
����������
�������

Citation: Hong, T.-P.; Hu, M.-J.;

Yin, T.-K.; Wang, S.-L. A Multi-Scale

Convolutional Neural Network for

Rotation-Invariant Recognition.

Electronics 2022, 11, 661. https://

doi.org/10.3390/electronics11040661

Academic Editor: Jun Dong Cho

Received: 29 December 2021

Accepted: 14 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Multi-Scale Convolutional Neural Network for
Rotation-Invariant Recognition
Tzung-Pei Hong 1,2,* , Ming-Jhe Hu 3 , Tang-Kai Yin 1 and Shyue-Liang Wang 4

1 Department of Computer Science and Information Engineering, National University of Kaohsiung,
Kaohsiung 811726, Taiwan; tkyin@nuk.edu.tw

2 Department of Computer Science and Engineering, National Sun Yat-sen University,
Kaohsiung 804201, Taiwan

3 Department of Computer Science and Information Engineering, National Cheng Kung University,
Tainan 701401, Taiwan; ryanhutech@gmail.com

4 Department of Information Management National, University of Kaohsiung, Kaohsiung 811726, Taiwan;
slwang@nuk.edu.tw

* Correspondence: tphong@nuk.edu.tw

Abstract: The Internet of things (IoT) enables mobile devices to connect and exchange information
with others over the Internet with a lot of applications in consumer, commercial, and industrial
products. With the rapid development of machine learning, IoT with image recognition capability is
a new research area to assist mobile devices with processing image information. In this research, we
propose the rotation-invariant multi-scale convolutional neural network (RIMS-CNN) to recognize
rotated objects, which are commonly seen in real situations. Based on the dihedral group D4
transformations, the RIMS-CNN equips a CNN with multiple rotated tensors and its processing
network. Furthermore, multi-scale features and shared weights are employed in the RIMS-CNN
to increase performance. Compared with the data augmentation approach of using rotated images
at random angles for training, our proposed method can learn inherent convolution kernels for
rotational features. Experiments were conducted on the benchmark datasets: MNIST, FASHION-
MNIST, CIFAR-10, and CIFAR-100. Significant improvements over the other models were achieved
to show that rotational invariance could be learned.

Keywords: convolutional neural network; rotational invariance; multi-scale feature; dihedral group;
weight sharing

1. Introduction

The devices in Internet of Things (IoT) collect data from their surroundings using
various sensors, cameras, and alarms. They can be installed to give round-the-clock security
for smart homes, monitor livestock health for smart farming, and detect non-authorized
access for industrial safety. Image data are pivotal in these applications, and pattern
recognition from them is fundamental to the desired functions of IoT devices. The recent
advances of deep learning for imaging processing and recognition have found many
applications, including classification, detection, and segmentation of the image data from
the devices.

Some important convolutional neural networks (CNNs) and extensions were provided
for imaging recognition. In 1998, LeNet [1] was proposed with limited functions due to
the computation ability of hardware at that time. These limits were gradually reduced
along with the development of faster and more powerful GPUs. On the other hand, large
labeled datasets such as ImageNet enabled CNNs to learn more complex and practical
functions. Following LeNet, deeper and parallel convolution layers in CNNs were used
in both AlexNet [2] and VGG [3]. These better structures improved recognition accuracy
greatly. The number of network layers in CNNs was further increased in VGG16, in

Electronics 2022, 11, 661. https://doi.org/10.3390/electronics11040661 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11040661
https://doi.org/10.3390/electronics11040661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7305-6492
https://orcid.org/0000-0001-5883-9755
https://orcid.org/0000-0001-9559-219X
https://doi.org/10.3390/electronics11040661
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11040661?type=check_update&version=2

Electronics 2022, 11, 661 2 of 21

which 13 convolutional layers and 3 fully connected layers were used to make a 16-layer
CNN. The features were extracted mainly by three 3 × 3 convolution layers and one 2 × 2
max-pooling layer.

Deeper CNNs have greater computing power, but their training becomes difficult due
to vanishing gradients and overfitting. To overcome this drawback, residual learning with
shortcuts in a residual block was designed in ResNet-v1 [4]. Further modifications were
then added in ResNet-v2 [5] to reshuffle the permutation of each layer in the residual block
with better performance. In addition to deeper structures, network breadth was increased
in the Google Inception series [6,7], which used multi-size convolution kernels within the
same level of feature extraction. DenseNet [8] then increased the direct connections across
layers to let each layer receive direct signal transmissions from all previous layers. This
could partially solve the problem of vanishing gradients.

The CNN preserved the translation equivalence due to the convolution and pooling
operations but did not keep the rotational invariance [9,10]. Hence, when a CNN is used to
classify rotated images not reflected in the training data, the model accuracy considerably
drops. For handling rotated images, many approaches were proposed to improve the
rotation-invariant property of CNNs. In [11], only one-orientation training data were used
to train CNNs. The N rotational versions of one original image were sequentially input into
the well-trained model to obtain N rotational feature sets, which were then stacked on each
other. The element-wise max-pooling operation was then performed on corresponding
positions to form a responding set. In [12], Kang used rotation-augmented training data
to train the CNN to achieve a higher wafer-map classification performance. In [13,14],
instead of using data augmentation from rotational images for training, rotating features
were learned from the rotated groups of images in the same training batch. In [15], rotation
equivalence was achieved via four operations on the original feature maps: slice, roll, stack,
and pool, while in [16–18], rotatable or rotation-invariant filters were employed. In [19],
Kim et al. adopted cylindrical sliding windows in a convolutional layer to map the image
into a polar coordinate system for achieving rotational invariance. Unlike these approaches,
in this research, we seek to create a stable, rotation-invariant model that uses one-stage
training and achieves high classification accuracy for general images.

2. Related Work
2.1. Rotation Invariance and the Dihedral Group D4 (Dih4)

When a vector is mapped to a rotational feature space and then input into a feature-
extraction function, if the resulting features are the same as those obtained by directly
applying the function on the original vector, the function is said to be rotation-invariant [20].
Figure 1 shows the concept. Here, we try to find a feature-extraction function in the CNN
to satisfy the above constraint.

Electronics 2022, 11, x FOR PEER REVIEW 2 of 22

used in both AlexNet [2] and VGG [3]. These better structures improved recognition ac-

curacy greatly. The number of network layers in CNNs was further increased in VGG16,

in which 13 convolutional layers and 3 fully connected layers were used to make a 16-

layer CNN. The features were extracted mainly by three 3x3 convolution layers and one

2x2 max-pooling layer.

