techniques—e.g., Principal
Component Analysis (PCA)—to reduce the data dimensionality and train eight super-
vised learning algorithms—namely One Rule (OneR), Logistic Regression (LR), Naïve Bayes
(NB), Bayesian Network (BN), K-Nearest Neighbors (K-NN), Decision Tree (DT), Random For-
est (RF), and Support Vector Machine (SVM). We further study two unsupervised learning
algorithms, namely simple K-Means and Expectation-Maximization (EM) as well as one semi-
supervised/statistical learning algorithm, namely univariate Gaussian algorithm. To the best
of our knowledge, this is the first study analyzing data collected from a real-world factory
and constructing ML models for detecting DDoS attacks in Industry 4.0 CPPSs. Previous
research efforts have been focused on detecting intrusions in other critical infrastructures
such as the power grid [8,9] or water and wastewater treatment [10,11], mostly adopting a
model-based approach for the physical control system. Although there are some works
applying ML for DDoS attack detection in Operational Technology (OT) networks [12,13],
they rely on data either artificially synthesized or collected from an Information Technology
(IT) network (e.g., KDD CUP 99) [14] or from small-scale lab testbeds [12,13].

The contributions of this paper can be summarized as follows.

• We propose an ML-based network anomaly detection system for detecting DDoS
attacks in Industry 4.0 CPPSs.

https://www.csg.uzh.ch/ddosgrid/ddosdb/

Electronics 2022, 11, 602 3 of 14

• We analyze benign network traffic data collected from a real-world large-scale factory
and actual DDoS attacks data from DDoSDB data base.

• We study the performance of 11 semi-supervised, unsupervised, and supervised
ML algorithms for DDoS attack detection and discuss their merits for the proposed
ML-based network anomaly detection system.

The rest of this paper is organized as follows. Section 2 reviews the current state of
the art. Section 3 introduces the architecture of our proposed ML-based IDS, presenting
the 45 bidirectional flow features that we have extracted from collected data and the
incorporation of feature selection algorithms to reduce the dimensionality of data. In this
section, we also describe ML algorithms that we have deployed in the detection engine
of our proposed IDS, along with key metrics that we have used for their performance
evaluation. Section 4 presents and discusses the simulation results. Finally, Section 5
concludes and draws guidelines for future work.

2. Related Work
2.1. Industrial Control Systems

An Industrial Control System (ICS) is a computer-based system that monitors and
controls physical industrial processes [15]. ICSs are usually incorporated in critical in-
frastructures such as smart grid, water grid, oil processing and transportation, railway
management, and discrete manufacturing systems [16]. For instance, in smart grid systems,
they monitor demand and supply variations and help integrate distributed energy sources
and orchestrate transactive peer-to-peer electricity trades among local consumers and
presumes [17,18]. In contrast to ICS, a Distributed Control System (DCS) is a control system
for a process or plant, with control components distributed throughout the system [19].

Figure 1 illustrates the reference model for automation integration in CPPSs introduced
by ANSI/ISA-95 [20]. In this model, we can identify three main layers: (i) Field-Area Network,
(ii) Process-Area Network, and (iii) Business-Area Network.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 14

• We analyze benign network traffic data collected from a real-world large-scale fac-
tory and actual DDoS attacks data from DDoSDB data base.

• We study the performance of 11 semi-supervised, unsupervised, and supervised ML
algorithms for DDoS attack detection and discuss their merits for the proposed ML-
based network anomaly detection system.
The rest of this paper is organized as follows. Section 2 reviews the current state of

the art. Section 3 introduces the architecture of our proposed ML-based IDS, presenting
the 45 bidirectional flow features that we have extracted from collected data and the in-
corporation of feature selection algorithms to reduce the dimensionality of data. In this
section, we also describe ML algorithms that we have deployed in the detection engine of
our proposed IDS, along with key metrics that we have used for their performance eval-
uation. Section 4 presents and discusses the simulation results. Finally, Section 5 con-
cludes and draws guidelines for future work.

2. Related Work
2.1. Industrial Control Systems

An Industrial Control System (ICS) is a computer-based system that monitors and con-
trols physical industrial processes [15]. ICSs are usually incorporated in critical infrastruc-
tures such as smart grid, water grid, oil processing and transportation, railway manage-
ment, and discrete manufacturing systems [16]. For instance, in smart grid systems, they
monitor demand and supply variations and help integrate distributed energy sources and
orchestrate transactive peer-to-peer electricity trades among local consumers and pre-
sumes [17,18]. In contrast to ICS, a Distributed Control System (DCS) is a control system for
a process or plant, with control components distributed throughout the system [19].

Figure 1 illustrates the reference model for automation integration in CPPSs intro-
duced by ANSI/ISA-95 [20]. In this model, we can identify three main layers: (i) Field-Area
Network, (ii) Process-Area Network, and (iii) Business-Area Network.

Figure 1. The ANSI/ISA-95 functional hierarchy model for automation integration in CPPSs.

The lower three levels (Levels 0–2) comprise the Field-Area Network, which exploits a
Supervisory Control and Data Acquisition (SCADA) system for polling the data from Re-
mote Terminal Units (RTUs) (e.g., sensors, relays, and Programmable Logic Controllers
(PLCs)) and applying the control signals to the actuators in the field [21]. SCADA is an
ICS widely used for telemetry and control in critical infrastructures, e.g., CPPSs. A typical
SCADA system is composed of hardware and software components and the communica-
tion protocol. IEC 60870-5-104, Modbus, Probus, and Distributed Network Protocol
(DNP3) are some of the most commonly used communication protocols for SCADA [22].

The Process-Area Network is the intermediate layer (Level 3 in Figure 1), which ex-
ploits a Manufacturing Execution System (MES) for smart process control to load recipes

Figure 1. The ANSI/ISA-95 functional hierarchy model for automation integration in CPPSs.

The lower three levels (Levels 0–2) comprise the Field-Area Network, which exploits
a Supervisory Control and Data Acquisition (SCADA) system for polling the data from
Remote Terminal Units (RTUs) (e.g., sensors, relays, and Programmable Logic Controllers
(PLCs)) and applying the control signals to the actuators in the field [21]. SCADA is an
ICS widely used for telemetry and control in critical infrastructures, e.g., CPPSs. A typical
SCADA system is composed of hardware and software components and the communication
protocol. IEC 60870-5-104, Modbus, Probus, and Distributed Network Protocol (DNP3) are
some of the most commonly used communication protocols for SCADA [22].

The Process-Area Network is the intermediate layer (Level 3 in Figure 1), which exploits
a Manufacturing Execution System (MES) for smart process control to load recipes to

Electronics 2022, 11, 602 4 of 14

manufacturing equipment and track and record the transformation of raw material into
the final product [23]. Finally, the third layer, which sits on the top of the Field- and
Process-Area Networks in the functional hierarchy model of Figure 1 (Level 4) is referred
to as the Business-Area Network, which exploits an Enterprise Resource Planning (ERP)
system for the integration and optimization of business processes, including inventory and
human resource management, accounting, order processing, and customer relationship
management [16,24].

