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Abstract: By linking computational intelligence technology directly to urban transportation systems,
a framework for scheduling traffic lights is proposed to enhance their flexibility in adaptation to
traffic fluctuation. First, based on the flexible neural tree (FNT) theory, an algorithm for predicting
the traffic flow is designed to obtain the variance tendency of traffic load. After that, a strategy
for adjusting the duration of traffic signal cycle is designed to tackle the problem of overload or
lightweight traffic flow in the next-time frame. While predetermining the duration of signal cycle in
the next-time frame, from a utilization perspective, an elastic-adaption strategy for scheduling the
separate phase’s green traffic lights is derived from the analytical solution, which is obtained from a
designed trade-off scheduling optimization problem to increase the adaptability for the upcoming
traffic flow. The experiment results show that the proposed framework can effectively reduce the
delay and stopping rate of vehicles, and improves the adaptability for the upcoming traffic flow.

Keywords: traffic light scheduling; traffic flow prediction; duration adjustment of signal cycle;
flexible neural tree; trade-off scheduling optimization

1. Introduction

As an important part of the urban traffic network, the traffic light control system is
the core functionality module of the urban traffic control system. Since the 1950s, consid-
erable efforts in theoretical and experimental research have been made to develop traffic
light control strategies, such as pretimed control [1,2], traffic-responsive control [3,4], and
intelligent control [5]. However, due to complicated interferences and nonlinear stochas-
tic characteristics, the modern traffic light control system is still facing great challenges.
Fortunately, owning to the development in the advanced technology of computational
intelligence, both research works and advanced technologies have been implemented for
making the modern traffic light control system behave in a “smart” way [6], such as neural
networks [7], multiagent systems [8], fuzzy logic control [9,10], and so on.

The traffic light control system is put into use with the emergence of advanced mea-
sured technologies. In this system, accurate information of traffic flow provides the fun-
damental information for devising sound control strategies [11,12]. While applying the
physical devices to detect the traffic flow, the detection range is limited by the complicated
traffic network and even by the huge cost of extending it [13]. Meanwhile, in comparison
with mathematical models for traffic flow prediction under strong assumption, computa-
tional intelligence has demonstrated its great advantage of overcoming the nonlinearity
and randomness of traffic flow [6]. For example, by using real-time and historical temporal–
spatial traffic data, a deep leaning approach with an advanced multi objective particle
swarm optimization algorithm is proposed to forecast the traffic flow in the next day in [14];
ref. [15], meanwhile, proposed a Long Short-Term Memory-based traffic flow prediction
approach to overcome the characteristics of traffic flow data, such as the varying length,
irregular sampling, and missing data; by making use of weekly/daily periodicity and
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spatial–temporal characteristics of traffic flow, a deep neural networks based traffic flow
prediction model is proposed in [16]; by employing an enhanced K-nearest-neighbor al-
gorithm, ref. [17] proposed a nonparametric and data-driven methodology to forecast
the short-term traffic flow. Recently, graph convolutional networks (GCN) and their ad-
vanced versions have attracted substantial attention for predicting the short-time [18] and
long-time traffic flow [19], such as hierarchial GCN [20], optimized graph convolution
recurrent neural network [21], graph WaveNet [22], and so on. Those methods are usually
characterized by their requirement for huge computing resources. Meanwhile, traffic flow
is affected by many complicated factors, such as holidays, festivals, weather, and traffic
infrastructures, etc. This paper is mainly aimed at predicting the traffic flow with light
computing resources and integrating it into scheduling traffic lights.

In a large-scale traffic network, the centralized scheduling method for traffic signalling
involves extensive communication and computational requirements. On the contrary, it
is easy to carry out the distributed scheduling methods for traffic lights usually with a
predetermined duration of signal cycle and a scheduling green time plan for each phase.
Most of the traffic interactions currently use fixed-time signal scheduling strategies. In
the early stages, refs. [23,24] provide the fixed-time signal control model for modern
traffic signal control systems to minimize the average delay of vehicles. After that, some
advanced traffic systems were developed based on scheduling time plan, split adjustments,
and computational intelligence [25], such as Sydney coordinated adaptive traffic system
(SCATS) [26], split cycle offset optimization technique (SCOOT) [27], Japan’s universal
traffic management system (UTMS) [28], and China’s parallel transportation management
systems (PtMS) [29], and so on. In general, the fixed-time signal scheduling models are
suitable for relatively stable and regular traffic flow. However, its limitations are obvious in
adjusting the timings dynamically for the irregular traffic flow.