Deeper CNNs have greater computing power, but their training becomes difficult

due to vanishing gradients and overfitting. To overcome this drawback, residual learning

with shortcuts in a residual block was designed in ResNet-v1 [4]. Further modifications

were then added in ResNet-v2 [5] to reshuffle the permutation of each layer in the residual

block with better performance. In addition to deeper structures, network breadth was in-

creased in the Google Inception series [6,7], which used multi-size convolution kernels

within the same level of feature extraction. DenseNet [8] then increased the direct connec-

tions across layers to let each layer receive direct signal transmissions from all previous

layers. This could partially solve the problem of vanishing gradients.

The CNN preserved the translation equivalence due to the convolution and pooling

operations but did not keep the rotational invariance [9,10]. Hence, when a CNN is used

to classify rotated images not reflected in the training data, the model accuracy consider-

ably drops. For handling rotated images, many approaches were proposed to improve the

rotation-invariant property of CNNs. In [11], only one-orientation training data were used

to train CNNs. The N rotational versions of one original image were sequentially input

into the well-trained model to obtain N rotational feature sets, which were then stacked

on each other. The element-wise max-pooling operation was then performed on corre-

sponding positions to form a responding set. In [12], Kang used rotation-augmented train-

ing data to train the CNN to achieve a higher wafer-map classification performance. In

[13,14], instead of using data augmentation from rotational images for training, rotating

features were learned from the rotated groups of images in the same training batch. In

[15], rotation equivalence was achieved via four operations on the original feature maps:

slice, roll, stack, and pool, while in [16–18], rotatable or rotation-invariant filters were em-

ployed. In [19], Kim et al. adopted cylindrical sliding windows in a convolutional layer to

map the image into a polar coordinate system for achieving rotational invariance. Unlike

these approaches, in this research, we seek to create a stable, rotation-invariant model that

uses one-stage training and achieves high classification accuracy for general images.

2. Related Work

2.1. Rotation Invariance and the Dihedral Group D4 (Dih4)

When a vector is mapped to a rotational feature space and then input into a feature-

extraction function, if the resulting features are the same as those obtained by directly

applying the function on the original vector, the function is said to be rotation-invariant

[20]. Figure 1 shows the concept. Here, we try to find a feature-extraction function in the

CNN to satisfy the above constraint.

Figure 1. Rotational invariance. Figure 1. Rotational invariance.

A dihedral group Dn [21] is the symmetry group of a regular polygon with n sides
and the rotation degree θ, equal to 360◦/n. When n = 4, the symmetry group (Dih4) is

Electronics 2022, 11, 661 3 of 21

a square shape with all 90-degree rotations and flip operators. There are eight types of
transformations, as shown in Figure 2.

Electronics 2022, 11, x FOR PEER REVIEW 3 of 22

A dihedral group Dn [21] is the symmetry group of a regular polygon with n sides

and the rotation degree θ, equal to 360°/n. When n = 4, the symmetry group (Dih4) is a

square shape with all 90-degree rotations and flip operators. There are eight types of trans-

formations, as shown in Figure 2.

Figure 2. Dih4 transformations.

In Figure 2, the identity element e in this group is the unchanged transformation,

which does nothing with the regular polygon (the 5 × 5 square in Figure 2). A rotation

transformation r rotates the regular polygon 90 degrees clockwise, and a flip transfor-

mation f flips the polygon about the vertical axis. Finally, a composition transformation rf

first flips and then rotates a polygon. The binary operation (*) of a dihedral group is to

composite these elements, which are e, r, f, and rf. Thus, the group Dih4 must satisfy the

following properties:

∀𝑟, 𝑓 ∈ 𝐷, ℎ = (𝑟 ∗ 𝑓) ∈ 𝐷,

∀𝑟, 𝑓, ℎ ∈ 𝐷, 𝑟(𝑓 ∗ ℎ) = (𝑟 ∗ 𝑓)ℎ ∈ 𝐷,

∃𝑒 ∈ 𝐷, ∀ℎ ∈ 𝐷, 𝑒 ∗ ℎ = ℎ,

∀ℎ ∈ 𝐷, ∃ℎ-1 ∈ 𝐺, 𝑠. 𝑡. ℎ ∗ ℎ-1 = ℎ-1 ∗ ℎ = 𝑒.

In this paper, we, thus, combine the Dih4 symmetry transformation into the CNN to

increase rotational invariance.

2.2. Multi-Scale Learning

The Single Shot MultiBox Detector (SSD) [22] is mainly used to detect target objects

in images. It consists of a pretrained VGG16 feature extraction layer and a multi-scale

CNN subnet. As shown in Figure 3, the convolutional layers at different depths are used

to extract various scale features for bounding-box regression prediction, which is used in

classification and object-location detection.

DenseNet [8] also presents the similar concept of passing all previous feature maps

from each convolution block as inputs to the current convolution layer. This approach

reuses all feature maps extensively to reduce the required weights, thus simplifying the

model structure.

Figure 2. Dih4 transformations.

In Figure 2, the identity element e in this group is the unchanged transformation,
which does nothing with the regular polygon (the 5 × 5 square in Figure 2). A rotation
transformation r rotates the regular polygon 90 degrees clockwise, and a flip transforma-
tion f flips the polygon about the vertical axis. Finally, a composition transformation rf
first flips and then rotates a polygon. The binary operation (*) of a dihedral group is to
composite these elements, which are e, r, f, and rf. Thus, the group Dih4 must satisfy the
following properties:

∀r, f ∈ D, h = (r ∗ f) ∈ D,
∀r, f , h ∈ D, r(f ∗ h) = (r ∗ f)h ∈ D,

∃e ∈ D, ∀h ∈ D, e ∗ h = h,
∀h ∈ D, ∃h−1 ∈ G, s.t. h ∗ h−1 = h−1 ∗ h = e.

In this paper, we, thus, combine the Dih4 symmetry transformation into the CNN to
increase rotational invariance.

2.2. Multi-Scale Learning

The Single Shot MultiBox Detector (SSD) [22] is mainly used to detect target objects
in images. It consists of a pretrained VGG16 feature extraction layer and a multi-scale
CNN subnet. As shown in Figure 3, the convolutional layers at different depths are used
to extract various scale features for bounding-box regression prediction, which is used in
classification and object-location detection.

DenseNet [8] also presents the similar concept of passing all previous feature maps
from each convolution block as inputs to the current convolution layer. This approach
reuses all feature maps extensively to reduce the required weights, thus simplifying the
model structure.

Electronics 2022, 11, 661 4 of 21Electronics 2022, 11, x FOR PEER REVIEW 4 of 22

Figure 3. SSD architecture.

2.3. TI-Pooling CNN

The TI-pooling CNN [13], based on LeNet, gives an idea of augmenting a training set

by rotating images. The TI-pooling CNN rotates an image with different angles in a train-

ing batch and shares the same set of weights in the same batch. As shown in Figure 4, after

each rotated image is convoluted, the most significant features from the feature maps for

each angle are found by the final max-pooling. The filters of this model can learn a regular

pattern from different angles of the same image. It also decreases repeated patterns in the

convolution filters generated by standard data augmentation and successfully enhances

the rotational invariance of CNN recognition.

