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Abstract: Precise localization plays a crucial role in autonomous driving applications. As Global Po-
sition System (GPS) signals are often susceptible to interference or even not fully available, odometry
sensors can precisely calculate positions in urban environments. However, the cumulative error is
thus originated with time increasing. This paper proposes an effective empirical formula to model
such unbounded cumulative errors from noisy relative measurements. Furthermore, a recursive
cumulative error expression has been established by calculating the first and second moments of the
Ackermann model. Finally, based on the developed formula, numerical experiments have also been
conducted to verify the validity of the proposed model.

Keywords: autonomous driving; odometry; cumulative error; localization

1. Introduction

Interest in autonomous driving has grown exponentially in past decades [1,2]. As
the Global Position System (GPS) signal is susceptible to interference or even not fully
available in typical urban environments, precise localization is considered as a supplement
solution to localize vehicles with multi-source heterogeneous sensors e.g., laser sensors [3],
Wireless Local Area Network (WLAN) sensors [4] and inertial sensors [5].

The current localization framework could be mainly divided into SLAM and dead-
reckoning-based technologies. The former has high accuracy but requires loop-closure
(the vehicle must visit the same places) during the navigation procedure [6–11]. In contrast,
the latter has faster performance but is limited to unbounded drift (also called cumulative er-
ror) originating from noisy odometry sensors [12,13]. As the vehicle often goes to unknown
areas, it is essential to eliminate cumulative errors during dead-reckoning procedures.

Although varied techniques have been developed to decline cumulative error, a rigor-
ous analysis of the growth rate concerning ego-motion is still missing. Typical contributions
are summarized as follows: Wan et al. presented a multi-sensor fusion method to eliminate
the cumulative error in urban environments [14]. Song et al. also proposed a fusion-based
approach to enhance localization accuracy with the camera and laser [15]. However, the
cumulative error has already proved to be overgrowing, and the statistical characteristics
are rarely considered [16,17]. Moreover, to the best of the author’s knowledge, a precise
formula to calculate cumulative error from anonymous trajectories is quite challenging.
In contrast to the straightforward analytic solutions, calibration-based methods have thus
been investigated. Liu et al. proposed a framework for error calibration based on the
RFID techniques [18], whereas Alwin et al. analyzed the error propagations by utilizing
ultra-wideband measurement [19]. Furthermore, with the development of artificial intelli-
gence (AI) techniques, deep learning-based approaches have also been investigated [20].
For example, Brossard et al. proposed an AI-based dead-reckoning model to improve the
localization performance [21], where the neural network is utilized to learn the cumulative
errors. Meanwhile, Shit et al. designed an AI crowdsource-based localization approach for
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intelligent transportation systems [22]. Since all learning-based methods inevitably rely on
deep neural networks, the poor interpretability seriously limits its potential in autonomous
driving applications [23]. In addition, as the learning-based strategy is not comprehensive
enough and contains huge hyper-parameters, different scenarios may significantly reduce
localization performance [24].

It is concluded that no methodology is perfect for autonomous driving; especially in
large-scale urban environments, the cumulative error grows exponentially. Our previous
work introduced an analytical method to analyze the cumulate error; however, only a simple
dead-reckoning model was used, and it hardly contributed to actual driving scenarios [25].

This paper proposes an effective empirical formula to estimate moments of the cumula-
tive error regarding autonomous driving. Independent scenarios could quickly implement
the proposed methodology to regular and irregular trajectories and be verified numerically
through Monte Carlo simulations. Furthermore, in contrast to the state-of-the-art, the pro-
posed strategy could recursively estimate the cumulative error without prior information,
which has fantastic potential in autonomous driving.

The contents of this paper are organized as follows: Section 1 briefly introduces
the background of the problem. Section 2 investigates the statistical properties of the
localization errors. Section 3 presents experimental results with Monte-Carlo simulations.
Finally, this paper is concluded in Section 4.

2. Mathematical Model and Estimation

An autonomous vehicle localizes itself by receiving GPS signals during driving sce-
narios. However, in GPS denied scenarios, dead-reckoning models are often applied to
calculate the position using odometry measurements. Meanwhile, as the relative noises
are distributed with Independent and Identical Distribution (IID) in consecutive frames,
the vehicle must calibrate cumulative errors frequently. Hence, the main challenge for
autonomous driving is how to model the nonlinear and unbounded drift in urban scenar-
ios precisely.