2.2. Intrusion Detection Systems

In a computing network carrying out predefined tasks, an intrusion is defined as
any deviation from allowed operations. In most cases, it is generated with an intention
to compromise or misuse the information system. An IDS aims to detect and trace such
inappropriate, incorrect, unauthorized, and anomalous activities within the network [25].

An IDS essentially relies on analyzing data collected from a local host machine or from
a network. The former is referred to as a host-based IDS, which analyzes the host’s log files
containing information such as invocation of system calls to request services from operating
system’s kernel, active processes running on the machine, outgoing/incoming network
traffic profile, and so forth, to detect unauthorized or unusual behavior (e.g., malware
running on the host machine) [26]. In contrast, a network-based IDS monitors the traffic
flows/packets traversing the network to identify suspicious network activities, e.g., port
scanning, replay/delay attacks, Denial-of-Service (DoS), and DDoS attacks [27,28].

The detection engine of an IDS can rely on either anomaly or misuse detection, or a
combination of both—i.e., a hybrid approach. The misuse detection essentially builds a model
for the malicious behavior (e.g., a database of attack signatures). Any traffic pattern that
matches these attack signatures is considered to be an intrusion [29]. This approach is also
referred to as signature-based or knowledge-based intrusion detection [30]. In contrast, the
anomaly detection approach creates a model for the “normal” behavior and looks for patterns
in the data that fail to conform to this notion of normality [31,32].

Although misuse detection is, in general, more accurate than anomaly detection, it is
unable to detect zero-day attacks or any minor variant of a previously known attack. It
also requires maintaining an up-to-date database of attack signatures, which can be an
exhausting task in practice [26]. In contrast, anomaly detection—despite being prone to
generating a large number of false positives—can detect both known and unknown attacks
with high accuracy. Furthermore, training anomaly detection algorithms require a dataset
containing mostly benign examples, with only few malicious examples for the calibration.
This property makes them a viable option when malicious examples are unavailable or pro-
hibitively expensive to generate, which is the case for critical infrastructures (e.g., factories).
Although the mainstream IDS solutions are based on misuse detection, the research on IDS
is mostly focused on anomaly detection [30].

2.3. Intrusion Detection in Critical Infrastructures

There are several works adopting a physics-based model for anomaly detection in
ICSs [33]. For example, Guan and Ge [34] used state estimation models to detect False Data
Injection (FDI) and jamming attacks in an industrial continuous-stirred tank reactor. The
FDI attack was launched against the physical process to modify the system’s state while the
jamming attack targeted the cyber layer to render wireless links unavailable for carrying
sensor signals to the remote controller. Dolk et al. [35] proposed control strategies that
ensure the resilience of a Networked Control System under DoS attacks. Pasqualetti et al. [36]
studied deception and DoS, stealth, FDI, replay, and covert attacks in power systems,
adopting a model-based approach governing the physical dynamics of the system. Zamani
et al. [37] proposed an islanding detection technique for Distributed Generation (DG) units
in smart grid by analyzing the angle of the DG power factor. However, despite these efforts,
although there are some studies addressing DDoS attacks detection in IT networks [38,39],

Electronics 2022, 11, 602 5 of 14

there is still a lack of knowledge of detecting DDoS attacks in OT networks (e.g., ICSs and
SCADA).

2.4. Machine Learning for Intrusion Detection

The objective of an ML-based IDS is to analyze collected data to detect patterns that
could reflect possible attacks on the target host machine and/or network [40]. The training
dataset can be either labeled or unlabeled. Correspondingly, the exploited learning algorithm
can be either supervised or unsupervised, respectively [41,42]. Although supervised learning
can generally achieve better performance, it requires a labeled dataset containing a balanced
set of representative examples from both benign and malicious data. This may require
a substantial amount of human effort for collecting malicious examples and labeling the
dataset. Consequently, researchers may resort to datasets consisting of a combination of
normal examples from real data and malicious examples that are artificially generated
by simulations [25].

There still exists a third category of ML algorithms, called semi-supervised learning.
It relies mostly on benign examples for training while using a few malicious examples
for calibration and fine tuning [42]. This makes them particularly attractive for anomaly
detection in systems where generating anomalous examples is costly, and as such we end
up having a very limited number of malicious examples in the training dataset.

There are several previous research efforts applying ML for network intrusion de-
tection. Amouri et al. applied ML for intrusion detection in IoT networks [43]. Sarker
et al. [44] ranked different features based on their importance and constructed a DT model
for intrusion detection in IT networks. Once-Class Support Vector Machine (OCSVM) has
been applied for anomaly detection in SCADA [45] and ICS [46] systems. Linda et al. [25]
applied Artificial Neural Networks (ANNs) to detect anomalies in ICSs using a window-
based feature extraction techniques from time series datasets. However, they collected
the benign data from a small-scale lab testbed and generated the attack vectors randomly.
Statistical learning algorithms have also been applied for anomaly detection in SCADA [47]
and DCS [48,49] systems.

Despite these efforts, the research on applying ML techniques to DDoS attack detection
in Industry 4.0 CPPSs is still very limited. The existing works use either datasets collected
from conventional IT networks (e.g., KDD CUP 99) or small-scale lab testbeds, or generated
by computer simulations.

3. Proposed DDoS Attack Detection System for Industry 4.0 CPPSs
3.1. Proposed IDS Architecture

Figure 2 illustrates the architecture of our proposed anomaly based network IDS
for DDoS attack detection in Industry 4.0 CPPSs. The IDS starts by capturing network
traffic traces (PCAP files) from the target CPPS (including, SCADA, MES, ERP, etc.). It
then extracts bidirectional traffic flow features. The extracted features include attributes
such as packet length, transport layer protocol, number of sent/received packets, packet
interarrival time, and flow duration. Table 1 summarizes the complete list of 45 extracted
features. The feature selection module applies PCA algorithm to map this data to a lower
dimensional linear space to eliminate redundant and/or less informative features, without
losing data variance. Afterward, the mapped data is fed directly into the detection engine,
which generates an alert if a malicious network traffic pattern is observed. As the notion
of benign behavior may change over time, the dataset generated by the feature selection
module is saved in a database, and is used, from time to time, to retrain the ML models
employed in the detection engine. Finally, the alert manager analyzes the output of the
detection engine and triggers an alert if the probability of intrusion escalated to a user
predefined security level, e.g., when multiple alerts are observed consecutively.

Electronics 2022, 11, 602 6 of 14Electronics 2022, 11, x FOR PEER REVIEW 6 of 14

Figure 2. Architecture of the proposed ML-based DDoS attack detection system for Industry 4.0
CPPSs.

Table 1. List of extracted flow-based network traffic features using NetMate.