Figure 4. TI-POOLING CNN architecture.

3. Methods

For improving the classification accuracy of rotated objects, we propose the rotation-

invariant multi-scale convolutional neural network (RIMS-CNN). The model is shown in

Figure 5.

Figure 3. SSD architecture.

2.3. TI-Pooling CNN

The TI-pooling CNN [13], based on LeNet, gives an idea of augmenting a training set
by rotating images. The TI-pooling CNN rotates an image with different angles in a training
batch and shares the same set of weights in the same batch. As shown in Figure 4, after
each rotated image is convoluted, the most significant features from the feature maps for
each angle are found by the final max-pooling. The filters of this model can learn a regular
pattern from different angles of the same image. It also decreases repeated patterns in the
convolution filters generated by standard data augmentation and successfully enhances
the rotational invariance of CNN recognition.

Electronics 2022, 11, x FOR PEER REVIEW 4 of 22

Figure 3. SSD architecture.

2.3. TI-Pooling CNN

The TI-pooling CNN [13], based on LeNet, gives an idea of augmenting a training set

by rotating images. The TI-pooling CNN rotates an image with different angles in a train-

ing batch and shares the same set of weights in the same batch. As shown in Figure 4, after

each rotated image is convoluted, the most significant features from the feature maps for

each angle are found by the final max-pooling. The filters of this model can learn a regular

pattern from different angles of the same image. It also decreases repeated patterns in the

convolution filters generated by standard data augmentation and successfully enhances

the rotational invariance of CNN recognition.

Figure 4. TI-POOLING CNN architecture.

3. Methods

For improving the classification accuracy of rotated objects, we propose the rotation-

invariant multi-scale convolutional neural network (RIMS-CNN). The model is shown in

Figure 5.

Figure 4. TI-POOLING CNN architecture.

3. Methods

For improving the classification accuracy of rotated objects, we propose the rotation-
invariant multi-scale convolutional neural network (RIMS-CNN). The model is shown in
Figure 5.

The model has three main parts: image transformation, feature extraction, and image
classification. Image transformation is used to rotate an original image for generating
images with different angles. Then, feature extraction is executed by four RI-Conv blocks,
which are basic convolution units in our model, to capture different-scale image features.
Finally, image classification combines the features in different directions and scales for
recognizing objects. They are described below.

Electronics 2022, 11, 661 5 of 21Electronics 2022, 11, x FOR PEER REVIEW 5 of 22

Figure 5. Proposed RIMS-CNN model.

The model has three main parts: image transformation, feature extraction, and image

classification. Image transformation is used to rotate an original image for generating im-

ages with different angles. Then, feature extraction is executed by four RI-Conv blocks,

which are basic convolution units in our model, to capture different-scale image features.

Finally, image classification combines the features in different directions and scales for

recognizing objects. They are described below.

3.1. Image Transformation

This module generates seven additional images from an original image by the Dih4

operators as follows:

𝑋1 = 𝑟𝑜𝑡𝑎𝑡𝑒90°(𝑋0),

𝑋2 = 𝑟𝑜𝑡𝑎𝑡𝑒180°(𝑋0),

𝑋3 = 𝑟𝑜𝑡𝑎𝑡𝑒270°(𝑋0),

𝑋4 = 𝑓𝑙𝑖𝑝(𝑋0),

𝑋5 = 𝑟𝑜𝑡𝑎𝑡𝑒90°[𝑓𝑙𝑖𝑝(𝑋0)],

𝑋6 = 𝑟𝑜𝑡𝑎𝑡𝑒180°[𝑓𝑙𝑖𝑝(𝑋0)], and

𝑋7 = 𝑟𝑜𝑡𝑎𝑡𝑒270°[𝑓𝑙𝑖𝑝(𝑋0)],

where 𝑋0 is an original input image, and 𝑋1 to 𝑋7 are the transformed ones from 𝑋0. The

transformation can increase the resistance to object rotation. We sequentially train the

model on these transformed Dih4 images and gather the features obtained from the RI-

Conv blocks. The total loss of each training batch is, thus, highly related to the transformed

Dih4 images. Although traditional data augmentation also captures features from differ-

ent transformations, the inputs are usually rotated randomly. The rotational inputs are

not fed in one training batch, which causes the weights in the convolutional layers to

change with the different feature spaces, thus increasing training time. In addition, the

extracted rotational features can be redundant. Thus, this transformation strategy is more

effective for learning rotational features than general data augmentation.

Figure 5. Proposed RIMS-CNN model.

3.1. Image Transformation

This module generates seven additional images from an original image by the Dih4
operators as follows:

X1 = rotate90◦
(
X0),

X2 = rotate180◦
(
X0),

X3 = rotate270◦
(
X0),

X4 = f lip
(
X0),

X5 = rotate90◦
[

f lip
(
X0)],

X6 = rotate180◦
[

f lip
(
X0)], and

X7 = rotate270◦
[

f lip
(
X0)],

where X0 is an original input image, and X1 to X7 are the transformed ones from X0. The
transformation can increase the resistance to object rotation. We sequentially train the
model on these transformed Dih4 images and gather the features obtained from the RI-
Conv blocks. The total loss of each training batch is, thus, highly related to the transformed
Dih4 images. Although traditional data augmentation also captures features from different
transformations, the inputs are usually rotated randomly. The rotational inputs are not
fed in one training batch, which causes the weights in the convolutional layers to change
with the different feature spaces, thus increasing training time. In addition, the extracted
rotational features can be redundant. Thus, this transformation strategy is more effective
for learning rotational features than general data augmentation.

3.2. Feature Extraction

In this phase, we use several rotation-invariant convolution (RI-Conv) blocks to obtain
implicitly important features. As shown in Figure 6, each RI-Conv block takes the output
from the previous block as its input features, and then delivers its output to the next
RI-Conv block and the rotation-invariant (RI) pooling module.

Since each transformed image is processed sequentially, a RI-Conv block collects eight
feature groups and saves them in a buffer. After the eight sets of features are collected,
they are sent from the buffer to the RI-pooling module as a subset of low-level features
for final classification. Thus, the k-th RI-Conv block obtains the k-th-scale features. The
feature maps in the buffer are also sent to the next RI-Conv block for further processing of
higher-level features.

Electronics 2022, 11, 661 6 of 21

Electronics 2022, 11, x FOR PEER REVIEW 6 of 22

3.2. Feature Extraction

In this phase, we use several rotation-invariant convolution (RI-Conv) blocks to ob-

tain implicitly important features. As shown in Figure 6, each RI-Conv block takes the

output from the previous block as its input features, and then delivers its output to the

next RI-Conv block and the rotation-invariant (RI) pooling module.