2.1. Problem Statement

To precisely control and localize the movement of an autonomous vehicle, a digital
model of the vehicle ego-motion should be established. This paper utilizes a typical
kinematic model to reflect the vehicle characteristics accurately, also called the Ackermann
steering geometry. Figure 1a is a schematic diagram of the Ackermann model. Here, O
is the rotation center of the vehicle, β is the slip angle, θ is the heading angle, and v is
the velocity.

Figure 1b illustrates both the Ackermann model and the position (xm
n , ym

n ) calculated
by relative noisy measurements (θm

n , βm
n , vm

n ), where n and m express both the step and
measurement, respectively. v, θ and β represent the corresponding velocity, heading angle,
and slip angle in consecutive frames. Definitions of notations are exhibited in Table 1. The
pose measurements θn, βn and vn are defined as the ground truths. θ̃n, β̃n and ṽn are noisy
errors assumed to be independent with zero mean and standard deviation δθ , δβ and δv.
Hence, measurements on each step are acquired as follows

θm
n = θn + θ̃n; βm

n = βn + β̃n; vm
n = vn + ṽn. (1)

where corresponding errors are IID. Hence, the vehicle’s localization is calculated by
dead-reckoning with:

xm
n =

n

∑
i=1

(vm
i cos(

i

∑
j=1

θm
j + βm

i )); ym
n =

n

∑
i=1

(vm
i sin(

i

∑
j=1

θm
j + βm

i )). (2)
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Figure 1. (a) Schematic diagram of ackerman model; (b) Relationship between the relative pose
measurements and the position.

Table 1. Notations definition.

Notation Definition Notation Definition

v velocity θn true value
θ heading angle θ̃n error
β slip angle θm

n noisy measurements
E(xm

n ) expectation var(xm
n ) variance

2.2. True Error Statistics

The localization error could also be represented by expanding for autonomous driv-
ing scenarios.

xm
n = xn + x̃n =

n

∑
i=1

[(vi + ṽi) cos(
i

∑
j=1

(θ j + θ̃j) + (βi + β̃i))]

= [
n

∑
i=1

vi +
n

∑
i=1

ṽi] · [cos(
i

∑
j=1

θ j + βi) cos(
i

∑
j=1

θ̃j + β̃i)

− sin(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)],

(3)

ym
n = yn + ỹn =

n

∑
i=1

[(vi + ṽi) sin(
i

∑
j=1

(θ j + θ̃j) + (βi + β̃i))]

= [
n

∑
i=1

vi +
n

∑
i=1

ṽi] · [sin(
i

∑
j=1

θ j + βi) cos(
i

∑
j=1

θ̃j + β̃i)

+ cos(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)].

(4)

where xn = ∑n
i=1[vi cos((∑i

j=1 θ j) + βi)] and yn = ∑n
i=1[vi sin((∑i

j=1 θ j) + βi)] are the
ground-truth positions. Furthermore, by rearranging the above equations, we have:

x̃n =
n

∑
i=1

vi[cos(
i

∑
j=1

θ j + βi)(cos(
i

∑
j=1

θ̃j + β̃i)− 1)− sin(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)]

+
n

∑
i=1

ṽi[cos(
i

∑
j=1

θ j + βi) cos(
i

∑
j=1

θ̃j + β̃i)− sin(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)],

(5)
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ỹn =
n

∑
i=1

vi[sin(
i

∑
j=1

θ j + βi)(cos(
i

∑
j=1

θ̃j + β̃i)− 1) + cos(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)]

+
n

∑
i=1

ṽi[sin(
i

∑
j=1

θ j + βi) cos(
i

∑
j=1

θ̃j + β̃i) + cos(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)].

