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Abstract: EEG-based emotion recognition can help achieve more natural human-computer interaction,
but the temporal non-stationarity of EEG signals affects the robustness of EEG-based emotion
recognition models. Most existing studies use the emotional EEG data collected in the same trial
to train and test models, once this kind of model is applied to the data collected at different times
of the same subject, its recognition accuracy will decrease significantly. To address the problem of
EEG-based cross-day emotion recognition, this paper has constructed a database of emotional EEG
signals collected over six days for each subject using the Chinese Affective Video System and self-built
video library stimuli materials, and the database is the largest number of days collected for a single
subject so far. To study the neural patterns of emotions based on EEG signals cross-day, the brain
topography has been analyzed in this paper, which show there is a stable neural pattern of emotions
cross-day. Then, Transfer Component Analysis (TCA) algorithm is used to adaptively determine
the optimal dimensionality of the TCA transformation and match domains of the best correlated
motion features in multiple time domains by using EEG signals from different time (days). The
experimental results show that the TCA-based domain adaptation strategy can effectively improve
the accuracy of cross-day emotion recognition by 3.55% and 2.34%, respectively, in the classification
of joy-sadness and joy-anger emotions. The emotion recognition model and brain topography in
this paper, verify that the database can provide a reliable data basis for emotion recognition across
different time domains. This EEG database will be open to more researchers to promote the practical
application of emotion recognition.

Keywords: EEG signals; emotion recognition; cross-day; Transfer Component Analysis (TCA);
domain adaptation

1. Introduction

Emotions are an important part of human psychological structure, and as the human-
computer interaction technology develops, emotional perception computing [1,2] has
established a harmonious human-computer environment by enabling computers to per-
ceive, recognize, understand, express, and adapt to human emotions, and allows computers
to have a higher and more comprehensive intelligence, which is an important symbol of
the naturalization and intelligibility of human-computer interaction [3–5].

One of the important prerequisites for conducting emotion research is to elicit objec-
tive, stable and reliable emotions. Researchers use a variety of emotion stimuli, such as
images [6,7], sounds and videos [8,9], to induce emotions. Video materials of different
emotions are widely used by researchers as through visual and auditory stimuli, subjects
may feel personally on the scene. Existing publicly available EEG databases based on
emotion video stimuli include DEAP [10], MAHNOB-HCI [11], and SEED [12], etc.
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Based on the above publicly available EEG datasets, various emotion feature ex-
traction methods have been developed and used to recognize emotions from EEG sig-
nals. These feature extraction methods include (1) time-domain features: Non-linear
features such as statistical features [13], fractal dimensions [14,15], sample entropy [16], and
non-stationary indices [17], Hjorth features [18], and higher-order crossover features [19];
(2) time-frequency analysis features: The energy, power, power spectral density and dif-
ferential entropy (DE) [20] of a certain frequency band are extracted as features after the
short-time Fourier transform (STFT) [21,22], Hilbert-Huang transform [23,24] or discrete
wavelet transform [25–27] of the EEG signals, and in some cases, t for high-frequency
bands, such as Beta (16–32 Hz) and Gamma (32–64 Hz) bands, the emotion recognition
achieves better results [10,28]; (3) features based on the empirical mode decomposition
(EMD) [29,30]: The EMD is used to decompose the EEG signal into multiple intrinsic
mode functions (IMFs), and then extract the waveform difference, phase difference, and
normalized energy of the IMFs as features for emotion recognition. As the deep learning
techniques develop, neural networks are gradually being used in emotion recognition.
Zheng et al. [31] extracted DE features with different frequency bands and channels as
inputs, and then used deep belief networks (DBN) to classify positive, neutral, and negative
emotions. Yang [32] and Zhang et al. [33] all used the extracted neural network structure
with DE as the input feature to recognize positive, neutral, and negative emotions from
the SEED database. Li et al. [34] formed a two-dimensional matrix of DE features and
the HCNN was used to perform emotion recognition based on the SEED database. Xing
et al. [35] used the power spectral density of the five frequency bands as the feature to
recognize emotions based on DEAP database using LSTM-RNN. Many studies choose DE
as the feature and acquire effective recognition accuracy. Therefore, we choose DE as the
main feature of emotion recognition in this paper.

Most of the above-mentioned studies have employed the traditional machine learning
methods or neural networks for emotion recognition, and have obtained fairly satisfactory
recognition accuracy. However, most of those studies have focused on time-specific emo-
tion recognition, and the emotion recognition accuracy of the model developed under such
condition will significantly decrease once applied to a complex real-world environment,
since the temporal non-stationarity of the EEG signal is a major factor affecting the robust-
ness of the EEG-based emotion recognition model. It is well known that hormone levels,
external environment, and diet and sleep can all lead to differences in physiological sig-
nals [36], therefore, even for the same emotional state, the EEG signals cross-day also vary.
However, in practical applications, there is bound to be a time lag between constructing
emotion recognition models and recognizing the emotional states, so the study of emotion
recognition cross-day is crucial, which serves as a necessary step from the laboratory to
practical applications.