Figure 6. Proposed RIMS-CNN model.

Since each transformed image is processed sequentially, a RI-Conv block collects

eight feature groups and saves them in a buffer. After the eight sets of features are col-

lected, they are sent from the buffer to the RI-pooling module as a subset of low-level

features for final classification. Thus, the k-th RI-Conv block obtains the k-th-scale features.

The feature maps in the buffer are also sent to the next RI-Conv block for further pro-

cessing of higher-level features.

3.2.1. RI-Conv Block Structure

RI-Conv blocks are designed for feature extraction. In our model, because the size of

the input images is 28  28 or 32  32, we, thus, use four RI-Conv blocks, with the output

size in the last RI-Conv block being 1  1 or 2  2. This can be easily extended for larger

image sizes. Each RI-Conv block contains two convolutional layers and one max-pooling

layer. Figure 7 shows the flowchart of an RI-Conv block.

Figure 7. RI-Conv block flowchart.

3.2.2. Buffers in the RIMS-CNN Architecture

Buffers are used to store the output results of the RI-Conv blocks: each such block

has a corresponding buffer, which includes eight components. Each component stores the

set of feature maps from the respective Dih4 transformed image. Figure 8 illustrates the

buffer architecture, where 𝐹𝑘𝑔 denotes the group of feature maps generated from the g-

th Dih4 transformed image in the k-th RI-Conv block.

Figure 6. Proposed RIMS-CNN model.

3.2.1. RI-Conv Block Structure

RI-Conv blocks are designed for feature extraction. In our model, because the size of
the input images is 28 × 28 or 32 × 32, we, thus, use four RI-Conv blocks, with the output
size in the last RI-Conv block being 1 × 1 or 2 × 2. This can be easily extended for larger
image sizes. Each RI-Conv block contains two convolutional layers and one max-pooling
layer. Figure 7 shows the flowchart of an RI-Conv block.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 22

3.2. Feature Extraction

In this phase, we use several rotation-invariant convolution (RI-Conv) blocks to ob-

tain implicitly important features. As shown in Figure 6, each RI-Conv block takes the

output from the previous block as its input features, and then delivers its output to the

next RI-Conv block and the rotation-invariant (RI) pooling module.

Figure 6. Proposed RIMS-CNN model.

Since each transformed image is processed sequentially, a RI-Conv block collects

eight feature groups and saves them in a buffer. After the eight sets of features are col-

lected, they are sent from the buffer to the RI-pooling module as a subset of low-level

features for final classification. Thus, the k-th RI-Conv block obtains the k-th-scale features.

The feature maps in the buffer are also sent to the next RI-Conv block for further pro-

cessing of higher-level features.

3.2.1. RI-Conv Block Structure

RI-Conv blocks are designed for feature extraction. In our model, because the size of

the input images is 28  28 or 32  32, we, thus, use four RI-Conv blocks, with the output

size in the last RI-Conv block being 1  1 or 2  2. This can be easily extended for larger

image sizes. Each RI-Conv block contains two convolutional layers and one max-pooling

layer. Figure 7 shows the flowchart of an RI-Conv block.

Figure 7. RI-Conv block flowchart.

3.2.2. Buffers in the RIMS-CNN Architecture

Buffers are used to store the output results of the RI-Conv blocks: each such block

has a corresponding buffer, which includes eight components. Each component stores the

set of feature maps from the respective Dih4 transformed image. Figure 8 illustrates the

buffer architecture, where 𝐹𝑘𝑔 denotes the group of feature maps generated from the g-

th Dih4 transformed image in the k-th RI-Conv block.

Figure 7. RI-Conv block flowchart.

3.2.2. Buffers in the RIMS-CNN Architecture

Buffers are used to store the output results of the RI-Conv blocks: each such block has
a corresponding buffer, which includes eight components. Each component stores the set
of feature maps from the respective Dih4 transformed image. Figure 8 illustrates the buffer
architecture, where Fkg denotes the group of feature maps generated from the g-th Dih4
transformed image in the k-th RI-Conv block.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 22

Figure 8. Buffer architecture following a RI-Conv block.

The buffer collects the eight feature groups—𝐹𝑘0 to 𝐹𝑘7 —and sequentially sends

them to the next RI-Conv block for further processing. At the same time, they are sent

through another route (Route 1 in Figure 6) to the RI-pooling unit to be compressed as the

set of features at the k-th scale. The features from all scales are finally used for image clas-

sification. Below, we explain how the RI-pooling unit works.

3.2.3. Rotation-Invariant Pooling (RI-Pooling) Unit

Figure 9 shows the operations of the RI-pooling unit. It has three procedures: stack-

ing, reshaping, and average pooling. They are described below.

Figure 9. Three procedures of rotation-invariant pooling unit.

First, the stacking procedure stacks the outputs {𝐹𝑘0, 𝐹𝑘1, . . . , 𝐹𝑘7} at the k-th RI-

Conv block to form a 4-dimensional feature map, which is then reshaped to a 2-dimen-

sional 8  (h  w  m) matrix. The i-th row, denoted 𝑅𝑘𝑖 , represents the group of the re-

shaped feature map generated from the i-th Dih4 transformed image in the k-th RI-Conv

block. The max-pooling procedure then processes each column to yield a feature value.

Formally, for the j-th column, its max-pooling value (𝑠𝑗
𝑘) is calculated as:

𝑠𝑗
𝑘 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑟𝑗

𝑘𝑖),

0 ≤ 𝑖 < 7, 0 ≤ 𝑗 < ℎ ∗ 𝑤 ∗ 𝑚,

Figure 8. Buffer architecture following a RI-Conv block.

The buffer collects the eight feature groups—Fk0 to Fk7—and sequentially sends them
to the next RI-Conv block for further processing. At the same time, they are sent through
another route (Route 1 in Figure 6) to the RI-pooling unit to be compressed as the set of
features at the k-th scale. The features from all scales are finally used for image classification.
Below, we explain how the RI-pooling unit works.

Electronics 2022, 11, 661 7 of 21

3.2.3. Rotation-Invariant Pooling (RI-Pooling) Unit

Figure 9 shows the operations of the RI-pooling unit. It has three procedures: stacking,
reshaping, and average pooling. They are described below.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 22

Figure 8. Buffer architecture following a RI-Conv block.

The buffer collects the eight feature groups—𝐹𝑘0 to 𝐹𝑘7 —and sequentially sends

them to the next RI-Conv block for further processing. At the same time, they are sent

through another route (Route 1 in Figure 6) to the RI-pooling unit to be compressed as the

set of features at the k-th scale. The features from all scales are finally used for image clas-

sification. Below, we explain how the RI-pooling unit works.