(6)

Regarding the formulas mentioned above, the expectation and variance of the accumu-
lated error are then calculated. Notice that each cumulative error depends on the ground
truth, where the statistical properties of corresponding errors are explicitly represented
as follows:

Assuming θ̃ v N(0, δ2
θ ), β̃ v N(0, δ2

β) and ṽ v N(0, δ2
v), we can obtain:

n

∑
i=1

θ̃ v N(0, iδ2
θ );

n

∑
i=1

β̃ v N(0, iδ2
β);

n

∑
i=1

ṽ v N(0, iδ2
v), (7)

Concerning the Ackermann model, since both the heading angle and slip angle are
independently distributed, equations are also calculated as follows:

((
n

∑
i=1

θ̃) + β̃) v N(0, iδ2
θ + δ2

β). (8)

In this case, the following equations are acquired

E(cos((
i

∑
j=1

θ̃j) + β̃i)) = e(iδ
2
θ+δ2

β)/2,

E(sin((
i

∑
j=1

θ̃j) + β̃i)) = 0,

E(cos2((
i

∑
j=1

θ̃j) + β̃i)) =
1
2
(e2(iδ2

θ+δ2
β) + 1),

E(sin2((
i

∑
j=1

θ̃j) + β̃i)) =
1
2
(−e2(iδ2

θ+δ2
β) + 1),

E(cos((
i

∑
j=1

θ̃j) + β̃i) sin((
i

∑
j=1

θ̃j) + β̃i)) = 0.

(9)

where Equation (9) exhibits the expected value of parameters θ and β. Calculating the
expectation of x̃n and ỹn respectively, and placing formula (9) into the corresponding
equation for simplification, the expectations are thus acquired as follows:

µt(θ, β, v) =
[

E[x̃n]
E[ỹn]

]
=

∑n
i=1 v[cos((∑i

j=1 θ̃j) + β̃i)(e−
iδ2

θ
+δ2

β
2 −1)]

∑n
i=1 v[sin((∑i

j=1 θ̃j) + β̃i)(e−
iδ2

θ
+δ2

β
2 −1)]

. (10)

The Cauchy–Schwarz inequality has to be utilized afterward to calculate the second-
order moment of the cumulative error.

(
n

∑
i=1

xiyi)
2 6 (

n

∑
i=1

x2
i )(

n

∑
i=1

y2
i ). (11)

Based on the above equation, we have
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E(x̃n − E(x̃n))
2 = E[

n

∑
i=1

vi[cos(
i

∑
j=1

θ j + βi)(cos(
i

∑
j=1

θ̃j + β̃i)− e−
iδ2

θ
+δ2

β
2 )

− sin(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)] +
n

∑
i=1

ṽi[cos(
i

∑
j=1

θ j + βi) cos(
i

∑
j=1

θ̃j + β̃i)

− sin(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)]]
2

6 (12 + 12) · E[
n

∑
i=1

vi[cos(
i

∑
j=1

θ j + βi)(cos(
i

∑
j=1

θ̃j + β̃i)− e−
iδ2

θ
+δ2

β
2 −1)

− sin(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)]
2 + [

n

∑
i=1

ṽi[cos(
i

∑
j=1

θ j + βi) cos(
i

∑
j=1

θ̃j + β̃i)

− sin(
i

∑
j=1

θ j + βi) sin(
i

∑
j=1

θ̃j + β̃i)]]
2]

= 2 · E(A) + 2 · E(B).

(12)

The above formula is the second-order moment of the cumulative error in the X di-
rection regarding the variance. However, it is still not entirely simplified. By expressing it
with Ax and Bx, the Cauchy-Schwarz inequality is then utilized again.

Ax = [∑n
i=1 vi[cos(∑i

j=1 θ j + βi)(cos(∑i
j=1 θ̃j + β̃i)− e−

iδ2
θ
+δ2

β
2 )− sin(∑i

j=1 θ j + βi)

sin(∑i
j=1 θ̃j + β̃i)]]

2

and

Bx = [∑n
i=1 ṽi[cos(∑i

j=1 θ j + βi)(cos ∑i
j=1 θ̃j + β̃i)− sin(∑i

j=1 θ j + βi) sin(∑i
j=1 θ̃j + β̃i)]]

2

Similar, we also have

E(Ax) = n ·
n

∑
i=1

v2
i [cos2(

i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − cos2(

i

∑
j=1

θ j + βi)e
−(iδ2

θ+δ2
β) − e−2(iδ2

θ+δ2
β)

2
+

1
2
], (13)

E(Bx) = n · E(
n

∑
i=1

ṽ2
i )[cos2(

i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − e−2(iδ2

θ+δ2
β)

2
+

1
2
]

= n · δ2
v

n

∑
i=1

(cos2(
i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − e−2(iδ2

θ+δ2
β)

2
+

1
2
).