Currently, there are few studies on cross-day emotion recognition. Zheng et al. [12]
investigate the important brain regions and electrodes in emotion recognition based on EEG
over time. Lin et al. [37] proposed a robust principal component analysis (RPCA)-based
signal filtering strategy and validated it on a binary emotion classification task (happiness
vs. sadness) using a five-day EEG dataset of 12 subjects. Liu et al. [38] collected EEG data
for days and found that emotion recognition performance can be improved by adding
EEG data of different days. However, the problem of how to effectively and adaptively
select emotion features cross-day with intrinsically implicit associations has not been well
addressed. The robustness of emotion recognition across time domain is worth studying.
In this paper, we constructed an EEG database, with collection of six days EEG signals
from 12 subjects. Based on the EEG database, we first analyzed the difference in emotion
recognition performance between intra-day and cross-day cases. Then, we applied TCA
algorithm as a domain adaption method, and showed the effectiveness of enhancing cross-
day emotion recognition tasks. At last, we analyzed the brain topography, which showed
there was a stable neural pattern of emotions cross-day.
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2. Materials and Methods

EEG-based emotion recognition mainly includes the following steps: emotion induc-
tion, EEG signal collection, EEG signal pre-processing, extraction and analysis of emotion-
related EEG features, emotion computational modeling, and detection and recognition of
emotional states, as shown in Figure 1.

Electronics 2022, 11, 651 3 of 17 
 

 

2. Materials and Methods 
EEG-based emotion recognition mainly includes the following steps: emotion induc-

tion, EEG signal collection, EEG signal pre-processing, extraction and analysis of emotion-
related EEG features, emotion computational modeling, and detection and recognition of 
emotional states, as shown in Figure 1. 

 
Figure 1. The process of emotion recognition based on EEG signals. 

2.1. Experimental Design 
Due to the non-stationarity of EEG, EEG signals from different days can be consid-

ered as signals from different time domains under the same cognitive emotion recognition 
task. In order to address the problem of emotion recognition based on EEG signals from 
different time domains (across different days), this study has designed EEG experi-
ments[39] for studying emotions cross-day, which allows us to collect sufficient emotional 
samples for deep neural network studies, and investigate the properties of EEG signals 
cross-day. We have chosen video materials of emotions for the experiment since they can 
give both visual and auditory stimuli to the subjects, making them feel as if they were in 
a real-life situation. 

A total of 36 video clips of the four emotion types of joy, sadness, anger and fear have 
been selected from the Chinese Affective Video System [9] and the self-built affective 
video library for the experiment. The self-built affective video library is a standardized 
multi-sensory material library of emotional stimuli based on psychological methods pro-
vided by the partner Peking University. It includes various domestic and foreign come-
dies, romance, crime, war, documentary, and horror films, etc. The clips are selected ac-
cording to such principles as clear content meaning, clear picture, good sound quality, 
and clear subtitles, and they are tested by the elicitation validity of the stimulus material. 

The experiment will be conducted in three parts, namely A, B and C, with each part 
containing 12 clips of 4 emotions. As shown in Tables A1–A3 of the Appendix A, there are 
three clips for each emotion type, and the duration of the video clips range from 50 s to 
335 s. Videos named with initial uppercase letters are selected from the affective video 
library of Peking University, and those named with initial lowercase letters are selected 
from the Chinese Affective Video System. 

The experiment is divided into the three parts of A, B, and C, each at a time, as shown 
in Figure 2. The order of the experiment is randomly balanced to avoid the effects of the 
fixed-order A-B-C experiments, and the interval between each two experiments is one 
week. Each subject is to perform the experiment in Figure 2 twice, with an interval of six 
months between the two experiments, so for each participating subject, a total of six days’ 
EEG data will be collected. 

Part A, B, and C of the experiment each contains 12 films of four discrete emotion 
categories. Each category of emotions is played as a block, and the four blocks correspond-
ing to the four categories of films are played randomly, and the films within each block 

Figure 1. The process of emotion recognition based on EEG signals.

2.1. Experimental Design

Due to the non-stationarity of EEG, EEG signals from different days can be considered
as signals from different time domains under the same cognitive emotion recognition task.
In order to address the problem of emotion recognition based on EEG signals from different
time domains (across different days), this study has designed EEG experiments [39] for
studying emotions cross-day, which allows us to collect sufficient emotional samples for
deep neural network studies, and investigate the properties of EEG signals cross-day. We
have chosen video materials of emotions for the experiment since they can give both visual
and auditory stimuli to the subjects, making them feel as if they were in a real-life situation.