Feature
Index

Feature
Description

Feature
Index

Feature
Description

1 Source IP address 24 Max. packet interarrival time in backward path
2 Source Port number 25 Std. of packet interarrival time in backward path
3 Destination IP address 26 Flow (session) duration (μs)
4 Destination Port number 27 Min. active time of the flow (before going idle) (μs)
5 Transport protocol (TCP/UDP) 28 Average active time of the session (μs)
6 Total packets transmitted in forward direction 29 Max. active time of the session (μs)
7 Total Bytes transmitted in forward direction 30 Std. of active time of the session (μs)
8 Total packets transmitted in backward direction 31 Min. idle time of the flow (before going active) (μs)
9 Total Bytes transmitted in backward direction 32 Average idle time of the flow (μs)

10 Min. packet length in forward direction 33 Max. idle time of the flow (μs)
11 Average packet length in forward direction 34 Std. of idle time of the flow (μs)
12 Max. packet length in forward direction 35 Avg. number of packets in the forward sub flow
13 Std. of packet length in forward direction 36 Avg. number of bytes in the forward sub flow
14 Min. packet length in backward direction 37 Avg. number of packets in the backward sub flow
15 Average packet length in backward direction 38 Avg. number of bytes in the forward sub flow
16 Max. packet length in backward direction 39 Number of PSH flags sent forward (0 for UDP)
17 Std. of packet length in backward direction 40 Number of PSH flags sent backward (0 for UDP)
18 Min. packet interarrival time in forward direction 41 Number of URG flags sent forward (0 for UDP)
19 Avg. packet interarrival time in forward direction 42 Number of URG flag sent backward (0 for UDP)
20 Max. packet interarrival time in forward direction 43 The total bytes used for headers in forward path
21 Std. of packet interarrival time in forward path 44 The total bytes used for headers in backward path
22 Avg. packet interarrival time in backward path 45 Time Stamp
23 Mean packet interarrival time in backward path - -

3.2. Feature Extraction and Dataset Generation
To extract flow features from PCAP files, there exist several tools, e.g., T-Shark [50],

NetMate [7], and Libprotoident [51]. We used NetMate since it extracts a rich set of statistical
flow features that are more appropriate for our ML approach (cf. Table 1). We save the
extracted flow features in a CSV (Comma Separated Values) file, where each row repre-
sents a bidirectional flow and each column represents a flow feature, except the last col-
umn, which holds the binary label of the flow (‘0’ stands for benign and ‘1’ stands for
malicious). We construct a dataset with 40 thousand examples, half of it generated from

Figure 2. Architecture of the proposed ML-based DDoS attack detection system for Industry
4.0 CPPSs.

Table 1. List of extracted flow-based network traffic features using NetMate.

Feature
Index Feature Description Feature

Index Feature Description

1 Source IP address 24 Max. packet interarrival time in backward path
2 Source Port number 25 Std. of packet interarrival time in backward path
3 Destination IP address 26 Flow (session) duration (µs)
4 Destination Port number 27 Min. active time of the flow (before going idle) (µs)
5 Transport protocol (TCP/UDP) 28 Average active time of the session (µs)
6 Total packets transmitted in forward direction 29 Max. active time of the session (µs)
7 Total Bytes transmitted in forward direction 30 Std. of active time of the session (µs)
8 Total packets transmitted in backward direction 31 Min. idle time of the flow (before going active) (µs)
9 Total Bytes transmitted in backward direction 32 Average idle time of the flow (µs)

10 Min. packet length in forward direction 33 Max. idle time of the flow (µs)
11 Average packet length in forward direction 34 Std. of idle time of the flow (µs)
12 Max. packet length in forward direction 35 Avg. number of packets in the forward sub flow
13 Std. of packet length in forward direction 36 Avg. number of bytes in the forward sub flow
14 Min. packet length in backward direction 37 Avg. number of packets in the backward sub flow
15 Average packet length in backward direction 38 Avg. number of bytes in the forward sub flow
16 Max. packet length in backward direction 39 Number of PSH flags sent forward (0 for UDP)
17 Std. of packet length in backward direction 40 Number of PSH flags sent backward (0 for UDP)
18 Min. packet interarrival time in forward direction 41 Number of URG flags sent forward (0 for UDP)
19 Avg. packet interarrival time in forward direction 42 Number of URG flag sent backward (0 for UDP)
20 Max. packet interarrival time in forward direction 43 The total bytes used for headers in forward path
21 Std. of packet interarrival time in forward path 44 The total bytes used for headers in backward path
22 Avg. packet interarrival time in backward path 45 Time Stamp
23 Mean packet interarrival time in backward path - -

3.2. Feature Extraction and Dataset Generation

To extract flow features from PCAP files, there exist several tools, e.g., T-Shark [50],
NetMate [7], and Libprotoident [51]. We used NetMate since it extracts a rich set of statistical
flow features that are more appropriate for our ML approach (cf. Table 1). We save the
extracted flow features in a CSV (Comma Separated Values) file, where each row represents
a bidirectional flow and each column represents a flow feature, except the last column,
which holds the binary label of the flow (‘0’ stands for benign and ‘1’ stands for malicious).
We construct a dataset with 40 thousand examples, half of it generated from benign data
and the other half from malicious data. Hence, the dataset is a CSV file with 40 k rows and
46 columns (45 features plus the label).

Electronics 2022, 11, 602 7 of 14

3.3. Pre-Analysis and Feature Selection

Before applying the PCA algorithm, we did some pre-analysis on the training dataset.
We realized that two features, namely the TCP URG flag in forward and backward direc-
tions, are constant across the whole dataset. Their values were equal to zero for all benign
and malicious examples. As such, they contained no information to help the classifier
discriminate between the two data classes. Therefore, we eliminated them from train and
test datasets.

Furthermore, to avoid overfitting, we removed the time stamp (feature number 45) and
the source and destination IP addresses and port numbers (features 1 to 4) from the training
data. The rationale behind this elimination was that our benign and malicious data have
been collected in different and non-overlapping time intervals from two different networks
(with different sets of IP addresses) communicating through considerably different sets
of port numbers. Consequently, the benign and malicious data could be distinguished
by these features, and therefore using them could lead to overfitting. Nevertheless, it is
important to note that these features might be informative on other occasions, e.g., using
timestamp for time series analysis. After eliminating these attributes, we eventually ended
up with 38 features. Then, we normalized them by subtracting from each feature its mean
value and dividing the result by the standard deviation of the same feature. At the end,
each remaining feature stayed with zero mean and unit variance.

After this pre-analysis, we applied the PCA algorithm to the normalized dataset to
reduce its dimensionality even further. Figure 3 illustrates the attained variance by PCA
for different numbers of selected attributes. We observe that to maintain 95 percent of data
variance, we would need to choose at least 13 features (out of the remaining 38 features), a
considerable reduction in the data dimensionality by sacrificing only 5 percent of variations
in the data. In fact, applying the PCA algorithm (with 95% variance retain) on the original
38-dimensional dataset (see it as a matrix) transforms it to a 13-dimensional space that is
spanned by the first 13 principal component eigenvectors of the (original) dataset. Hereafter,
we train and test the applied ML algorithms using this mapped dataset in the reduced space.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 14

benign data and the other half from malicious data. Hence, the dataset is a CSV file with
40k rows and 46 columns (45 features plus the label).