Essentially, the duration of a traffic signal cycle could be viewed as the constrained
competitive resource for contradictory phases in a real-time traffic signal control system [30].
Therefore, the traffic signal scheduling problem could be discussed from the perspective
of a resource-constrained scheduling problem for the real-time systems. This has been
considered as a significant innovation from theoretical research to practical implications.
For example, based on the maximum weight-independent set, a new directional routing
and link-scheduling algorithm is designed for directional link-scheduling for real-time data
processing in a smart manufacturing system in [31]; Taking into consideration the real-time
control system with constrained resources, ref. [32] proposes a hierarchical feedback man-
agement framework to satisfy the requirement of Quality of Control (QoC) improvement
by adjusting the control periods for multiple control tasks; in [33], by embedding both the
QoC management and the workload adaptation into a constrained optimization problem, a
feedback scheduling framework is proposed to make the use of the system resources so
as to maximize the QoC improvement. Meanwhile, ref. [34] adjusts the cycle in real time
by analyzing the information of traffic flow through video detectors at the intersection.
The above achievements provide the possibility for adjusting the traffic signal cycle and
scheduling traffic lights for various phases in an interaction reasonably.

Motivated by embedding traffic flow prediction into the traffic signal control system,
this paper proposes an adaptation scheduling strategy for urban traffic lights. The main
contributions of this paper include:

(1) By employing genetic programming and particle swarm optimization algorithm
(PSO), the structure and parameters of flexible neural tree (FNT) are designed to
predict the traffic flow in the next-time frame, in which the variable inputs are allowed
for covering many complicated factors in real-time traffic system concerning holidays
and weather conditions;

(2) A duration adjustment strategy of signal cycle is proposed for enhancing the inter-
section’s ability to undertake the overload or lightweight traffic flow in the next-
time frame;
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(3) Linking the competitive relationship among the contradictory phases with the pre-
diction traffic flow directly, an elastic adaption scheduling strategy for the separate
phases’ green lights is derived from the analytical solution to achieve the adaptability
for the upcoming traffic flow and make full use of the utilization of the presetting
duration of signal cycle, which is obtained from a designed tradeoff scheduling
optimization problem.

The structure of this paper is as follows: in Section 2, the framework for traffic light
scheduling is proposed; Section 3 gives the algorithm for traffic flow prediction based on
FNT model; the strategy of adaptation scheduling for urban traffic lights is designed in
Section 4 in detail; the corresponding experiment results are given in Section 5; and this
paper ends with a conclusion in Section 6.

2. Overall Frame Structure for Urban Traffic Light Scheduling
2.1. Signal Phases in Traffic Light Control Systems

In traffic light control systems, the signal phases are defined to avoid the conflict of
traffic flow in different directions.

During a signal cycle in a traffic signal control system, a group of nonconflicting
multidirectional traffic flows in the same signal phase go through the intersection under
the preset order. Generally, the duration of signal cycle is divided into multiple time slices,
which corresponds to the green-light signal for each signal phase. Thus, the scheduling
objective of urban traffic light is the scheduling of time slices for the signal phases in the
duration of a signal cycle. Meanwhile, the signal intersection could be classified based on
the geometrical shape, including T shape, Y shape, X shape, ring cross shape and so on.
Thus, a signal intersection can be viewed as an N-phase controlled intersection, where N
represents the number of phases in an intersection.

For example, a typical intersection with four phases is displayed in Figure 1, in which
the corresponding phases are shown in Figure 2. The preset order is b→ a→ c→ d→ b.
Thus, a 4-phase controlled intersection can be formulated, in which the duration of a signal
cycle is comprised of four time slices corresponding to the four phases of a green-light
signal respectively.