3.2.3. Rotation-Invariant Pooling (RI-Pooling) Unit

Figure 9 shows the operations of the RI-pooling unit. It has three procedures: stack-

ing, reshaping, and average pooling. They are described below.

Figure 9. Three procedures of rotation-invariant pooling unit.

First, the stacking procedure stacks the outputs {𝐹𝑘0, 𝐹𝑘1, . . . , 𝐹𝑘7} at the k-th RI-

Conv block to form a 4-dimensional feature map, which is then reshaped to a 2-dimen-

sional 8  (h  w  m) matrix. The i-th row, denoted 𝑅𝑘𝑖 , represents the group of the re-

shaped feature map generated from the i-th Dih4 transformed image in the k-th RI-Conv

block. The max-pooling procedure then processes each column to yield a feature value.

Formally, for the j-th column, its max-pooling value (𝑠𝑗
𝑘) is calculated as:

𝑠𝑗
𝑘 = 𝑚𝑎𝑥𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑟𝑗

𝑘𝑖),

0 ≤ 𝑖 < 7, 0 ≤ 𝑗 < ℎ ∗ 𝑤 ∗ 𝑚,

Figure 9. Three procedures of rotation-invariant pooling unit.

First, the stacking procedure stacks the outputs
{

Fk0, Fk1, . . . , Fk7
}

at the k-th RI-Conv
block to form a 4-dimensional feature map, which is then reshaped to a 2-dimensional
8 × (h × w × m) matrix. The i-th row, denoted Rki, represents the group of the reshaped
feature map generated from the i-th Dih4 transformed image in the k-th RI-Conv block. The
max-pooling procedure then processes each column to yield a feature value. Formally, for
the j-th column, its max-pooling value (sk

j) is calculated as:

sk
j = maxpooling

(
rki

j

)
,

0 ≤ i < 7, 0 ≤ j < h ∗ w ∗m,

where rki
j is the j-th value of in Rki. Thus, it generates a 1 × (h × w × m) matrix to represent

the k-th scalable feature set, denoted Sk. The pooling operation can significantly reduce
the size. As the proposed architecture has a total of four RI-Conv blocks, four sets of
rotation-invariant features—S1 to S4—are generated and then are concatenated.

3.3. Image Classification

Figure 10 shows the architecture of image classification. The resulting feature maps
from the different scales are concatenated. Then, a fully connected neural network is used
to classify images. The neural network consists of one dropout, one hidden layer, and one
softmax layer.

Then, each Pq is compared to the true probability distributions and used to calculate
the loss based on the categorical cross-entropy. After we ascertain the losses from a training
batch, we use them to update the weights till the whole batches are trained. Our model
uses the backpropagation algorithm to minimize the differences between the computed
output and target value to update the model weights. Because the loss is obtained from
different angles of an input image, the rotation-invariant property can be maintained.

Electronics 2022, 11, 661 8 of 21

Electronics 2022, 11, x FOR PEER REVIEW 8 of 22

where 𝑟𝑗
𝑘𝑖 is the j-th value of in 𝑅𝑘𝑖 . Thus, it generates a 1  (h  w  m) matrix to represent

the k-th scalable feature set, denoted 𝑆𝑘. The pooling operation can significantly reduce

the size. As the proposed architecture has a total of four RI-Conv blocks, four sets of rota-

tion-invariant features—S1 to S4—are generated and then are concatenated.

3.3. Image Classification

Figure 10 shows the architecture of image classification. The resulting feature maps

from the different scales are concatenated. Then, a fully connected neural network is used

to classify images. The neural network consists of one dropout, one hidden layer, and one

softmax layer.

Figure 10. Image classification structure.

Then, each Pq is compared to the true probability distributions and used to calculate

the loss based on the categorical cross-entropy. After we ascertain the losses from a train-

ing batch, we use them to update the weights till the whole batches are trained. Our model

uses the backpropagation algorithm to minimize the differences between the computed

output and target value to update the model weights. Because the loss is obtained from

different angles of an input image, the rotation-invariant property can be maintained.

3.4. Time Complexity of RIMS-CNN

We first analyze the time complexity of processing one image. In the image transfor-

mation phase, assume d is the size of an image and c is the number of channels. Since the

phase transforms the original image seven times, the time complexity is O(7cd).

Then, we analyze the time complexity of the feature-extraction phase. An image in a

particular direction goes through four RI-Conv Blocks, each of which comprises two con-

volution layers and a max-pooling layer. In the four blocks, let m be the maximum number

of input (output) channels, j be the maximum size of the output feature map, and k be the

maximum size of the filter. The time complexity is derived as O(4(2 × m  j  k  m + j/4 

m)), where the first term is for the two convolutions and the second term is for the maxi-

mum pooling. Since the first term is larger than the second term, the time complexity can

be simplified as O(8  m  j  k  m), which is O(8m2jk).

Because an image has eight transformed versions, the time complexity becomes

O(8(8m2jk)), which is O(64m2jk). Additionally, each RI-pooling unit includes stacking, re-

shaping, and column max-pooling functions. There are four RI-pooling units. Thus, the

Figure 10. Image classification structure.

3.4. Time Complexity of RIMS-CNN

We first analyze the time complexity of processing one image. In the image transfor-
mation phase, assume d is the size of an image and c is the number of channels. Since the
phase transforms the original image seven times, the time complexity is O(7cd).

Then, we analyze the time complexity of the feature-extraction phase. An image in
a particular direction goes through four RI-Conv Blocks, each of which comprises two
convolution layers and a max-pooling layer. In the four blocks, let m be the maximum
number of input (output) channels, j be the maximum size of the output feature map, and k
be the maximum size of the filter. The time complexity is derived as O(4(2 × m × j × k × m
+ j/4 × m)), where the first term is for the two convolutions and the second term is for the
maximum pooling. Since the first term is larger than the second term, the time complexity
can be simplified as O(8 × m × j × k × m), which is O(8m2jk).

Because an image has eight transformed versions, the time complexity becomes
O(8(8m2jk)), which is O(64m2jk). Additionally, each RI-pooling unit includes stacking,
reshaping, and column max-pooling functions. There are four RI-pooling units. Thus, the
time complexity is O(4(1 + 8 × j × m + j × m)), which is O(36jm). The time complexity of
the feature-extraction phase is, thus, O(64m2jk + 36jm), which is O(64m2jk).

The time complexity of the image classification phase is then analyzed. The time
complexity of the fully connected layer is O(4jmp), where p is the number of predicted
classes and 4jm is the number of the multi-scale features.

The time complexities for processing an image can then be concluded as
O(7cd)+ O(64m2jk)+ O(4jmp). Since the value of the second term dominates the other
two terms, the time complexity can be simplified as O(64m2jk), which is O(m2jk) according
to the big-O definition.