3.3. Pre-Analysis and Feature Selection
Before applying the PCA algorithm, we did some pre-analysis on the training dataset.

We realized that two features, namely the TCP URG flag in forward and backward direc-
tions, are constant across the whole dataset. Their values were equal to zero for all benign
and malicious examples. As such, they contained no information to help the classifier dis-
criminate between the two data classes. Therefore, we eliminated them from train and test
datasets.

Furthermore, to avoid overfitting, we removed the time stamp (feature number 45)
and the source and destination IP addresses and port numbers (features 1 to 4) from the
training data. The rationale behind this elimination was that our benign and malicious
data have been collected in different and non-overlapping time intervals from two differ-
ent networks (with different sets of IP addresses) communicating through considerably
different sets of port numbers. Consequently, the benign and malicious data could be dis-
tinguished by these features, and therefore using them could lead to overfitting. Never-
theless, it is important to note that these features might be informative on other occasions,
e.g., using timestamp for time series analysis. After eliminating these attributes, we even-
tually ended up with 38 features. Then, we normalized them by subtracting from each
feature its mean value and dividing the result by the standard deviation of the same fea-
ture. At the end, each remaining feature stayed with zero mean and unit variance.

After this pre-analysis, we applied the PCA algorithm to the normalized dataset to
reduce its dimensionality even further. Figure 3 illustrates the attained variance by PCA
for different numbers of selected attributes. We observe that to maintain 95 percent of data
variance, we would need to choose at least 13 features (out of the remaining 38 features),
a considerable reduction in the data dimensionality by sacrificing only 5 percent of varia-
tions in the data. In fact, applying the PCA algorithm (with 95% variance retain) on the
original 38-dimensional dataset (see it as a matrix) transforms it to a 13-dimensional space
that is spanned by the first 13 principal component eigenvectors of the (original) dataset.
Hereafter, we train and test the applied ML algorithms using this mapped dataset in the
reduced space.

Figure 3. Retained variance by the PCA algorithm when the number of selected features varies be-
tween 1 and 38.

3.4. Applied Machine Learning Algorithms
As mentioned before, we applied 11 different ML algorithms for constructing data-

driven models that can discriminate between anomalous network traffic flows (originated
from DDoS attacks) and normal traffic flows. These algorithms are of three different cate-
gories, namely semi-supervised, unsupervised, and supervised. For semi-supervised
learning, we used the univariate Gaussian algorithm, which is essentially a statistical learn-
ing algorithm [42]. For supervised learning, we applied eight different algorithms, namely

Figure 3. Retained variance by the PCA algorithm when the number of selected features varies
between 1 and 38.

3.4. Applied Machine Learning Algorithms

As mentioned before, we applied 11 different ML algorithms for constructing data-
driven models that can discriminate between anomalous network traffic flows (originated
from DDoS attacks) and normal traffic flows. These algorithms are of three different
categories, namely semi-supervised, unsupervised, and supervised. For semi-supervised
learning, we used the univariate Gaussian algorithm, which is essentially a statistical learning
algorithm [42]. For supervised learning, we applied eight different algorithms, namely
OneR, LR, NB, BN, K-NN, DT, RF, and SVM [5]. Finally, for unsupervised learning, we used
the K-Means and EM algorithms [52].

3.5. Performance Evaluation Metrics

Table 2 illustrates the confusion matrix, showing two possible predictive classes
(benign or malicious) for each of the two actual classes. The diagonal elements, True

Electronics 2022, 11, 602 8 of 14

Negative (TN) and True Positive (TP), imply the correct decisions made by the IDS. In
contrast, the off-diagonal elements, False Positive (FP) and False Negative (FN), imply the
wrong decisions that it makes. Before introducing the Key Performance Indicators (KPIs)
that we use for performance evaluation, let’s first briefly define each of these four possible
decision outcomes of the IDS, namely TP, TN, FP, and FN.

Table 2. Confusion matrix of network traffic flow classification.

True Label
Predicted Label

Benign Malicious

Benign TN FP

Malicious FN TP

TP is a decision that correctly classifies a malicious activity as being malicious. TN
is a decision that correctly classifies a benign activity as being benign. FP is a decision
that wrongly classifies a benign activity as being malicious. Finally, FN is a decision that
wrongly classifies a malicious activity as being benign.

Having defined the key terms, we now define the KPIs that we use for numerical
validation as follows.

True Positive Rate (TPR), also known as Recall, is defined as the ratio of all malicious
(positive) examples (TP + FN) that are successfully detected by the IDS [42].

TPR = Recall = ∑ TP
∑ (TP + FN)

(1)

False Positive Rate (FPR) is the ratio of all benign (negative) examples (TN + FP) that
are wrongly classified as positive.

FPR =
∑ FP

∑ (FP + TN)
(2)

The Receiver Operating Characteristic (ROC) curve is the plot of TPR (y-axis) when FPR
(x-axis) varies between 0 and 1. In general, the larger the area under the ROC curve, the
better the detection performance of the IDS; the maximum area under ROC curve is one
and it happens when the ROC curve is a unit step function.

Precision is the ratio of all generated alerts by the IDS (either true or false) that are true
(i.e., emanated from security incidents).

Precision =
∑ TP

∑ (TP + FP)
(3)

Accuracy is defined as the ratio between all correct decisions made by the IDS (TP +
TN) and the total number of decisions that it makes (TP + FP + TN + FN).

Accuracy =
∑ (TP + TN)

∑ (TP + TN + FP + FN)
(4)

F-Measure is defined as the harmonic mean of Precision and Recall.

F1 = 2
Precision × Recall
(Precision + Recall)

(5)

4. Performance Evaluation Results

In this section, we present the numerical results for testing the three categories of
constructed ML models (i.e., semi-supervised, unsupervised, and supervised) and evaluate
their DDoS attack detection performance.

Electronics 2022, 11, 602 9 of 14

4.1. Semi-Supervised Learning Algorithms

Figure 4 illustrates the performance of the univariate Gaussian algorithm. The (diago-
nal) green dotted line shows the ROC curve of a random classifier (Accuracy = 0.5).

Electronics 2022, 11, x FOR PEER REVIEW 9 of 14

4. Performance Evaluation Results
In this section, we present the numerical results for testing the three categories of

constructed ML models (i.e., semi-supervised, unsupervised, and supervised) and evalu-
ate their DDoS attack detection performance.

4.1. Semi-Supervised Learning Algorithms
Figure 4 illustrates the performance of the univariate Gaussian algorithm. The (diag-

onal) green dotted line shows the ROC curve of a random classifier (Accuracy = 0.5).

(a) (b)

(c) (d)

Figure 4. Receiver Operating Characteristic (ROC) and Accuracy curves of the univariate Gaussian algorithm for different
variance retains of the PCA algorithm and for different Window Sizes (WSs) of the Moving Average function. (a) ROC
and Accuracy for PCA with 95% variance retain. (b) ROC for different variance retains of the PCA. (c) ROC for different
Window Sizes (WSs) of the Moving Average. (d) Accuracy for different Window Sizes (WSs) of the Moving Average.