Figure 1. The geometric description of a four-phase intersection.
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Figure 2. Phases in an intersection.

2.2. Framework for Traffic Light Adaptation Scheduling

The designed framework for traffic light scheduling is shown in Figure 3. It consists of
three components: the FNT-based traffic flow prediction; the adjustment for the duration
of the signal cycle; and the elastic utilization-based adaptive scheduling strategy for the
intersection-phase green lights.

Figure 3. Framework for traffic light scheduling.

The first component of FNT-based traffic flow prediction provides the basic informa-
tion for the other two components in the overall framework. In practice, the traffic light
scheduling mainly depends on the upcoming traffic flow in each signal phase. In this
component, a flexible neural tree model (FNT) is designed to predict the upcoming traffic
flow qi(t) for the ith phase in an intersection in the next-time frame Tf . The previous traffic
flow in each phase is collected to build the dataset. Here, many complicated factors are
taken into consideration, such as weather and holidays.

Because the traffic flow changes over time in the next-time frame, an intersection
may withstand the overload or lightweight traffic flow. While an overload or lightweight
situation appears, the duration T of signal cycle could be adjusted before scheduling the
green lights for each signal phase. Thus, an event-trigged strategy needs to be embedded
into the adjustment component for the duration of signal cycle to enlarge or reduce the
duration T. The duration T of signal cycle is the sum of the green-light duration of each
phase, following that

T =
N

∑
i=1

Ti, (1)

where Ti denotes the green-light duration of the ith phase in an intersection. At the
beginning of the experiment, we assign an initial value of T and Ti = T/N. As the
experiment progresses, the timing cycle will gradually approach the optimal timing cycle.
Therefore, the second component is intended to adjust the duration of signal cycle based
on the upcoming traffic flow.

Taking the most efficient utilization of the duration of signal cycle as the scheduling
objectives, the component of elastic utilization-based adaptive scheduling strategy for
signal-phase green lights is designed. Linking the prediction traffic flow of each phase
directly to the green-light scheduling, a tradeoff scheduling optimization problem is formu-
lated, in which the utilization U of the signal cycle depends on the sum of variance yields



Electronics 2022, 11, 658 5 of 14

between the scheduling green time Ti and the allowed maximum green light Timax, which
is described as

U =
N

∑
i=1

(Timax − Ti)
2. (2)

The smaller the value U under the necessary constrain condition, the better the uti-
lization. Therefore, in this component, the adaptive scheduling strategy could provide
the reasonable Ti for each traffic phase to utilize the signal cycle effectively in the next-
time frame.

3. Signal Phase Traffic Flow Prediction via FNT

In this paper, the flexible neural tree is designed to predict the phase traffic flow in
the next-time frame, which is an alternative tree structural neural network that solves the
problem of structural design in the traditional neural networks [35,36]. A typical FNT
model is displayed in Figure 4.

Figure 4. The algorithm flowchart of FNT.

In order to generate the FNT structure and model, the function set F and terminal
instruction set T are defined as

S = F ∪ T = {+2,+3, . . . ,+N} ∪ {x1, . . . , xn}, (3)

where x1, x2, . . . , xn are the instructions of leaf nodes. The instructions +i(i = 2, 3, . . . , N)
are viewed as the flexible neuron operator. Once a nonterminal instruction is selected, the
value i is randomly generated with two random adjustable parameters ai and bi. Thus the
output of +i is calculated by

Outi = f (ai, bi, ∑N
i=1 wj × xj) = e−(∑

N
i=1 wj×xj−ai/bi)

2
, (4)

where xj(j = 1, 2, 3, . . . , N) denote the inputs to node +i and wj(j = 1, 2, 3, . . . , N) denote
the inertia weight to node +i obtained by PSO.

The process of generating a flexible neural tree consists of two main parts, namely
the tree structure optimization and parameter optimization. This is shown in Figure 5.
Grammar-guided genetic programming (GGGP) is employed to optimize the structure of
the FNT, and particle swarm optimization (PSO) is introduced to optimize the relevant
parameters. The pseudocode of PSO is shown in Algorithm 1.