A total of 36 video clips of the four emotion types of joy, sadness, anger and fear have
been selected from the Chinese Affective Video System [9] and the self-built affective video
library for the experiment. The self-built affective video library is a standardized multi-
sensory material library of emotional stimuli based on psychological methods provided by
the partner Peking University. It includes various domestic and foreign comedies, romance,
crime, war, documentary, and horror films, etc. The clips are selected according to such
principles as clear content meaning, clear picture, good sound quality, and clear subtitles,
and they are tested by the elicitation validity of the stimulus material.

The experiment will be conducted in three parts, namely A, B and C, with each part
containing 12 clips of 4 emotions. As shown in Tables A1–A3 of the Appendix A, there
are three clips for each emotion type, and the duration of the video clips range from 50 s
to 335 s. Videos named with initial uppercase letters are selected from the affective video
library of Peking University, and those named with initial lowercase letters are selected
from the Chinese Affective Video System.

The experiment is divided into the three parts of A, B, and C, each at a time, as shown
in Figure 2. The order of the experiment is randomly balanced to avoid the effects of the
fixed-order A-B-C experiments, and the interval between each two experiments is one
week. Each subject is to perform the experiment in Figure 2 twice, with an interval of six
months between the two experiments, so for each participating subject, a total of six days’
EEG data will be collected.
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Part A, B, and C of the experiment each contains 12 films of four discrete emotion cate-
gories. Each category of emotions is played as a block, and the four blocks corresponding
to the four categories of films are played randomly, and the films within each block are also
played at random. The 12 film clips are divided into 12 trials, and the flow of each trial is
as follows.

1. Before the movie clip starts, there will be a 10-s hint to inform the subject of the
number of the current movie clip.

2. Present the white fixation cross on a black background for 5 s.
3. Play the emotion stimulus movie clips.
4. The subject will self-assess the valence and arousal of the movie clips with reference to

the Self-Assessment Manikin (SAM) scale. The valence scale ranges from 1(extremely
unpleasant) to 9(extremely pleasant); and the arousal scale ranges from 1 (calm) to
9 (extremely excited), and the subject will click the corresponding numbers on the
keyboard to directly input the ratings.

While switching categories of emotion, the subject will have a 5-min rest to fully
eliminate the effect of the previous category of emotion on the current one.

2.2. Data Collection

Before the experiment, we selected subjects through questionnaire and interviews
based on the Beck anxiety inventory (BAI) [40], Hamilton anxiety rating scale (HARS) [41],
and the Hamilton depression scale (HAMD) [42] to exclude subjects with anxiety and
depression mood, mental and physical abnormalities which means a physical disease or
a physical defect, and those using sedative agents and psychotropic drugs. In this case,
14 subjects (8 males, 6 females) with normal visual acuity or corrected visual acuity had
been selected for the experiment from our current students. Prior to the experiment, all
subjects were informed in detail of the content of the experiment, and they filled out an
information registration form, and signed an informed consent form.

We used the 64 channel HIamp active electrode EEG cap of g.tec company of Austria
to collect EEG signals. Among the 64 channels, the reference electricity was on the right
earlobe, and AFz was connected to GND, and Fz was used for internal calculation of the
equipment. Therefore, the remaining effective EEG channels were 61 channels. We used
E-Prime to play the experimental stimulus, which is a professional psychological stimulus
presentation software.
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2.3. Data Preprocessing

For all subjects, the 61-channel EEG data were pre-processed as follows.

1. Data extraction. Extracted the EEG data corresponding to the film clips being played
(Pre-stimulus duration was 5 s, and post-stimulus duration was that of the video
stimulus material).

2. Bad channel averaging. Checked for corrupted channels where no EEG data had been
collected, and replaced the data from the corrupted channel with the average data
from the adjacent channels.

3. Artifact removal. EEG was decomposed into independent components using ICA
algorithm to remove artifacts such as EOG, EMG, and ECG, and then reconstructed to
obtain an artifact-free EEG signal.

4. Re-reference calculation. The data were re-referenced and calculated according to the
reference electrode standardization technique (REST) proposed by Yao et al. [43,44].
Which used Three-concentric-sphere model as the head model.

5. Signal filtering. The signal passed through a bandpass filter of 0.1–64 Hz.
6. Baseline correction. The baseline correction was performed 5 s before watching the

movie stimulus.