Figure 4a shows the ROC curve and the Accuracy of the univariate Gaussian algo-
rithm when PCA with 95 percent variance retain is applied. It is evident from this figure
that the univariate Gaussian algorithm has a poor detection performance. In the worst
case, for low values of FPR, the ROC curve of the IDS coincides with the ROC of a random
classifier (illustrated by the diagonal green dotted line). However, as the FPR increases,
the Accuracy improves and attains its maximum (0.7) at FPR = 0.15. Afterwards, the Ac-
curacy starts to decline. Furthermore, when Accuracy peaks, the TPR is 0.6, which means
that only 60% of security incidents are detected by the IDS and the rest 40% remain unde-
tected—i.e., they are falsely classified as benign flows.

We tested the algorithm for different values of variance retain of the PCA algorithm,
changing it from 95 to 99 percent. Figure 4b depicts the results. As seen from this figure,
when the variance retain is increased, the TPR consistently improves, but the elbow point
where the maximum Accuracy occurs remains unchanged (TPR always peaks at FPR =
0.15). This means that the IDS still generates a large number of false positives.

We observe from our further data analysis that the mean probability of benign data
is noticeably higher than the mean probability of malicious data. This helps the learning
algorithm discriminate between the two data types. However, the variances of benign and

Figure 4. Receiver Operating Characteristic (ROC) and Accuracy curves of the univariate Gaussian
algorithm for different variance retains of the PCA algorithm and for different Window Sizes (WSs)
of the Moving Average function. (a) ROC and Accuracy for PCA with 95% variance retain. (b) ROC
for different variance retains of the PCA. (c) ROC for different Window Sizes (WSs) of the Moving
Average. (d) Accuracy for different Window Sizes (WSs) of the Moving Average.

Figure 4a shows the ROC curve and the Accuracy of the univariate Gaussian algorithm
when PCA with 95 percent variance retain is applied. It is evident from this figure that the
univariate Gaussian algorithm has a poor detection performance. In the worst case, for
low values of FPR, the ROC curve of the IDS coincides with the ROC of a random classifier
(illustrated by the diagonal green dotted line). However, as the FPR increases, the Accuracy
improves and attains its maximum (0.7) at FPR = 0.15. Afterwards, the Accuracy starts to
decline. Furthermore, when Accuracy peaks, the TPR is 0.6, which means that only 60% of
security incidents are detected by the IDS and the rest 40% remain undetected—i.e., they
are falsely classified as benign flows.

We tested the algorithm for different values of variance retain of the PCA algorithm,
changing it from 95 to 99 percent. Figure 4b depicts the results. As seen from this figure,
when the variance retain is increased, the TPR consistently improves, but the elbow point
where the maximum Accuracy occurs remains unchanged (TPR always peaks at FPR = 0.15).
This means that the IDS still generates a large number of false positives.

We observe from our further data analysis that the mean probability of benign data
is noticeably higher than the mean probability of malicious data. This helps the learning
algorithm discriminate between the two data types. However, the variances of benign and
malicious data are quite high. This results in considerable overlap between the two proba-
bility densities, which makes it difficult for the detection engine to successfully discriminate
between the two data classes. This manifests itself in poor detection performance. To help
improve the performance of the learning algorithm, we applied a smoothing function
in order to decrease the fluctuations of the variance of the Probability Density Function

Electronics 2022, 11, 602 10 of 14

(PDF), denoted by p(x). To do so, we applied the following Moving Average function with a
Window Size (WS) M, where p(x) denotes the smoothed PDF.

p(x) =
1
M

M−1

∑
i=0

p(x)(M−i) (6)

Figure 4c,d show the ROC and the Accuracy after applying the moving average
function when the variance retain of the PCA algorithm is set to 95 percent. We can see
from these figures that applying the moving average function significantly improves the
detection performance. In particular, when the WS is 400 samples, the detection engine
perfectly discriminates the two data classes, with zero error (TPR = 1, FPR = 0).

Although increasing the WS improves the overall performance of the detection engine,
we should note that this comes with a cost. When the IDS operates in real time, it receives
the data examples in a stream, which in general can be all benign or all malicious, or a
mix of both. When the acquired data within a window frame is all benign or all malicious,
averaging them will, in general, result in a higher classification Accuracy. However, when
the captured data within a window contain both benign and malicious examples, averaging
them can smooth out malicious or benign examples in between, which can lead to a wrong
decision by the classifier.

4.2. Unsupervised Learning Algorithms

For unsupervised learning algorithms, we examined K-Means and EM. Tables 3 and 4
summarize the results with and without applying the PCA algorithm, respectively. We
observe from Table 3 that applying these clustering algorithms in combination with the
PCA algorithm (with 95% variance retain) results in very poor detection performance. The
Accuracy of both algorithms does not go beyond 0.52, which means that almost half of the
decisions made by these algorithms are wrong. Moreover, their Precision is also around
0.5, which means that around half of the alerts generated by them falsely originate from
benign examples. In contrast, as we can see from Table 4, when we deactivate the PCA
algorithm, both clustering algorithms perform much better. In general, without applying
the PCA, although the overall Accuracy of the two unsupervised algorithms is similar,
they perform a bit differently. K-Means shows a very low false alarm rate, of course,
with the expense of considerably missing the detection of malicious incidents. In contrast,
EM generates a considerable number of false alarms, but it hardly fails to detect DDoS
attack flows. Therefore, although these two unsupervised algorithms individually yield a
poor performance, they seem to be a good complement for each other because K-Means
generates a very low FPR (out of every ten thousand benign flows, only one is wrongly
classified as a DDoS attack), and EM attains a very high TPR (out of every 100,000 DDoS
flows, only five are misclassified as a benign flow).

Table 3. Performance of unsupervised learning algorithms after applying PCA algorithm with 95%
variance retain.

Algorithm TPR FPR Precision Recall F1 Accuracy

K-Means 0.822 0.78 0.51 0.822 0.63 0.52
EM 0.70 0.69 0.50 0.70 0.58 0.51

Table 4. Performance of unsupervised learning algorithms without applying the PCA algorithm.

Algorithm TPR FPR Precision Recall F1 Accuracy

K-Means 0.90 0.0001 0.9999 0.90 0.95 0.95
EM 0.99995 0.09 0.91 0.99995 0.95 0.95

Electronics 2022, 11, 602 11 of 14

4.3. Supervised Learning Algorithms

As mentioned before, for supervised learning, we tested eight different algorithms:
OneR, LR, NB, BN, K-NN (with K = 1), SVM, DT, and RF. Table 5 summarizes the results
when PCA with 95% variance retain is applied. As we can see from this table, supervised
algorithms outperform both unsupervised and semi-supervised ones. Even the simple
OneR algorithm achieves Accuracy = TPR = 0.987 and FPR = 0.013. We further observe
that K-NN, DT, and RF outperform their other supervised counterparts. They attain TPR =
Precision = Accuracy = 0.999 and FPR = 0.001. The TPR performance (0.999) shows that out
of every 1000 DDoS traffic flows, 999 are correctly detected and only one is misclassified
as benign. On the other hand, the FPR performance (0.001) implies that out of every 1000
benign flows, only one is wrongly flagged as a DDoS attack flow.