In PSO algorithm, each particle represents a potential solution to the task within the
search space. In the D-dimensional space, the position vector and velocity vector of the i-th
particle can be expressed as xi = (xi1, xi2, . . . , xiD) and vi = (vi1, vi2, . . . , viD), respectively.
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By using the random initialization of particles, the velocity and position of the ith particle
are updated as follows

vi(t + 1) = wvi(t) + c1r1(pi − xi(t)) + c2r2(pg − xi(t)),
xi(t + 1) = xi(t) + vi(t + 1),

(5)

where w is the inertia weight and can be used to control the influence of previous velocity
on the new one; the parameters c1 and c2 are two constants which determine the weights
of pi and pg; pi represents the best previous position of the i-th individual and pg denotes
the best previous position of all particles in current generation; r1 and r2 represent two
separately generated random values which uniformly distribute in the range of [0, 1].

Figure 5. The algorithm flow chart of FNT.

Algorithm 1: The particle swarm optimization (PSO)

1. Initialize popolation
2. for t = 1:maximun generation
3. for i = 1:population size
4. if f (xi,d(t)) < f (pi(t)) then (pi(t) = xi,d(t)
5. f (pg(t) = min( f (pi(t))
6. end
7. for d = 1:dimension
8. vi(t + 1) = wvi(t) + c1r1(pi − xi(t)) + c2r2(pg − xi(t))
9. xi(t + 1) = xi(t) + vi(t + 1)
10. if (vi,d(t + 1) > vmax then (vi,d(t + 1) = vmax
11. else if (vi,d(t + 1) < vmax then (vi,d(t + 1) = vmin
12. end
13. if (xi,d(t + 1) > vmax then (xi,d(t + 1) = xmax
14. else if (xi,d(t + 1) < vmax then (xi,d(t + 1) = xmin
15. end
16. end
17. end
18. end

For predicting the upcoming traffic flow of signal phases, the dataset could be com-
posed by the historical data of traffic flow for each signal phase, in which the traffic flow
could be sliced based on the time frame Tf . After establishing the traffic flow dataset, the
training data are normalized by using the following equation x′ = (x− xmin)/(xmax− xmin).



Electronics 2022, 11, 658 7 of 14

Meanwhile, datasets could be divided into 2/3 as training set and 1/3 for test set to obtain
the structure of FNT for predicting the upcoming traffic flow for each phase. In order to
obtain the near-optimal FNT, the following normalized mean squared error is designed as
the fitness function, which is given by

FitFNT =
∑NTr

k=1 (xk − x̂k)
2

∑NTr
k=1 (xk − x̄)2 , (6)

where xk and x̂k are the actual and output of FNT at kth sample; x̄ represents the average
value of traffic data; Tr denotes the length of train samples.

Thus, based on FNT, the signal phase traffic flow prediction Algorithm 2 is described
as follows.

Algorithm 2: Signal Phase Traffic Flow Prediction via FNT.
Require: The data set of historical traffic flow of each signal phase.
1. Normalize the traffic flow data: x′ = (x− xmin)/(xmax − xmin); define the

training set and test set;
2. Initialize the values of parameters used in GGGP and PSO; set the elitist

program as NULL and its fitness value as the biggest positive real number of
the computer at hand. Then create the initial population;

3. Construct optimization using GGGP algorithm, in which the fitness function is
calculated by root mean square error (RMSE);

4. If the better structure is found, then go to step 5, otherwise go back to step 3;
5. Optimize parameters using PSO algorithm;
6. If the maximum number of local search is reached, or no better parameter

vector is found for a significantly long time, then go to step 7; otherwise
go to step 5;

7. If the satisfied solution is found, then stop and save the prediction traffic flow
qi of each signal phase; otherwise go to step 3;

8. Save and output qi as the prediction traffic flow of the ith phase.

The output qi of the trained FNT provides the decision-making information for the
duration adjustment of signal cycle and the global utilization-based green-light adaption
scheduling.