Among all the participants, 12 subjects’ (8 males, 4 females, with an average age
of 22.50 and the standard deviation for age being 1.98) EEG signals were qualified, and
two subjects’ EEG signals were unqualified. Since one subject’s signal had severe drift
and the other subject’s signal could not be used because there was too much movement
during two of the collection sessions. In removing the artifacts, this paper used the
FastICA [45] algorithm to decompose the independent components of the EEG signal, one
of the remaining 12 subjects removed two artifact components after ICA decomposition,
and the other 11 subjects all removed one artifact component. After selecting and removing
the artifact components, the EEG signal without artifact interference was reconstructed.

Since the lengths of the film videos range from 50 s to 180 s, and for all videos, the
emotion elicitation was the most intense at the end of the film and therefore most effective.
To ensure that the EEG signal lengths were consistent with each other for all emotion types,
the last 50 s of all videos had been captured for analysis. Considering the application in
studies of real-time emotion recognition, the segmentation of EEG signal was performed
with reference to [46], taking 2 s of the EEG signal length as one sample, slid the EEG signal
window forward for 1 s each time, with an overlap of 1 s for the two adjacent samples, as
shown in Figure 3. Thus, the 50 s-length EEG signal could be divided into 49 samples.
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Figure 3. Segmentation of EEG signals. EEG data are segmented using a window of 2 s with 50%
overlap between two consecutive windows.

For each sample, the differential entropy (DE) of Delta (1–4 Hz), Theta (4–8 Hz), Alpha
(8–12 Hz), Beta (12–30 Hz) and Gamma (30–64 Hz) frequency bands had been extracted. For
an EEG signal of 2 s length (sample rate of 512 Hz and sample points of 1024). A 128-point
Hann window was selected with 50% overlap of windows, and the short-time Fourier
transform was implemented by Matlab’s spectrogram function, and then the differential
entropy was calculated for each of the five frequency bands. Since the number of effective
EEG channels was 61, the number of features corresponding to each EEG sample of 2 s was
61 × 5 = 305 features.



Electronics 2022, 11, 651 6 of 17

In the future, we were willing to disclose this EEG database, including original EEG
signals and preprocessed EEG signals, for use by more researchers, to promote the develop-
ment of emotion recognition technology based on EEG signals.

2.4. Transfer Component Analysis

Due to individual differences and the non-stationary nature of EEG signals, it is
difficult to promote the classification model across different domains. There is a method
called Transfer Learning in machine learning, which can be used to reduce differences
distribution between different domains. Domain adaptation as one of the methods of
transfer learning, solves a learning problem in a target domain by utilizing the training
data in a different but related source domain, which can be used to reduce differences
in EEG data distribution between different domains. Based on this, the research team of
Professor Yang Qiang at Hong Kong University of Science and Technology had proposed
the Transfer Component Analysis (TCA) algorithm [47], which was a feature-based transfer
learning method. When the source and target domains had different data distribution in
the issue of domain adaptation, TCA would be used to map the data in the two domains to
a high-dimensional Reproducing Kernel Hilbert Space (RKHS), where the maximum mean
discrepancy (MMD) of the source and target would be minimized, while their respective
internal properties were preserved to the largest extent possible. TCA was currently the
most widely used domain adaptation method, with good generalization capabilities in
multiple domains.

It has shown that, under the cross-day case, there is a more stable neural pattern of
EEG signals from the same subject under different emotional conditions. Therefore, there
are implicit common correlations between the EEG signals of the same subject in different
time domains, and due to such correlations, there may be some implicit features of the
categorical information inherent in the representational data. Thus, if one knew the abstract
common feature representation φ(X) in the implicit feature space for both the training set
Xtrain and the test set Xtest, the difference in probability distributions of P(φ(Xtrain)) and
P(φ(Xtest)) between the data domains would greatly reduce. Therefore, in this paper TCA
will be used to EEG emotion recognition under cross-day case.

2.5. Emotion Recognition

In this paper, the EEG data of 6 days had been collected for each subject and 5 cases
had been given here.

• Intra-day case

Classified data for each subject within each experiment. There were 3 video clips for
each emotion under each experiment, and 3-fold cross-validation was performed between
videos to ensure that the training and test sets are uncorrelated.

• Cross-day case

Emotion recognition cross-day included four cases, namely train1_ V1_ Test4, Train2_
V1_ Test3, Train3_ V1_ Test2, Train4_ V1_ Test1. For instance, Train1_V1_Test4: Data of
days 1 and 2 were for training, where one day’s data were selected as the validation set
and the other day’s as the training set, with a total of 2 combinations and data of day 3 to
day 6 are for testing, and the final emotion recognition accuracy was the average of the two
combinations. In this case, the number of training samples for each emotion type was 147
(There were 3 movies for each category of emotion in one day’s EEG data, and the number
of samples corresponding to each movie was 49, so the number of movie samples for each
emotion type was 49 × 3 = 147).