Table 5. Performance of supervised learning algorithms after applying PCA algorithm with 95%
variance retain. The three supervised algorithms that are highlighted in bold (i.e., K-NN, DT, and RF)
are the ones that outperform the other ones.

Algorithm TPR FPR Precision Recall F1 Accuracy

OneR 0.987 0.013 0.987 0.987 0.987 0.987
LR 0.970 0.029 0.972 0.970 0.970 0.970
NB 0.958 0.042 0.958 0.958 0.958 0.958
BN 0.995 0.005 0.995 0.995 0.995 0.994

K-NN 0.999 0.001 0.999 0.999 0.999 0.999
SVM 0.971 0.028 0.973 0.971 0.971 0.971
DT 0.999 0.001 0.999 0.999 0.999 0.999
RF 0.999 0.001 0.999 0.999 0.999 0.999

Overall, comparing the performance of the three types of our studied ML algorithms,
the univariate Gaussian algorithm demonstrates a poor detection performance, mainly
because it naively looks into every feature individually and tries to model it as a Gaussian
distribution. At the other extreme, supervised algorithms (notably, DT, RF, and K-NN)
demonstrate an outstanding performance due to their capacity to build a better predictive
model characterizing not only individual features, but also their cross correlations. Even
the OneR algorithm, which is essentially the simplest tree with only one node and two
branches, results in a much higher predictive performance than what semi-supervised or
unsupervised algorithms (e.g., K-Means or EM) can attain. In particular, DT, RF, and K-NN
(K = 1) outperform all the other algorithms. Among them, DT is the most interesting one in
terms of the computational cost and the explainability of the model, and K-NN is the most
expensive one because it essentially lacks the training phase, and for any test observation,
it needs to search for the nearest data point in the whole dataset.

5. Conclusions

In this paper, we applied ML for detecting DDoS attacks in Industry 4.0 CPPSs. We
exported network traffic traces (PCAP files) from a real-world large-scale semiconductor
production factory and employed 11 different semi-supervised, unsupervised, and super-
vised ML algorithms for anomaly detection in network traffic flows. The simulation results
showed that supervised learning algorithms outperformed both unsupervised and semi-
supervised ones. In particular, DT, RF, and K-NN detected DDoS attacks with Accuracy =
Recall = 0.999, Precision = 0.999, and FPR = 0.001.

However, the two applied unsupervised algorithms (K-Means and EM) also showed
a very good performance (Accuracy = 0.95, Recall > 0.9, Precision > 0.9, and FPR < 0.09),
although their performance decreased significantly when the PCA algorithm was applied
(even with 95% variance retain). This is an interesting finding, since unlike supervised
learning, unsupervised learning does not require data labeling which is a tedious task in
practice and needs a significant amount of human effort and intervention.

Electronics 2022, 11, 602 12 of 14

Moreover, semi-supervised algorithms are appealing for anomaly detection since they
rely mostly on benign data for training and require only a few malicious examples for
the calibration. Nevertheless, the applied univariate Gaussian algorithm showed a poor
performance, since the network traffic flow features do not naturally possess a Gaussian
distribution. Therefore, before applying this algorithm, proper mappings should be applied
on the PDF of each selected feature so as their histogram looks like Gaussian. Our study also
found that when a smoothing function (e.g., Moving Average) is applied on the generated
decision outcomes at the output of the Detection Engine, the univariate Gaussian classifier
yields a better performance. However, this may end up smoothing out malicious flows that
are interleaved with benign flows and vice versa, leading to FN and FP results.

For future work, this study can be extended in two directions. The performance evalu-
ation of a combination of applied ML algorithms, when they work in parallel (adopting
an ensemble learning approach), needs to be investigated. Developing a collaborative IDS
for DDoS attack detection in Industry 4.0 CPPSs based on a federated learning approach is
another interesting topic that can be explored in the future.

Author Contributions: Conceptualization, F.B.S., G.M. and J.R.; methodology, F.B.S. and G.M.;
software, F.B.S.; validation, F.B.S.; formal analysis, F.B.S.; investigation, F.B.S. and G.M.; resources,
G.M. and J.R.; data curation, F.B.S.; writing—original draft preparation, F.B.S.; writing—review and
editing, F.B.S., G.M., M.A.V. and A.M.d.O.D.; visualization, F.B.S.; supervision, G.M. and J.R.; project
administration, F.B.S., G.M., J.R.; funding acquisition, G.M., J.R., F.B.S., M.A.V. and A.M.d.O.D. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was sponsored in part by the NATO Science for Peace and Security Pro-
gramme under grant SPS G5797 (PHYSEC), which authors Jonathan Rodriguez and Georgios Mantas
would like to acknowledge.

Acknowledgments: The first author wishes to acknowledge insightful discussions with Jair Santanna,
Justyna Chromik, Anna Sperotto, and Aiko Pras, during his visit to the DACS research group at
University of Twente, the Netherlands.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References
1. Lee, J.; Bagheri, B.; Kao, H.-A. A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manuf. Lett.

2015, 3, 18–23. [CrossRef]
2. Tjahjono, B.; Esplugues, C.; Ares, E.; Pelaez, G. What does Industry 4.0 mean to Supply Chain? Procedia Manuf. 2017, 13, 1175–1182.

[CrossRef]
3. Esfahani, A.; Mantas, G.; Matischek, R.; Saghezchi, F.B.; Rodriguez, J.; Bicaku, A.; Maksuti, S.; Tauber, M.; Schmittner, C.; Bastos, J.

A Lightweight Authentication Mechanism for M2M Communications in Industrial IoT Environment. IEEE Internet Things J. 2017,
6, 288–296. [CrossRef]

4. Perez, R.L.; Adamsky, F.; Soua, R.; Engel, T. Machine Learning for Reliable Network Attack Detection in SCADA Systems. In
Proceedings of the 2018 17th IEEE International Conference on Trust, Security And Privacy in Computing And Communica-
tions/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE), New York, NY, USA,
1–3 August 2018; pp. 633–638.

5. Saghezchi, F.B.; Mantas, G.; Ribeiro, J.; Esfahani, A.; Alizadeh, H.; Bastos, J.; Rodriguez, J. Machine Learning to Automate
Network Segregation for Enhanced Security in Industry 4.0. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2019; Volume 263, pp. 149–158. ISBN 9783030051945.

6. Zargar, S.T.; Joshi, J.; Tipper, D. A Survey of Defense Mechanisms Against Distributed Denial of Service (DDoS) Flooding Attacks.
IEEE Commun. Surv. Tutor. 2013, 15, 2046–2069. [CrossRef]

7. NetMate Meter Download|SourceForge.net. Available online: https://sourceforge.net/projects/netmate-meter/ (accessed on
19 January 2022).