At last, assume the sample size is s and there are e epochs in the training process. The
total time complexity is O(esm2jk). However, the time complexity can be reduced by the
usage of GPUs since some steps can be executed in parallel.

4. Experimental Results and Discussion

We evaluated all the models on the MNIST [23], FASHION-MNIST [24], CIFAR-10 [25],
and CIFAR-100 [25] datasets. Below we describe the datasets and the preprocessing.

4.1. Datasets and Preprocessing

Table 1 lists the metadata of the four datasets. MNIST contains single handwritten
digits between 0 and 9, and FASHION-MNIST contains 10 fashion classes. Each image is
grayscale, with the size of 28 × 28. In CIFAR-10, each image is colored, with the size of

Electronics 2022, 11, 661 9 of 21

32 × 32. There are 10 classes in the CIFAR-10 dataset. The last dataset, CIFAR-100, has
100 classes and has the same image numbers as the others. These four datasets are used to
evaluate the performance of the proposed and the compared models. The preprocessing of
the training and validating sets is described below.

Table 1. Four datasets details.

Dataset Number of
Training Set

Number of
Testing Set

Image
Size

Class
Number

MNIST 60,000 10,000 28 × 28 × 1 10
FASHION-MNIST 60,000 10,000 28 × 28 × 1 10

CIFAR-10 60,000 10,000 32 × 32 × 3 10
CIFAR-100 60,000 10,000 32 × 32 × 3 100

In training-set preprocessing, since our proposed model is designed to handle rota-
tional invariance, there is no need to augment the original training set with different angles.
For other compared models, we preprocess the training sets in two ways: fixed-angle
rotation and random-angle rotation. By fixed-angle rotation, each image is rotated with
four angles: 0, 90, 180, and 270 degrees. Thus, the augmented training set is four times the
size of the original. Figure 11 shows the concept of the fixed-angle rotation.

Electronics 2022, 11, x FOR PEER REVIEW 10 of 22

Figure 11. Fixed-angle rotation.

On the contrary, by random-angle rotation, each image is rotated with an arbitrary

degree. The rotated training set is, thus, the same size as the original.

In training set preprocessing, we form three sets from the original testing set for eval-

uating the proposed and compared models. The first set is the original testing set with

10,000 images, the second set is the augmented testing set with the fixed-angle rotation,

and the third set is the rotated testing set with the random-angle rotation. They are used

to evaluate each model. For convenience, these sets will be called validation sets in the

experiments.

4.2. Experimental Settings

In all the experiments, the models used only one fully connected layer with the out-

put nodes to judge the classes of a dataset. The Adam [26] optimizer was adopted to learn

the weights. The learning rate was set at 0.0001, the batch size was set at 64, and 1,000

epochs were used in our experiments. Moreover, we used subsets of the datasets instead

of all of the data to speed up weight convergence.

We used early stopping to improve accuracy and speed up model training [27]. If the

accuracy of the testing dataset did not improve in the subsequent 30 epochs, we stopped

the training process and saved the weights of the best training result.

4.3. Experimental Results

Table 2 shows the instance numbers of the classes in the four datasets. It could be

observed that the classes in each testing set are balanced, so we use accuracy as our eval-

uation metric, which is defined as follows:

Accuracy =
number of correctly classified examples

number of examples
 .

Table 2. The class number of the testing sets.

Dataset Class Number Dataset Class Number Dataset Class Number

MNIST

1 980

FASHION-

MNIST

and

CIFAR-10

1 1000

CIFAR-100

1 100

2 1135 2 1000 2 100

3 1032 3 1000 3 100

4 1010 4 1000

… … 5 982 5 1000

6 892 6 1000

7 958 7 1000 97 100

8 1028 8 1000 98 100

Figure 11. Fixed-angle rotation.

On the contrary, by random-angle rotation, each image is rotated with an arbitrary
degree. The rotated training set is, thus, the same size as the original.

In training set preprocessing, we form three sets from the original testing set for
evaluating the proposed and compared models. The first set is the original testing set with
10,000 images, the second set is the augmented testing set with the fixed-angle rotation,
and the third set is the rotated testing set with the random-angle rotation. They are
used to evaluate each model. For convenience, these sets will be called validation sets in
the experiments.

4.2. Experimental Settings

In all the experiments, the models used only one fully connected layer with the output
nodes to judge the classes of a dataset. The Adam [26] optimizer was adopted to learn the
weights. The learning rate was set at 0.0001, the batch size was set at 64, and 1000 epochs
were used in our experiments. Moreover, we used subsets of the datasets instead of all of
the data to speed up weight convergence.

Electronics 2022, 11, 661 10 of 21

We used early stopping to improve accuracy and speed up model training [27]. If the
accuracy of the testing dataset did not improve in the subsequent 30 epochs, we stopped
the training process and saved the weights of the best training result.

4.3. Experimental Results

Table 2 shows the instance numbers of the classes in the four datasets. It could
be observed that the classes in each testing set are balanced, so we use accuracy as our
evaluation metric, which is defined as follows:

Accuracy =
number of correctly classified examples

number of examples
.

Table 2. The class number of the testing sets.

Dataset Class Number Dataset Class Number Dataset Class Number

MNIST

1 980

FASHION-
MNIST

and
CIFAR-

10

1 1000

CIFAR-
100

1 100
2 1135 2 1000 2 100
3 1032 3 1000 3 100
4 1010 4 1000

.5 982 5 1000
6 892 6 1000
7 958 7 1000 97 100
8 1028 8 1000 98 100
9 974 9 1000 99 100
10 1009 10 1000 100 100

In our experiments, we used early stopping and recorded the best validation accu-
racy of each model as our evaluation value. Below are the experimental results for the
different scenarios.

4.3.1. Different Design of the Feature Extraction Layers

We set the number of filters as 32, 64, 128, and 256 for the first to the fourth convolution
blocks, respectively. Then, we used the original training sets and the fixed-angle rotating
validating sets to evaluate the rotation-invariant improvements of applying our methods,
which were Dih4 transformation and multi-scale RI-pooling (MSRI) for the simple CNN.
We also compared the accuracy of the 3 × 3 and 5 × 5 filters, which were used in the
convolution layers. The results are shown in Figures 12–15, in which “single” denotes only
one CNN layer used in a convolution block, and “average” and “max” denote the different
integrated methods of the RI-pooling units.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 22

9 974 9 1000 99 100

10 1009 10 1000 100 100

In our experiments, we used early stopping and recorded the best validation accu-

racy of each model as our evaluation value. Below are the experimental results for the

different scenarios.