According to Train1_V1_Test4, the remaining three cases, Train2_ V1_ Test3, Train3_
V1_ Test2 and Train4_ V1_ Test1, correspond to that the data of 3 days, 2 days and 1 day
were randomly selected from the 6 days as the test set, and the other days are used as the
training set and verification set. The number of training samples for each emotion type
respective ware 147 × 2, 147 × 3, 147 × 4.
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Since the experimental stimuli were four discrete emotion types of joy, sadness, anger,
and fear, the emotion recognition in this paper was also performed for discrete emo-
tions. A binary classification of positive-negative, joy-sadness, joy-anger, and joy-fear
emotions was performed in five cases, Intra-days, Train1_V1_Test4, Train2_V1_Test3,
Train3_V1_Test2, and Train4_V1_Test1, respectively. For the positive-negative classifi-
cation of emotions, the emotion of joy would be presented as the positive emotion and
sadness, anger, and fear emotions would be presented as negative emotions. Under the
positive-negative emotion classification, the negative emotion samples were more than
those of the positive emotion; the three classification tasks of joy-sadness, joy-anger, and
joy-fear were all performed with a balanced training sample.

Firstly, for the above five cases, this paper utilizes SVM to recognize emotions, which
was implemented by LIBSVM with linear kernel functions. Parameter optimization of
the nuclear function was performed on the training and validation sets, and the optimal
value of parameter C was searched with a stride of 1 within the range from 2−8 to 28.
The classification in this paper was based on a subject-dependent system, and the final
classification accuracy was the average of recognition accuracies for all subjects.

Then, this paper employs TCA to perform adaptive matching of the EEG features
across time domains. The original feature dimension was 305, and the optimal transformed
dimensionality Lopt via TCA would be searched with a stride of 20 in the range form
10 to300 for the training and validation sets. After determining optimal transformed
dimensionality Lopt via TCA, the training and validation sets were merged into a new
training set X′train = [Xtrain Xvalidate]

T , and then the new training set X′train and the test set
Xtest would be analyzed using TCA algorithm under the parameters of Lopt and the features
obtained after the transfer component analysis would be used for emotion recognition.

Such classification as above mentioned had two advantages, first, the overlap of
data from the training and the test sets could be avoided as they were from different days;
second, the EEG data were increasing cross-day to validate the practicability and robustness
of the domain adaptive algorithm for emotion recognition cross-day.

3. Results
3.1. Cross-Day and Intra-Day Emotion Recognition

This paper utilizes SVM to recognize emotions, and Figure 4 gives the average classifi-
cation accuracy for all the subjects under the four classification tasks in different cases. For
the intra-day emotion recognition, the average recognition accuracies for positive-negative,
joy-sadness, joy-anger, and joy-fear are 90.18%, 86.38%, 88.12%, and 85.13%, respectively.
As time goes on, the accuracy of emotion recognition decreases significantly in the four
cases of Train1_V1_Test4, Train2_V1_Test3, Train3_V1_Test2, and Train4_V1_Test1, indicat-
ing that the EEG signals of the subjects will change cross-day. In case of the Train1_V1_Test4
with the shortest training days, the average recognition accuracies for positive-negative,
joy-sadness, joy-anger, and joy-fear are 76.06%, 69.23%, 68.90%, and 63.66%, respectively. In
addition, the recognition accuracy rates also show that the classification accuracy rates can
be effectively improved if training models are built using EEG signals from different days,
as shown in Figure 4, where the accuracy rates for Train3_V1_Test2 and Train4_V1_Test1
are higher than those for Train1_V1_Test4, and Train2_V1_Test3. When the training data of
4 days are used (Train4_V1_Test1), the average recognition accuracies for positive-negative,
joy-sadness, joy-anger, and joy-fear are 81.31%, 72.15%, 71.57%, and 72.38%, respectively.

If negative emotions can be effectively detected in life, timely intervention and positive
regulation can be carried out for people to improve the quality of life and work efficiency.
So, the core purpose of emotion classification tend to correct identify negative emotions.
We selected sensitivity, specificity, and the receiver operating characteristic (ROC) curves of
the positive-negative emotions as evaluation metrics, which can verify the robustness of
the classification model.
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Sensitivity reflects the ability of the model to recognize the positive samples, and the
formula for computing sensitivity is:

Sensitivity = TP/(TP + FN) (1)

where, TP is the number of positive samples predicted to be positive and FN is the number
of positive samples predicted to be negative.