8. Ali, S.; Li, Y. Learning Multilevel Auto-Encoders for DDoS Attack Detection in Smart Grid Network. IEEE Access 2019, 7,
108647–108659. [CrossRef]

9. Saghezchi, F.B.; Mantas, G.; Ribeiro, J.; Al-Rawi, M.; Mumtaz, S.; Rodriguez, J. Towards a secure network architecture for smart
grids in 5G era. In Proceedings of the 2017 13th International Wireless Communications and Mobile Computing Conference,
IWCMC, Valencia, Spain, 26–30 June 2017.

http://doi.org/10.1016/j.mfglet.2014.12.001
http://doi.org/10.1016/j.promfg.2017.09.191
http://doi.org/10.1109/JIOT.2017.2737630
http://doi.org/10.1109/SURV.2013.031413.00127
https://sourceforge.net/projects/netmate-meter/
http://doi.org/10.1109/ACCESS.2019.2933304

Electronics 2022, 11, 602 13 of 14

10. Adepu, S.; Mathur, A. Distributed Attack Detection in a Water Treatment Plant: Method and Case Study. IEEE Trans. Dependable
Secur. Comput. 2021, 18, 86–99. [CrossRef]

11. Junejo, K.N.; Goh, J. Behaviour-Based Attack Detection and Classification in Cyber Physical Systems Using Machine Learning. In
Proceedings of the 2nd ACM International Workshop on Cyber-Physical System Security; Association for Computing Machinery: New
York, NY, USA, 2016; pp. 34–43.

12. Amin, S.; Litrico, X.; Sastry, S.; Bayen, A.M. Cyber Security of Water SCADA Systems—Part I: Analysis and Experimentation of
Stealthy Deception Attacks. IEEE Trans. Control. Syst. Technol. 2013, 21, 1963–1970. [CrossRef]

13. Maglaras, L.A.; Jiang, J.; Cruz, T.J. Combining ensemble methods and social network metrics for improving accuracy of OCSVM
on intrusion detection in SCADA systems. J. Inf. Secur. Appl. 2016, 30, 15–26. [CrossRef]

14. Alhaidari, F.A.; AL-Dahasi, E.M. New Approach to Determine DDoS Attack Patterns on SCADA System Using Machine Learning.
In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia,
3–4 April 2019; pp. 1–6.

15. IBM X-Force Research: Security Attacks on Industrial Control Systems—Security Intelligence. Available online: https://
securityintelligence.com/media/security-attacks-on-industrial-control-systems/ (accessed on 15 January 2022).

16. Stouffer, K.; Lightman, S.; Pillitteri, V.; Abrams, M.; Hahn, A. Guide to Industrial Control Systems (ICS) Security; National Institute
of Standards and Technology: Gaithersburg, MD, USA, 2015. [CrossRef]

17. Zamani, R.; Moghaddam, M.P.; Haghifam, M.-R. Dynamic Characteristics Preserving Data Compressing Algorithm for Transactive
Energy Management Frameworks. IEEE Trans. Ind. Inform. 2022, 1. [CrossRef]

18. Zamani, R.; Moghaddam, M.P.; Haghifam, M.-R. Evaluating the Impact of Connectivity on Transactive Energy in Smart Grid.
IEEE Trans. Smart Grid 2021, 1. [CrossRef]

19. Ding, D.; Han, Q.; Wang, Z.; Ge, X. A Survey on Model-Based Distributed Control and Filtering for Industrial Cyber-Physical
Systems. IEEE Trans. Ind. Inform. 2019, 15, 2483–2499. [CrossRef]

20. ISO. IEC 62264-1:2013—Enterprise-control system integration—Part 1: Models and Terminology. Available online: https:
//www.iso.org/standard/57308.html (accessed on 17 January 2022).

21. IEEE. IEEE Std C37.1-1994—IEEE Standard Definition, Specification and Analysis of Systems Used for Supervisory Control, Data
Acquisition, and Automatic Control; IEEE: Piscataway, NJ, USA, 1994.

22. Zhu, B.; Sastry, S. SCADA-Specific Intrusion Detection/Prevention Systems: A Survey and Taxonomy. In Proceedings of the 1st
Workshop on SECURE Control Systems (SCS), Stockholm, Sweden, 12 April 2010; Volume 11, p. 7.

23. Almada-Lobo, F. The Industry 4.0 revolution and the future of Manufacturing Execution Systems (MES). J. Innov. Manag. 2015, 3,
16–21. [CrossRef]

24. Bartodziej, C.J. (Ed.) The Concept Industry 4.0 BT—The Concept Industry 4.0: An Empirical Analysis of Technologies and Applications in
Production Logistics; Springer Fachmedien Wiesbaden: Wiesbaden, Germany, 2017; pp. 27–50. ISBN 978-3-658-16502-4.

25. Linda, O.; Vollmer, T.; Manic, M. Neural Network based Intrusion Detection System for critical infrastructures. In Proceedings of
the 2009 International Joint Conference on Neural Networks, Atlanta, GA, USA, 14–19 June 2009; pp. 1827–1834.

26. Ribeiro, J.; Saghezchi, F.B.; Mantas, G.; Rodriguez, J.; Abd-Alhameed, R.A. HIDROID: Prototyping a Behavioral Host-Based
Intrusion Detection and Prevention System for Android. IEEE Access 2020, 8, 23154–23168. [CrossRef]

27. Scarfone, K.A.; Mell, P.M. SP 800-94. Guide to Intrusion Detection and Prevention Systems (IDPS); National Institute of Standards &
Technology: Gaithersburg, MD, USA, 2007.

28. Liao, H.-J.; Richard Lin, C.-H.; Lin, Y.-C.; Tung, K.-Y. Intrusion detection system: A comprehensive review. J. Netw. Comput. Appl.
2013, 36, 16–24. [CrossRef]

29. Borges, P.; Sousa, B.; Ferreira, L.; Saghezchi, F.B.; Mantas, G.; Ribeiro, J.; Rodriguez, J.; Cordeiro, L.; Simoes, P. Towards a Hybrid
Intrusion Detection System for Android-based PPDR terminals. In Proceedings of the IM 2017—2017 IFIP/IEEE International
Symposium on Integrated Network and Service Management, Lisbon, Portugal, 8–12 May 2017.

30. García-Teodoro, P.; Díaz-Verdejo, J.; Maciá-Fernández, G.; Vázquez, E. Anomaly-based network intrusion detection: Techniques,
systems and challenges. Comput. Secur. 2009, 28, 18–28. [CrossRef]

31. Barbosa, R.R.R.; Pras, A. Intrusion Detection in SCADA Networks BT—Mechanisms for Autonomous Management of Networks and
Services; Stiller, B., De Turck, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 163–166.