4.3.1. Different Design of the Feature Extraction Layers

We set the number of filters as 32, 64, 128, and 256 for the first to the fourth convolu-

tion blocks, respectively. Then, we used the original training sets and the fixed-angle ro-

tating validating sets to evaluate the rotation-invariant improvements of applying our

methods, which were Dih4 transformation and multi-scale RI-pooling (MSRI) for the sim-

ple CNN. We also compared the accuracy of the 3  3 and 5  5 filters, which were used

in the convolution layers. The results are shown in Figures 12–15, in which “single” de-

notes only one CNN layer used in a convolution block, and “average” and “max” denote

the different integrated methods of the RI-pooling units.

Figure 12. The results of different designs validated on the fixed-angle-rotated MNIST.

Figure 13. The results of different designs validated on the fixed-angle-rotated FASHION-MNIST.

Figure 12. The results of different designs validated on the fixed-angle-rotated MNIST.

Electronics 2022, 11, 661 11 of 21

Electronics 2022, 11, x FOR PEER REVIEW 11 of 22

9 974 9 1000 99 100

10 1009 10 1000 100 100

In our experiments, we used early stopping and recorded the best validation accu-

racy of each model as our evaluation value. Below are the experimental results for the

different scenarios.

4.3.1. Different Design of the Feature Extraction Layers

We set the number of filters as 32, 64, 128, and 256 for the first to the fourth convolu-

tion blocks, respectively. Then, we used the original training sets and the fixed-angle ro-

tating validating sets to evaluate the rotation-invariant improvements of applying our

methods, which were Dih4 transformation and multi-scale RI-pooling (MSRI) for the sim-

ple CNN. We also compared the accuracy of the 3  3 and 5  5 filters, which were used

in the convolution layers. The results are shown in Figures 12–15, in which “single” de-

notes only one CNN layer used in a convolution block, and “average” and “max” denote

the different integrated methods of the RI-pooling units.

Figure 12. The results of different designs validated on the fixed-angle-rotated MNIST.

Figure 13. The results of different designs validated on the fixed-angle-rotated FASHION-MNIST.

Figure 13. The results of different designs validated on the fixed-angle-rotated FASHION-MNIST.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 22

9 974 9 1000 99 100

10 1009 10 1000 100 100

In our experiments, we used early stopping and recorded the best validation accu-

racy of each model as our evaluation value. Below are the experimental results for the

different scenarios.

4.3.1. Different Design of the Feature Extraction Layers

We set the number of filters as 32, 64, 128, and 256 for the first to the fourth convolu-

tion blocks, respectively. Then, we used the original training sets and the fixed-angle ro-

tating validating sets to evaluate the rotation-invariant improvements of applying our

methods, which were Dih4 transformation and multi-scale RI-pooling (MSRI) for the sim-

ple CNN. We also compared the accuracy of the 3  3 and 5  5 filters, which were used

in the convolution layers. The results are shown in Figures 12–15, in which “single” de-

notes only one CNN layer used in a convolution block, and “average” and “max” denote

the different integrated methods of the RI-pooling units.

Figure 12. The results of different designs validated on the fixed-angle-rotated MNIST.

Figure 13. The results of different designs validated on the fixed-angle-rotated FASHION-MNIST.

Figure 14. The results of different designs validated on the fixed-angle-rotated CIFAR-10.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 22

Figure 14. The results of different designs validated on the fixed-angle-rotated CIFAR-10.

Figure 15. The results of different designs validated on the fixed-angle-rotated CIFAR-100.

The results from the first four models in the figures show when the Dih4 transfor-

mation was applied on a shared CNN, the accuracy was only slightly improved. However,

after we applied the multi-scale RI-pooling units, the accuracy was hugely increased. The

results also show that our model using 3  3 filters in convolution layers mostly had better

results than using 5  5 filters. According to the results, we used the RIMS-CNN with 3 

3 filters as our primary model to compare the proposed model with the others in the fol-

lowing experiments.

4.3.2. Comparing RI-Max Pooling with RI-Average Pooling in Different Filters of RIMS-

CNN

According to the previous subsection result, we selected the RIMS-CNN as our base

model and compared the RI-max pooling with RI-average pooling in the RIMS-CNN,

which was set with the different number of filters in RI-conv blocks. We tried to determine

which pooling can capture better rotation-invariant features and find the best filter setting

for the RIMS-CNN. The training sets are original, and the validating sets are fixed-angle

rotations. The results are shown in Figures 16–19.

Figure 16. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated MNIST.

In Figure 16, we can see that the accuracies of RI-max pooling are slightly better than

RI-average pooling. Figure 17 shows that the RI-average pooling performs better in the 8-

16-32-64 and 16-32-64-128 filter settings, but not by a big difference. In both pooling, the

number setting of the 128-256-512-1024 filter has the best accuracy.

Figure 15. The results of different designs validated on the fixed-angle-rotated CIFAR-100.

The results from the first four models in the figures show when the Dih4 transformation
was applied on a shared CNN, the accuracy was only slightly improved. However, after
we applied the multi-scale RI-pooling units, the accuracy was hugely increased. The
results also show that our model using 3 × 3 filters in convolution layers mostly had better
results than using 5 × 5 filters. According to the results, we used the RIMS-CNN with
3 × 3 filters as our primary model to compare the proposed model with the others in the
following experiments.

4.3.2. Comparing RI-Max Pooling with RI-Average Pooling in Different Filters
of RIMS-CNN

According to the previous subsection result, we selected the RIMS-CNN as our base
model and compared the RI-max pooling with RI-average pooling in the RIMS-CNN, which
was set with the different number of filters in RI-conv blocks. We tried to determine which
pooling can capture better rotation-invariant features and find the best filter setting for the

Electronics 2022, 11, 661 12 of 21

RIMS-CNN. The training sets are original, and the validating sets are fixed-angle rotations.
The results are shown in Figures 16–19.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 22

Figure 14. The results of different designs validated on the fixed-angle-rotated CIFAR-10.

Figure 15. The results of different designs validated on the fixed-angle-rotated CIFAR-100.

The results from the first four models in the figures show when the Dih4 transfor-

mation was applied on a shared CNN, the accuracy was only slightly improved. However,

after we applied the multi-scale RI-pooling units, the accuracy was hugely increased. The

results also show that our model using 3  3 filters in convolution layers mostly had better

results than using 5  5 filters. According to the results, we used the RIMS-CNN with 3 

3 filters as our primary model to compare the proposed model with the others in the fol-

lowing experiments.

4.3.2. Comparing RI-Max Pooling with RI-Average Pooling in Different Filters of RIMS-

CNN

According to the previous subsection result, we selected the RIMS-CNN as our base

model and compared the RI-max pooling with RI-average pooling in the RIMS-CNN,

which was set with the different number of filters in RI-conv blocks. We tried to determine

which pooling can capture better rotation-invariant features and find the best filter setting

for the RIMS-CNN. The training sets are original, and the validating sets are fixed-angle

rotations. The results are shown in Figures 16–19.