4. Adaptation Strategy for Urban Traffic Light Scheduling
4.1. Duration Adjustment for Signal Cycle Based on Traffic Flow Prediction

The duration depends not only on the upcoming traffic flow but also on the last
duration of signal cycle. While obtaining the traffic flow prediction of each phases in an
intersection, the evaluation q of the traffic load in the next-time frame could be calculated
for the overall intersection, where q = ∑N

i=1 qi. Meanwhile, the evaluation q of traffic load
and its one-step difference ∆q = q− qold are employed to characterize the traffic load of
overall intersection.

There are three scenarios for the traffic load q of overall intersection.

(1) If the traffic load is too heavy (i.e., q is with large value) or is increased significantly
(i.e., ∆q > 0 is with large positive number), the duration of signal cycle will be
prolonged;

(2) If the traffic load is too light (i.e., q is with small value) or is decreased significantly (i.e.,
∆q < 0 is with large negative number), the duration of signal cycle will be reduced to
save the intersection sources;

(3) Otherwise, if the traffic load is neither heavy nor too light (i.e., q is with moderate
value) or is changed smoothly (i.e., ∆q is with moderate value), the duration of signal
cycle will be maintained and the green time for each phase will be scheduled directly
in the next-time frame.
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In order to cover the above scenarios of traffic load in overall intersection and guide
the duration adjustment for signal cycle, the following traffic flow index is introduced to
describe the variation trend in the next-time frame of traffic load, which is described as

TP = αq + (1− α)∆q, α ∈ [0, 1], (7)

where α is the memory weight factor of traffic flow.
Based on the designed traffic load characterization in (6), the following three strategies

are proposed for adjusting the duration of signal cycle in the next-time frame.

(1) When TP is bigger than a maximum threshold TPH , the traffic flow is too heavy. Thus
set T to its maximum Tmax according to

Tnew = Tmax, with Tmax = ∑N
i=1 Timax, (8)

where Timax is the allowed maximum green time of the ith phase in an intersection.
(2) When TP is smaller than a minimum threshold TPL, the traffic flow is too light. Thus,

set T to its minimum Tmin according to

Tnew = Tmin, with Tmin = ∑N
i=1 Timin, (9)

where Timin is the allowed minimum green time of the ith phase in an intersection.
(3) Otherwise, i.e., TP is between TPL and TPH , set T between its upper and lower

bounds according to

Tnew = Tmax − Tmax−Tmin
TPH−TPL (TP− TPL), i f TPL < TP < TPH . (10)

Based on the above strategies, the new duration Tnew of signal cycle in the next-time
frame can be obtained.

4.2. Elastic Utilization-Based Adaptive Scheduling for Phase Green Light

As stated in the architecture of the overall framework, while setting the duration of
signal cycle in the next-time frame, the green-light duration Ti of each phase could be
scheduled to make full use of the utilization of the presetting duration of signal cycle Tnew.

Linking the utilization of duration of signal cycle with the prediction traffic flow of
signal phases, the following quadratic programming problem is formulated first, which is
given by

min : E(T1, T2, . . . , TN) =
N
∑

i=1
wi(t)(Timax − Ti)

2,

s.t. :
N
∑

i=1
Timax ≥ T,

N
∑

i=1
Ti = T, Ti ≥ Timin , Ti < Timax ,

i = 1, 2, · · · , N,

(11)

where wi(t) = qi/qimax denotes relative traffic load of the ith phase in the next-time frame,
in which qimax represents the allowed maximum traffic flow of the ith phase in a time frame.

Remark 1. In order to minimize the value of E(T1, T2, . . . , TN) in (10), the allocated traffic
green light Ti is closer to Timax with the corresponding relatively heavier traffic load wi(t).

Under the constrained conditions in (11), by using the Karush–Kuhn–Tucker (KKT)
condition and the Lagrange multiplier method, the optimal analytical solution Ti

new is
produced while T̂ > T and Ti > Timax , where T̂ = ∑Ti 6=Timax

Timax + ∑Ti 6=Timax
Timin , and can

be described as

Ti
new = Timax −

1
wi
(T̂ − T)

∑Tj 6=Tjmin
(1/wj)

; (12)

otherwise, Ti
new = Timin .
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Thus the scheduling durations of green lights for signal phases are the analytical
solution T1, T2, . . . , TN obtained from (12).