32. Sperotto, A.; Schaffrath, G.; Sadre, R.; Morariu, C.; Pras, A.; Stiller, B. An Overview of IP Flow-Based Intrusion Detection. IEEE
Commun. Surv. Tutor. 2010, 12, 343–356. [CrossRef]

33. Giraldo, J.; Urbina, D.; Cardenas, A.; Valente, J.; Faisal, M.; Ruths, J.; Tippenhauer, N.O.; Sandberg, H.; Candell, R. A Survey of
Physics-Based Attack Detection in Cyber-Physical Systems. ACM Comput. Surv. 2018, 51, 1–36. [CrossRef]

34. Guan, Y.; Ge, X. Distributed Attack Detection and Secure Estimation of Networked Cyber-Physical Systems Against False Data
Injection Attacks and Jamming Attacks. IEEE Trans. Signal Inf. Process. Netw. 2018, 4, 48–59. [CrossRef]

35. Dolk, V.S.; Tesi, P.; De Persis, C.; Heemels, W.P.M.H. Event-Triggered Control Systems Under Denial-of-Service Attacks. IEEE
Trans. Control. Netw. Syst. 2017, 4, 93–105. [CrossRef]

36. Pasqualetti, F.; Dörfler, F.; Bullo, F. Attack Detection and Identification in Cyber-Physical Systems. IEEE Trans. Autom. Control.
2013, 58, 2715–2729. [CrossRef]

37. Zamani, R.; Moghaddam, M.P.; Panahi, H.; Sanaye-Pasand, M. Fast Islanding Detection of Nested Grids Including Multiple
Resources Based on Phase Criteria. IEEE Trans. Smart Grid 2021, 12, 4962–4970. [CrossRef]

http://doi.org/10.1109/TDSC.2018.2875008
http://doi.org/10.1109/TCST.2012.2211873
http://doi.org/10.1016/j.jisa.2016.04.002
https://securityintelligence.com/media/security-attacks-on-industrial-control-systems/
https://securityintelligence.com/media/security-attacks-on-industrial-control-systems/
http://doi.org/10.6028/NIST.SP.800-82R2
http://doi.org/10.1109/TII.2022.3144463
http://doi.org/10.1109/TSG.2021.3136776
http://doi.org/10.1109/TII.2019.2905295
https://www.iso.org/standard/57308.html
https://www.iso.org/standard/57308.html
http://doi.org/10.24840/2183-0606_003.004_0003
http://doi.org/10.1109/ACCESS.2020.2969626
http://doi.org/10.1016/j.jnca.2012.09.004
http://doi.org/10.1016/j.cose.2008.08.003
http://doi.org/10.1109/SURV.2010.032210.00054
http://doi.org/10.1145/3203245
http://doi.org/10.1109/TSIPN.2017.2749959
http://doi.org/10.1109/TCNS.2016.2613445
http://doi.org/10.1109/TAC.2013.2266831
http://doi.org/10.1109/TSG.2021.3102213

Electronics 2022, 11, 602 14 of 14

38. Jonker, M.; Sperotto, A.; Pras, A. DDoS Mitigation: A Measurement-Based Approach. In Proceedings of the NOMS 2020—2020
IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary, 20–24 April 2020; pp. 1–6.

39. Steinberger, J.; Sperotto, A.; Baier, H.; Pras, A. Distributed DDoS Defense: A collaborative Approach at Internet Scale. In
Proceedings of the NOMS 2020—2020 IEEE/IFIP Network Operations and Management Symposium, Budapest, Hungary,
20–24 April 2020; pp. 1–6.

40. Jiang, J.; Yasakethu, L. Anomaly Detection via One Class SVM for Protection of SCADA Systems. In Proceedings of the 2013
International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Beijing, China, 10–12 October
2013; pp. 82–88.

41. Tsai, C.-F.; Hsu, Y.-F.; Lin, C.-Y.; Lin, W.-Y. Intrusion detection by machine learning: A review. Expert Syst. Appl. 2009, 36,
11994–12000. [CrossRef]

42. Ribeiro, J.; Saghezchi, F.B.; Mantas, G.; Rodriguez, J.; Shepherd, S.J.; Abd-Alhameed, R.A. An Autonomous Host-Based Intrusion
Detection System for Android Mobile Devices. Mob. Netw. Appl. 2020, 25, 164–172. [CrossRef]

43. Amouri, A.; Alaparthy, V.T.; Morgera, S.D. A Machine Learning Based Intrusion Detection System for Mobile Internet of Things.
Sensors 2020, 20, 461. [CrossRef]

44. Sarker, I.H.; Abushark, Y.B.; Alsolami, F.; Khan, A.I. IntruDTree: A Machine Learning Based Cyber Security Intrusion Detection
Model. Symmetry 2020, 12, 754. [CrossRef]

45. Maglaras, L.A.; Jiang, J. Intrusion detection in SCADA systems using machine learning techniques. In Proceedings of the 2014
Science and Information Conference, London, UK, 27–29 August 2014; pp. 626–631.

46. Schuster, F.; Paul, A.; Rietz, R.; Koenig, H. Potentials of Using One-Class SVM for Detecting Protocol-Specific Anomalies in
Industrial Networks. In Proceedings of the 2015 IEEE Symposium Series on Computational Intelligence, Cape Town, South
Africa, 8–10 December 2015; pp. 83–90.

47. Do, V.L.; Fillatre, L.; Nikiforov, I. A statistical method for detecting cyber/physical attacks on SCADA systems. In Proceedings of
the 2014 IEEE Conference on Control Applications (CCA), Antibes/Nice, France, 8–10 October 2014; pp. 364–369.

48. Rrushi, J.; Kang, K.-D. Detecting Anomalies in Process Control Networks. In Critical Infrastructure Protection III; Palmer, C., Shenoi,
S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 151–165. ISBN 978-3-642-04798-5.

49. Valdes, A.; Cheung, S. Communication pattern anomaly detection in process control systems. In Proceedings of the 2009 IEEE
Conference on Technologies for Homeland Security, Waltham, MA, USA, 11–12 May 2009; 2009; pp. 22–29.

50. T-Shark: Terminal-Based Wireshark. Available online: https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.
html (accessed on 19 January 2022).

51. GitHub—Wanduow/Libprotoident: Network Traffic Classification Library that Requires Minimal Application Payload. Available
online: https://github.com/wanduow/libprotoident (accessed on 19 January 2022).

52. Moon, T.K. The expectation-maximization algorithm. IEEE Signal Process. Mag. 1996, 13, 47–60. [CrossRef]

http://doi.org/10.1016/j.eswa.2009.05.029
http://doi.org/10.1007/s11036-019-01220-y
http://doi.org/10.3390/s20020461
http://doi.org/10.3390/sym12050754
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://www.wireshark.org/docs/wsug_html_chunked/AppToolstshark.html
https://github.com/wanduow/libprotoident
http://doi.org/10.1109/79.543975

	Introduction
	Related Work
	Industrial Control Systems
	Intrusion Detection Systems
	Intrusion Detection in Critical Infrastructures
	Machine Learning for Intrusion Detection

	Proposed DDoS Attack Detection System for Industry 4.0 CPPSs
	Proposed IDS Architecture
	Feature Extraction and Dataset Generation
	Pre-Analysis and Feature Selection
	Applied Machine Learning Algorithms
	Performance Evaluation Metrics

	Performance Evaluation Results
	Semi-Supervised Learning Algorithms
	Unsupervised Learning Algorithms
	Supervised Learning Algorithms

	Conclusions
	References