(14)

Finally, var(x̃n) becomes

var(x̃n) 6 2n ·
n

∑
i=1

v2
i [cos2(

i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − cos2(

i

∑
j=1

θ j + βi)e
−(iδ2

θ+δ2
β)

− e−2(iδ2
θ+δ2

β)

2
+

1
2
] + 2n · δ2

v

n

∑
i=1

(cos2(
i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − e−2(iδ2

θ+δ2
β)

2
+

1
2
),

(15)

The var(x̃n) and the var(ỹn) are calculated in the same way. The variance of ỹn can
also be written as:

var(ỹn) 6 2n ·
n

∑
i=1

v2
i [sin2(

i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − sin2(

i

∑
j=1

θ j + βi)e
−(iδ2

θ+δ2
β)

− e−2(iδ2
θ+δ2

β)

2
+

1
2
] + 2n · δ2

v

n

∑
i=1

(sin2(
i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − e−2(iδ2

θ+δ2
β)

2
+

1
2
).

(16)
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2.3. Error Statistics in Practice

Equations (10), (15) and (16) are theoretically proofed representations for error statistics.
However, they are conditional on the ground truth. Hence, the expected values must be
conditioned on noisy measurements to extend the potential usages in practice.

E[µt|θm, βm, vm] = µm, (17)

E[var(x̃n)|θm, βm, vm] = var(x̃m
n ). (18)

E[var(ỹn)|θm, βm, vm] = var(ỹm
n ). (19)

By expanding the above equations with Equation (1), we have

E[x̃m
n ] = E[E[x̃n]|θm, βm, vm]

= E[
n

∑
i=1

vi[cos(
i

∑
j=1

θ j + βi)(e
−

(iδ2
θ
+δ2

β
)

2 − 1)]]

= E[
n

∑
i=1

(vm
i − ṽi)[cos(

i

∑
j=1

(θm
j − θ̃j) + (βm

i − β̃i))(e−(i
δ2
θ
+δ2

β
2 ) − 1)]]

=
n

∑
i=1

vm
i E[(cos((

i

∑
j=1

θm
j + βm

i )− (
i

∑
j=1

θ̃j + β̃i))) · (e−
(iδ2

θ
+δ2

β
)

2 − 1)]

=
n

∑
i=1

vm
i (e
−(iδ2

θ+δ2
β) − e

−(iδ2
θ
+δ2

β
)

2 ) cos(
i

∑
j=1

θm
j + βm

i ).

(20)

Meanwhile, the second-order moment of the cumulative error has also been calculated
with the Cauchy–Schwarz inequality as follows:

var(x̃m
n ) 6 E[2n ·

n

∑
i=1

v2
i [cos2(

i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − cos2(

i

∑
j=1

θ j + βi)e
−(iδ2

θ+δ2
β)

− e−2(iδ2
θ+δ2

β)

2
+

1
2
]] + E[2n · δ2

v

n

∑
i=1

(cos2(
i

∑
j=1

θ j + βi)e
−2(iδ2

θ+δ2
β) − e−2(iδ2

θ+δ2
β)

2
+

1
2
)]

6 2n(12 + (−1)2)E[
n

∑
i=1

((vi
m)

2 − (vi)
2)[cos2((

i

∑
j=1

θm
j + βm

i )− (
i

∑
j=1

θ̃j + β̃i))] · e
−(iδ2

θ+δ2
β)

· (e−2(iδ2
θ+δ2

β) − 1)] + 2n · δ2
v

n

∑
i=1

[cos2((
i

∑
j=1

θm
j + βm

i ))e
−4(iδ2

θ+δ2
β) − e−4(iδ2

θ+δ2
β)

2
+

1
2
].