4.3. Algorithm for Adaptation Scheduling for Urban Traffic Light

Following the output qi of FNT in Section 3, by integrating the duration adjustment for
the signal cycle in (8)–(10), and the proposed elastic utilization-based adaptive scheduling
for phase green light in (12), the Algorithm 3 for the adaptation scheduling of urban traffic
lights is described as follows.

Algorithm 3: Adaptation Scheduling of Urban Traffic Lights.
Require: The set of signal phases, P1, P2, . . . , PN ; the data set of historical traffic
flow of each signal phase; the preset order of signal phases; the trained structure of
FNT for prediction traffic flow for each phases.
1. Obtain the prediction traffic flow qi of each phase via FNT; obtain the traffic

flow index TP;
2. Set the initial parameters of T, q, α, Tmax, Tmin, TPL, and TPH ;
3. Set the constant of signal phases, T̄, qimax, Timax and Timin;
4. Calculate the duration T of signal cycle:

if TP > TPH then Tnew := Tmax;
else if TP < TPL then Tnew := Tmin;
else Tnew := Tmax − Tmax−Tmin

TPH−TPL (TP− TPL);
endif

5. Update T = Tnew, wi(t) = qi/qimax;
6. Calculate the green light Ti of signal phase:

if T̂ > T and Ti > Timax then Ti
new = Timax −

1
wi

(T̂−T)

∑Tj 6=Tjmin
(1/wj)

;

else Ti
new = Timin ;

endif
7. Save and output the result Ti = Ti

new.

5. Simulation Results and Analysis

An intersection, named Dongying Economic Development Zone located in Shandong
Province in China, is employed to verify the effectiveness of the proposed algorithm for the
adaptation scheduling of urban traffic lights, including four directions, four phases, and
three lanes. Let us take one of the roads: the lanes in one direction are divided from left to
right into one left-turning lane, one straight-going lane and one right-turning lane. The
lanes are 3.5 m wide. Each vehicle follows a fixed route, which is engendered at random.
The corresponding relationship between the four directions of intersection and each gate is
shown in Figure 6.
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Figure 6. The corresponding relationship between the four directions of intersection and each gate.

5.1. Performance of Traffic Flow Prediction via FNT

In this subsection, the performance of the designed traffic flow prediction algorithm is
illustrated.

More specially, the data package contains 1 h’s worth of traffic flow from Mon-
day to Friday. The length of this traffic data package is 18,000. Setting the prediction
time interval Tf as 1 h, the objective of FNT is to predict the traffic flow every hour
on Monday. The function set F and terminal instruction set T of FNT are defined as
S = F ∪ T = {+2,+3, . . . ,+6} ∪ {x0, x1, . . . , x4}. The trained structure of flexible neural
tree is shown in Figure 7.

Figure 7. The trained structure of FNT.

After that, the comparison results under different prediction algorithms are dis-
played to prove the effectiveness of FNT, including autoregressive moving average method
(ARMA), neural network (NN), and FNT. Furthermore, the prediction results of traffic flow
on four gates at 8 o’clock, obtained from the ARMA, NN, and FNT, are shown in Figure 8,
where the x-axis and y-axis represent the number of time series and the normalized predic-
tion number of traffic flow, respectively. Figure 9 shows the 24 h RMSE values in gate 2
under FNT and NN, in which the x-axis represents the 24 h in a day, and y-axis represents
the RMSE value for 1 hour. Meanwhile, the comparison results between real traffic flow
data and forecast data of gate 2 are shown in Table 1.
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Table 1. The true and forecast traffic data in gate 2.