Specificity reflects the ability of the model to recognize negative samples and is
calculated as follows:

Specificity = TN/(TN + FP) (2)

where, TN is the number of negative samples predicted to be negative and FP is the number
of negative samples predicted to be positive.

ROC curves typically feature false positive rate (FPR) on the X axis and true positive
rate (TPR) on the Y axis. The area under curve (AUC) is a measure of how good the
classification model is. Figure 5 presents the ROC curves under five classification tasks, with
the intra-day AUC values of 0.9422, 0.7196, 0.7648, 0.7399 and 0.7829 for Train1_V1_Test4,
Train2_V1_Test3, Train3_V1_Test2, and Train4_V1_Test1, respectively. A larger AUC value
indicates a more robust classification model, and therefore the best classification model in
all five cases is the intra-day rather than the cross-day model.

Table 1 gives the actual and predicted values of all the positive and negative samples
tested in the five cases, as well as the sensitivity, specificity and accuracy of the model.
From the results, it can be seen that the imbalance between positive and negative training
samples (with more negative samples) leads to the higher ability of the model to classify
the negative samples and the ability to classify the positive samples is weaker than that
to classify the negative samples. In the case of cross-day, the value of Specificity becomes
higher and higher as the increasing of the training data, which means the performance
of negative emotion recognition is becoming better and better. This is consistent with the
change of the recognition accuracy.
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Figure 5. The average ROC curves of all the subjects in the binary classification of positive and
negative emotions.

Table 1. Performance of the binary classification of positive-negative emotions on the intra-day and
cross-day.

Intra-Day Train1_V1_Test4 Train2_V1_Test3 Train3_V1_Test2 Train4_V1_Test1

Actual
Predicted Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative

Positive 8081 1657 8129 7728 6284 5684 6511 4284 3934 1709
Negative 2503 30,095 7747 39,900 7828 36,652 7601 38,052 4886 24,751

Sensitivity (%) 76.35 51.20 44.53 46.14 44.60
Specificity (%) 94.78 83.77 86.57 89.88 93.54

Accuracy rate (%) 90.17 75.63 76.06 78.95 81.31

3.2. Cross-Day Emotion Recognition Based on the Domain Adaption Algorithm

The accuracy of emotion recognition decreases due to the random nature of the EEG
signal, which changes cross-day for the same individual being tested. Domain adaptation
of features across time domains via TCA algorithm has effectively improved the accuracy
of emotion recognition, as shown in Figure 6, in the case of Train4_V1_Test1, the average
recognition accuracies of positive-negative, joy-sadness, joy-anger, and joy-fear using the
TCA algorithm are 83.03%, 75.70%, 73.91% and 72.79%, with an improvement of 1.72%,
3.55%, 2.34% and 0.41%, respectively, in accuracy compared to using SVM alone, and the
use of TCA for domain adaptation strategy has significantly improved the accuracy of
emotion recognition in the three classification tasks of positive-negative (t-test, p = 0.046),
joy-sadness (t-test, p = 0.039), and joy-anger (t-test, p = 0.042).

Since the positive and negative samples are not balanced, the sensitivity, specificity,
and the receiver operating characteristic (ROC) curves of the positive-negative emotions
in the five cases are also presented to verify the robustness of the classification model.
Table 2 gives the actual and predicted values for all the positive and negative samples
tested in the five cases, as well as the sensitivity, specificity and accuracy of the model. From
the results, it can be seen that the imbalance between the positive and negative training
samples (with more negative samples) indicates a higher ability of the model to classify
the negative samples and the ability to classify the positive samples is weaker than that to
classify the negative samples. It can also be seen that the introduction of the TCA algorithm
has improved the ability of the model to recognize both positive and negative samples.
Figure 7 presents the ROC curves, and the AUC values are 0.7829 and 0.8166 in both cases.
The larger the AUC value, the more robust the classification model is.
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Figure 6. Performance of cross-day emotion recognition using domain adaptation algorithm and SVM,
where “Positive-Negative”, “Joy-Sadness”, “Joy-Anger”, “Joy-Fear” indicate the binary classification
of the positive and negative emotions: joy and sadness, joy and anger, and joy and fear, respectively.
“SVM” represents a short-time Fourier transform of the EEG signals, and then the differential entropy
features are extracted for recognition using SVM. “TCA + SVM” represents a short-time Fourier
transform of the EEG signals, and then domain adaptive matching via TCA algorithm will be applied
to the EEG features and the features transformed will be recognized using SVM.

Table 2. Performance of binary classification of the positive-negative emotions in case of
Train4_V1_Test1.