(21)

Then, continuing to simplify var(x̃m
n ), we can have:

var(x̃m
n ) 6 4n

n

∑
i=1

[(vi
m)

2 + (δ2
v)][cos2(

i

∑
j=1

θm
j + βm

i )e
−4(iδ2

θ+δ2
β) − cos2(

i

∑
j=1

θm
j + βm

i )e
−3(iδ2

θ+δ2
β)

− e−4(iδ2
θ+δ2

β)

2
+

e−3(iδ2
θ+δ2

β)

2
− e−(iδ

2
θ+δ2

β)

2
+

1
2
]

+ 2nδ2
v

n

∑
i=1

(cos2(
i

∑
j=1

θm
j + βm

i )e
−4(iδ2

θ+δ2
β) − e−4(iδ2

θ+δ2
β)

2
+

1
2
).

(22)

Equations (20) and (22) are the expectation and variance of the cumulative error in
the X direction, respectively. With the same manner, corresponding values of ỹn can also
be calculated:

E[ỹm
n ] =

n

∑
i=1

vm
i (e
−(iδ2

θ+δ2
β) − e

−(iδ2
θ
+δ2

β
)

2 ) sin(
i

∑
j=1

θm
j + βm

i ). (23)
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var(ỹm
n ) 6 4n

n

∑
i=1

[(vi
m)

2 + (δ2
v)][sin2(

i

∑
j=1

θm
j + βm

i )e
−4(iδ2

θ+δ2
β) − sin2(

i

∑
j=1

θm
j + βm

i )e
−3(iδ2

θ+δ2
β)

− e−4(iδ2
θ+δ2

β)

2
+

e−3(iδ2
θ+δ2

β)

2
− e−(iδ

2
θ+δ2

β)

2
+

1
2
]

+ 2nδ2
v

n

∑
i=1

(sin2(
i

∑
j=1

θm
j + βm

i )e
−4(iδ2

θ+δ2
β) − e−4(iδ2

θ+δ2
β)

2
+

1
2
).

(24)

Notice that the corresponding values are still complicated; nevertheless, these equa-
tions are practically helpful.

3. Experimental Results

In this section, the error expectation and variance have been evaluated by using the
Monte-Carlo simulation. Especially for autonomous driving scenarios, the well-known
Kitti dataset [26] has also been utilized, which offers the pose measurements in urban
applications. In the Kitti dataset, 30 different GPS/IMU values are stored in text files,
including altitude, global positioning, speed, acceleration, angular rate, accuracy, and
satellite information. The Monte-Carlo simulation is conducted by selecting the parameters
regarding odometry sensors, such as forwarding speed, heading angle, and the angular
speed in the dataset. Meanwhile, Gaussian white noise is manually added to obtain
the relative noisy measurements obtained in the actual scene. As shown in Table 2, the
deviation concerning velocity noise, the slip angle, and the heading angle are considered as
0.01 m, 0.005 rad, and 0.0005 rad, respectively. Figure 2 exhibits four original trajectories
measured by the GPS/IMU system.

Table 2. Parameters for simulation.

Parameters Value

δ2
v 0.01 m/s

δ2
θ 0.0005 rad

δ2
β 0.005 rad

8.3930 8.3935 8.3940 8.3945 8.3950 8.3955
longitude

48.9852

48.9854

48.9856

48.9858

48.9860

48.9862

48.9864

48.9866

48.9868

la
ti
tu
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Figure 2. (a–d) The four global trajectories of the vehicle.
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During the experiment, the statistical properties of the cumulative regarding different
trajectories are calculated with the following steps (here, only concerning the first moment
in X-direction).

E(x̃m
1 ) = vm

1 (e
−(δ2

θ+δ2
β) − e

−(δ2
θ
+δ2

β
)

2 ) cos(
1

∑
j=1

θm
j + βm

1 ),

E(x̃m
2 ) = E(x̃m

1 ) + vm
2 (e
−(2δ2

θ+δ2
β) − e

−(2δ2
θ
+δ2

β
)

2 ) cos(
2

∑
j=1

θm
j + βm

2 ),

E(x̃m
3 ) = E(x̃m

2 ) + vm
3 (e
−(3δ2

θ+δ2
β) − e

−(3δ2
θ
+δ2

β
)

2 ) cos(
3

∑
j=1

θm
j + βm

3 ),

...