Traffic Flow (Vehicle) Traffic Flow (Vehicle) Traffic Flow (Vehicle)

Time
(Hour) True Data Forescast Data Time

(Hour) True Data Forescast Data Time
(Hour) True Data Forescast Data

0 22 29 8 452 342 16 422 352
1 15 13 9 387 317 17 482 328
2 10 11 10 333 315 18 577 446
3 15 11 11 397 351 19 376 305
4 17 16 12 227 164 20 207 172
5 28 34 13 277 189 21 165 141
6 102 88 14 425 353 22 109 80
7 454 178 15 394 387 23 41 36

(a) (b)

(c) (d)

Figure 8. Comparison results of the traffic flow prediction under ARMA, NN, and FNT at 8 o’clock.
(a) The comparison results of traffic flow prediction on gate 2. (b) The comparison results of traffic
flow prediction on gate 5. (c) The comparison results of traffic flow prediction on gate 7. (d) The
comparison results of traffic flow prediction on gate 8.
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Figure 9. The 24 h RMSE values under FNT and NN in gate 2.

Observed from Figure 5, the prediction of variation tendency in three curves under
ARMA, FNT, and NN are almost the same. However, compared to ARMA, the curves
under the FNT model are closer to the actual traffic flow. It demonstrates that due to the
complexity of the real traffic flow, linear models such as ARMA cannot predict as expected.
Meanwhile, it could be found from Table 1 that the difference between the predicted data
and the true traffic data under FNT is smaller than those under NN. Based on the above
simulation results, the FNT-based algorithm for predicting traffic flow could provide the
accurate traffic data for scheduling the traffic lights.

5.2. Performance of Adaptation Scheduling Algorithm of Urban Traffic Light

By simulating the traffic condition in Dongying Economic Development Zone under
the proposed adaptation scheduling algorithm, simulation results are given and discussed
in this subsection.

Three performance indices are selected to evaluate the scheduling traffic light methods,
including the average queue length, the average delay time, and the average parking time.
Based on the prediction results of traffic flow on a certain day obtained from Section 5.1, the
comparison results under different traffic light methods are shown in Figure 10, including
Webster timing method, the proposed scheduling algorithm under real and predictive
traffic flow, where x-axes represent 24 h in 1 day.

Figure 10. Comparison average values of the queue length, delay time, and parking times.

Generally speaking, the shorter the length of the average queue, the shorter the time
duration of the average delay, and the fewer the parking times, the better the scheduling
strategy. From the comparison results in Figure 9, it could be seen clearly that the variation
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tendency of the proposed scheduling algorithm under real and predictive traffic flow were
approximately the same. The Webster timing method is the worst. While the traffic flow is
relatively large, the performance indices become poor. Even under a heavy traffic flow at
8 o’clock, the proposed scheduling strategy still shows good performance. Meanwhile, the
proposed scheduling strategy has obvious advantages in the two performance indicators of
average queue length and average parking times, especially at 18 o’clock. Meanwhile, the
difference between the proposed scheduling algorithm under real and predictive traffic
flow is mainly caused by the prediction error.

In summary, the proposed scheduling strategy performs better for matching the
prediction of the traffic flow with the timing of the traffic light. Thus the average queue
length, the average delay time and the average parking time with lower values could
be obtained.

6. Conclusions and Future Work

In this paper, a strategy for traffic light scheduling has been proposed to enhance the
flexibility of adaptation to traffic fluctuation. The FNT model was designed to predict the
traffic flow of each phase at an intersection. A duration adjustment strategy of signal cycle
has been designed to deal with the traffic scenarios of overload or lightweight traffic flow in
the next-time frame. After that, an elastic adaption scheduling strategy of separate phases’
green lights has been proposed based on a designed tradeoff scheduling optimization
problem. The fast-moving traffic at a single intersection may put extra pressure on other
adjoining intersections. So, the next experiment will cover multiple intersections to achieve
a fast traffic flow in the road network.

Due to the development of artificial intelligence technologies, in the future, it will be
worthwhile to embed other intelligent methods into the framework proposed in this work to
improve the performance of traffic light scheduling, such as combining the advanced graph
neural network and mathematical model into the component of traffic flow prediction,
integrating the reinforced learning into the component of traffic light scheduling, and so on.
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