SVM TCA + SVM

Actual Predicted Positive Negative Positive Negative

Positive 3934 1709 4362 1530
Negative 4886 24,751 4458 24,930

Sensitivity (%) 44.60 49.46
Specificity (%) 93.54 94.22

Accuracy rate (%) 81.31 83.03
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Figure 7. The average ROC curve of all the subjects in the binary classification of positive and
negative emotions in case of Train4_V1_Test1.
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Figures 8 and 9 present the confusion matrices of SVM and TCA + SVM under the
three classification tasks of joy-sadness, joy-anger, and joy-fear. It can be seen from the
figures that the TCA algorithm has improved the classification ability for both joy and the
three negative emotions.
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TCA + SVM under Train4_V1_Test1. (a) Average confusion matrix for the joy-sadness classification.
(b) Average confusion matrix for the joy-anger classification (c) Average confusion matrix for the
joy-fear classification.

3.3. Analysis of Brain Topography

In order to seek the support of cross-day emotion recognition at the theoretical level, we
study the neural patterns of emotions based on EEG signals cross-day. We have presented
the average brain topography of all subjects at different time during the first three days of
the trial. The interval between each two of the trials A, B, and C is one week.

Figure 10 gives the DE features of all subjects in Gamma bands (30–64 Hz) cross-day.
The energy in the central regions of the temporal, occipital, and parietal lobes is higher for
positive emotions than that for negative emotions, and the energy in the prefrontal lobes
for positive emotions is lower than that for negative emotions, which has something to
do with the mechanism that negative emotions need more prefrontal cognitive resources
for actions such as defense and escape. Negative emotions also have an asymmetry of
energy on both sides of the temporal lobe, with higher energy in the left temporal lobe
than in the right temporal lobe. This also happens in the three experiments A, B and C at
different moments, which indicates that even though there are some superficial changes in
the amplitude of the individual’s EEG signals, there is still a more stable neural pattern
of emotions cross-day. Meanwhile, these further verify that the database can provide a
reliable data basis for emotion recognition across different time domains.
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4. Discussion

This study performs the emotion recognition on 6 days of emotional EEG data collected
from each subject and has the following findings.

• The performance of emotion recognition within the same experiment is better than the
emotion recognition cross-day.

The time effect of EEG can have impacts on the accuracy of emotion recognition, and
a study by Liu et al. [40] has found that the accuracy of emotion recognition decreases
significantly when the training and test samples of EEG are from different time domains
(different days). Consistent with the results of this study, the performance of cross-day
emotion recognition based on EEG signals can be significantly reduced in the four cases,
Train1_V1_Test4, Train2_V1_Test3, Train3_V1_Test2, and Train4_V1_Test1, compared to the
emotion recognition within a single experiment (Intra-days) (t-test. p < 0.05).

Though EEG signals will change cross-day, the average brain topography shows that
there is still a stable neural pattern cross-day and the accuracy gradually improves as the
number of days in the training set samples increases. When data of 4 days are used as for
training (Train3_V1_Test2: the number of training samples for each emotion is 147 × 3), the
emotion recognition accuracy has improved by 5.25%, 2.92%, 2.67%, and 8.73%, respectively,
under the positive-negative, joy-sadness, joy-anger, and joy-fear classification compared to
the case where data of only 1 day is selected for training (Train1_V1_Test4: the number of
training samples for each emotion is 147).

• Domain adaptation algorithm can improve the performance of cross-day emotion recognition

For the cross-day emotion recognition, the TCA algorithm is used for feature matching
in different time domains, and by using EEG data from different days as training and vali-
dation sets, the optimal transformed dimensionality of TCA will be determined adaptively
and the emotion recognition performance will be optimized. In case of the Train4_V1_Test1,
the average recognition accuracies of positive-negative, joy-sadness, joy-anger, and joy-fear
using the TCA algorithm are 83.03%, 75.70%, 73.91%, and 72.79%, respectively, which
has been improved by 1.72%, 3.55%, 2.34%, 2.34% and 0.41%, respectively, compared to
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using SVM alone. Under the binary classification of discriminating positive from negative
emotions, the use of TCA algorithm has improved the recognition performance of both the
positive and negative samples, and the robustness of the model has also been improved,
with the AUC value increasing from 0.7829 to 0.8166. Under the three classification tasks
of positive-negative, joy-sadness, and joy-anger, the use of domain adaptation via TCA
has significantly improved the accuracy of emotion recognition (t-test, p < 0.05). This
paper also discovers that in comparison to using fixed dimensionality, selecting the op-
timal dimensionality of TCA through the validation set can improve the performance of
emotion recognition.