E(x̃m
n ) = E(x̃m

n−1) + vm
n (e
−(nδ2

θ+δ2
β) − e

−(nδ2
θ
+δ2

β
)

2 ) cos(
n

∑
j=1

θm
j + βm

n ).

Figures 3–10 illustrate the results by using Monte-Carlo simulation. Figures 3–6 are
the expectation of cumulative error in the X direction and Y direction. Figures 7–10 show
the cumulative error variances in X and Y directions. From Figures 3–6, the blue line and
red line are represented as the proposed model and the ground truth, which illustrates that
most estimated results are approximately equal to the true cumulative error by Monte-Carlo
simulations. However, the estimated variance has deviated in contrast to the ground truth,
which is caused by high-order nonlinear transformation issues.

Regarding trajectory 1 (Figure 2a), Figures 3 and 7 are the expectation and variance of
its cumulative error, respectively. From Figure 2a, we can see that the vehicle moves with
a round-trip trajectory in the X-direction and multiple circles in the Y-direction. Hence,
the expectation of its cumulative error concerning the X-direction first decreases and then
increases, whereas the value in the Y-direction increases and decreases frequently. The
numerical change in the corresponding direction is consistent with the movement. However,
nonlinear changes lead to inaccurate estimation results in the variance estimation process.
Figures 4 and 8 are the expectation and variance of the cumulative error with trajectory 2
(Figure 2b) . It is observed that the vehicle has made multiple round-trip movements in
both directions, respectively. Noticed that the number of numerical changes is consistent
with the number of round-trip movements. Similarly, trajectory 3 and 4 (Figure 2c,d) have
also been evaluated in the experiment. However, variance estimation always has inaccurate
results caused by nonlinear changes.

In summary, experimental results have demonstrated that the proposed model fits the
statistical characteristics well regarding the first-order moment. Hence, it could provide a
mathematical solution for autonomous driving in GPS denied environments.

0 200 400 600 800
Frame

-5

0

5

10

15

20

Cu
mu

la
ti

ve
 e

rr
or
 i

n 
X 

di
re
ct

on
 [
m]

 

Our result

MonteCarlo

(a)

0 200 400 600 800
Frame

-14

-12

-10

-8

-6

-4

-2

0

Cu
mu

la
ti

ve
 e

rr
or
 i

n 
Y 

di
re
ct

on
 [
m]

 

Our result

MonteCarlo

(b)

Figure 3. The expectation of cumulative error for trajectory (Figure 2a). (a) The expectation of
cumulative error in the X direction; (b) The expectation of cumulative error in the Y direction.
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Figure 4. The expectation of cumulative error for trajectory (Figure 2b). (a) The expectation of
cumulative error in the X direction; (b) The expectation of cumulative error in the Y direction.
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Figure 5. The expectation of cumulative error for trajectory (Figure 2c). (a) The expectation of
cumulative error in the X direction; (b) The expectation of cumulative error in the Y direction.
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Figure 6. The expectation of cumulative error for trajectory (Figure 2d). (a) The expectation of
cumulative error in the X direction; (b) The expectation of cumulative error in the Y direction.
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Figure 7. The variance of cumulative error for trajectory (Figure 2a). (a) The variance of cumulative
error in the X direction; (b) The variance of cumulative error in the Y direction.
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Figure 8. The variance of cumulative error for trajectory (Figure 2b). (a) The variance of cumulative
error in the X direction; (b) The variance of cumulative error in the Y direction.
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Figure 9. The variance of cumulative error for trajectory (Figure 2c). (a) The variance of cumulative
error in the X direction; (b) The variance of cumulative error in the Y direction.
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Figure 10. The variance of cumulative error for trajectory (Figure 2d). (a) The variance of cumulative
error in the X direction; (b) The variance of cumulative error in the Y direction.

4. Conclusions

Localization uncertainty estimation from odometry measurements in the urban en-
vironment has great potential for autonomous driving, especially in GPS denied envi-
ronments. In this paper, the localization error is modeled to approximate its first and
second-order moments based on characteristics of odometry sensors. The proposed ap-
proach recursively estimates both the bias and uncertainty without ground truths compared
to the related work. Numerical results demonstrate the validity of the proposed formula by
using Monte-Carlo simulations. Future work focuses on applying the proposed approach
by considering 6-DOF information from the odometry sensor.
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