• The EEG database can provide a reliable data basis for emotion recognition across
time domains

To study the neural patterns of emotions based on EEG signals cross-day, the brain
topography has been analyzed in this paper, which show there is a stable neural pattern of
emotions cross-day. The TCA-based emotion recognition model and brain topography in
this paper, verify that the database can provide a reliable data basis for emotion recognition
across time domains. This EEG database will be open to more researchers to promote
the practical application of emotion recognition. Based on the self-built cross -day EEG
database, this paper proposes a strategy based on cross-day EEG data to determine the
dimension of TCA transform, which can be used to solve the problem of EEG feature
matching in different time domains and effectively improve the performance of emotion
recognition cross-day. Meanwhile, the experiment result shows that the database can
provide a reliable data basis for emotion recognition across time domains. However, there
are still some limitations, for example, the rate of emotion recognition can be further
improved, TCA algorithm reduces the fear classification performance, and only the binary
classification is studied, etc. Thus, on the basis of above research, we will continue to study
better robust emotion recognition algorithms, subsequently study multiple classification
and fine-grained classification recognition algorithms.

5. Conclusions

In this study, we have constructed a emotional EEG database based on the Chinese
Affective Video System and the self-built video stimuli materials, which collected over
6 days of EEG signals for each subject. This database provided a favorable signal foundation
for emotion recognition studies across time domains. On the basis of this database, we have
proposed the employment of TCA algorithm to match the EEG emotional features in multi-
time domain. The EEG data from different days are used as the training and validation
sets to adaptively determine the optimal transformed dimensionality of TCA, which has
effectively improved the recognition accuracy of joy, sadness, anger, and fear emotions,
and has validated the effectiveness of the TCA strategy in improving emotion recognition
performance across time domains. In future studies, further use of deep learning methods
for emotion recognition cross-day will be investigated.
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Appendix A

The experiment was conducted in three parts, namely A, B and C, with each part
corresponded to a table, namely Tables A1–A3 as follows.

• Part A

Table A1. Number labels of emotion videos.

Category of Emotion Name of the Video Label Time (ms)

Joy

j2.avi
Eat Hot Tofu Slowly 1 109,000

j3.avi
A Big Potato 2 142,000

j5.avi
Flirting Scholar 3 112,000

Sadness

s12.avi
Roots and Branches 4 146,000

s14.avi
My Beloved 5 137,000

s15.avi
Warm Spring 6 102,000

Anger

a23.avi
Fist of Fury (2) 7 66,000

a24.avi
Kang Xi Kingdom 8 94,000

a25.avi
Conman In Tokyo 9 107,000

Fear

f27.avi
Save Me 10 50,000

f28.avi
The Game of Killing (1) 11 159,000

f31.avi
Help 12 247,000

• Part B

Table A2. Number labels of emotion videos.

Category of Emotion Name of the Video Label Time (ms)

Joy

H2.avi
East Meets West, Hong Qi expressed

love to his cousin-sister
1 228,000

H3.avi
A World Without Thieves, the clip of

robbing
2 191,000

H5.avi
Chaplin Comedy 3 244,000
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Table A2. Cont.

Category of Emotion Name of the Video Label Time (ms)

Sadness

S2.avi
Darling, Tian Wenjun looked for his sun 4 182,000

S3.avi
Aftershock 5 335,000

S4.avi
Darling, Mom watched her daughter

through the window
6 120,000

Anger

A1.avi
Yip Man 2, The boxing champion

mocked Chinese martial arts
7 172,000

A2.avi
Never Talk to Strangers 8 205,000

a22.avi
Fist of Fury (1) 9 258,000

Fear

F1.avi
Lights out, the film clip of shadows after

lights out
10 134,000

F5.avi
F_05, Four men lying on the ground at

the beginning of the film
11 291,000

F7.avi
The film clip of big snake eating people 12 158,000

• Part C

Table A3. Number labels of emotion videos.

Category of Emotion Name of the Video Label Time (ms)

Joy

H1.avi
Lost on Journey, Check-in part 1 281,000

H6.avi
Home with Kids 2 187,000

j4.avi
East Meets West, Hong Qi jumped off the

cliff part
3 53,000

Sadness

S5.avi
English movie, a man calling in the snow 4 142,000

S8.avi
Echoes of the Rainbow, the part of

typhoon blowing
5 241,000

s13.avi
Rob-B-Hood, saving the baby part 6 234,000

Anger

A3.avi
The film clip of Japanese invasion 7 96,000

A4.avi
Blind Mountain, villagers stopped the

abducted woman from being saved
8 275,000

A5.avi
Wildlife hunt 9 148,000
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Table A3. Cont.

Category of Emotion Name of the Video Label Time (ms)

Fear

F2.avi
Lying in bed and the quilt lifted by itself 10 162,000

F3.avi
Ju-on: The Grudge, Japanese girl watching

TV
11 167,000

F6.avi
F_06, A woman hanging around with a gun 12 190,000
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