Figure 16. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated MNIST.

In Figure 16, we can see that the accuracies of RI-max pooling are slightly better than

RI-average pooling. Figure 17 shows that the RI-average pooling performs better in the 8-

16-32-64 and 16-32-64-128 filter settings, but not by a big difference. In both pooling, the

number setting of the 128-256-512-1024 filter has the best accuracy.

Figure 16. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated MNIST.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 23

Figure 17. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated
FASHION-MNIST.

In Figure 18, the RI-max pooling has the better performance, but in Figure 19, the RI-
max pooling does not win all filter settings. Over the four datasets, the RI-max pooling
with the 128-256-512-1024 filter setting has the best accuracy. We decided to use the 128-
256-512-1024 filter setting and further compared the RI-max pooling and RI-average
pooling with different validating sets in the next experiment.

Figure 18. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-
10.

Figure 17. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated FASHION-
MNIST.

Electronics 2022, 11, x FOR PEER REVIEW 13 of 22

Figure 17. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated FASH-

ION-MNIST.

In Figure 18, the RI-max pooling has the better performance, but in Figure 19, the RI-

max pooling does not win all filter settings. Over the four datasets, the RI-max pooling

with the 128-256-512-1024 filter setting has the best accuracy. We decided to use the 128-

256-512-1024 filter setting and further compared the RI-max pooling and RI-average pool-

ing with different validating sets in the next experiment.

Figure 18. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-

10.

Figure 18. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-10.

Electronics 2022, 11, 661 13 of 21

Electronics 2022, 11, x FOR PEER REVIEW 13 of 22

Figure 17. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated FASH-

ION-MNIST.

In Figure 18, the RI-max pooling has the better performance, but in Figure 19, the RI-

max pooling does not win all filter settings. Over the four datasets, the RI-max pooling

with the 128-256-512-1024 filter setting has the best accuracy. We decided to use the 128-

256-512-1024 filter setting and further compared the RI-max pooling and RI-average pool-

ing with different validating sets in the next experiment.

Figure 18. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-

10.

Figure 19. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-100.

In Figure 16, we can see that the accuracies of RI-max pooling are slightly better than
RI-average pooling. Figure 17 shows that the RI-average pooling performs better in the
8-16-32-64 and 16-32-64-128 filter settings, but not by a big difference. In both pooling, the
number setting of the 128-256-512-1024 filter has the best accuracy.

In Figure 18, the RI-max pooling has the better performance, but in Figure 19, the
RI-max pooling does not win all filter settings. Over the four datasets, the RI-max pooling
with the 128-256-512-1024 filter setting has the best accuracy. We decided to use the 128-256-
512-1024 filter setting and further compared the RI-max pooling and RI-average pooling
with different validating sets in the next experiment.

4.3.3. Comparing RI-Max Pooling with RI-Average Pooling in Different Datasets

In this experiment, we used either the RI-max pooling or RI-average pooling in the
RIMS-CNN. We compared both pooling in the four datasets, which had original, fixed-
angle rotation, and random-angle rotation. Figures 20–23 show the same results: using
RI-max pooling is better than RI-average pooling in the RIMS-CNN. Therefore, we used
the RI-max pooling and 128-256-512-1024 filter number as our standard-setting. We then
validated the different structures with the same filter number in the following experiment.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 22

Figure 19. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-

100.

4.3.3. Comparing RI-Max Pooling with RI-Average Pooling in Different Datasets

In this experiment, we used either the RI-max pooling or RI-average pooling in the

RIMS-CNN. We compared both pooling in the four datasets, which had original, fixed-

angle rotation, and random-angle rotation. Figures 20–23 show the same results: using RI-

max pooling is better than RI-average pooling in the RIMS-CNN. Therefore, we used the

RI-max pooling and 128-256-512-1024 filter number as our standard-setting. We then val-

idated the different structures with the same filter number in the following experiment.

Figure 20. Comparing RI-max pooling with RI-average pooling in the different MNIST settings.

Figure 21. Comparing RI-max pooling with RI-average pooling in the different FASHION-MNIST

settings.

Figure 22. Comparing RI-max pooling with RI-average pooling in the different CIFAR-10 settings.

Figure 20. Comparing RI-max pooling with RI-average pooling in the different MNIST settings.

Electronics 2022, 11, 661 14 of 21

Electronics 2022, 11, x FOR PEER REVIEW 14 of 22

Figure 19. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-

100.

4.3.3. Comparing RI-Max Pooling with RI-Average Pooling in Different Datasets

In this experiment, we used either the RI-max pooling or RI-average pooling in the

RIMS-CNN. We compared both pooling in the four datasets, which had original, fixed-

angle rotation, and random-angle rotation. Figures 20–23 show the same results: using RI-

max pooling is better than RI-average pooling in the RIMS-CNN. Therefore, we used the

RI-max pooling and 128-256-512-1024 filter number as our standard-setting. We then val-

idated the different structures with the same filter number in the following experiment.

Figure 20. Comparing RI-max pooling with RI-average pooling in the different MNIST settings.

Figure 21. Comparing RI-max pooling with RI-average pooling in the different FASHION-MNIST

settings.

Figure 22. Comparing RI-max pooling with RI-average pooling in the different CIFAR-10 settings.

Figure 21. Comparing RI-max pooling with RI-average pooling in the different FASHION-
MNIST settings.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 22

Figure 19. Comparing RI-max pooling with RI-average pooling on the fixed-angle rotated CIFAR-

100.

4.3.3. Comparing RI-Max Pooling with RI-Average Pooling in Different Datasets

In this experiment, we used either the RI-max pooling or RI-average pooling in the

RIMS-CNN. We compared both pooling in the four datasets, which had original, fixed-

angle rotation, and random-angle rotation. Figures 20–23 show the same results: using RI-

max pooling is better than RI-average pooling in the RIMS-CNN. Therefore, we used the

RI-max pooling and 128-256-512-1024 filter number as our standard-setting. We then val-

idated the different structures with the same filter number in the following experiment.

Figure 20. Comparing RI-max pooling with RI-average pooling in the different MNIST settings.

Figure 21. Comparing RI-max pooling with RI-average pooling in the different FASHION-MNIST

settings.

Figure 22. Comparing RI-max pooling with RI-average pooling in the different CIFAR-10 settings. Figure 22. Comparing RI-max pooling with RI-average pooling in the different CIFAR-10 settings.
Electronics 2022, 11, x FOR PEER REVIEW 15 of 22

Figure 23. Comparing RI-max pooling with RI-average pooling in the different CIFAR-100 settings.

4.3.4. Evaluating Different Feature-Extracting Structures in RIMS-CNN

We used different structures but with the same number of filter settings (128-256-512-

1024) to evaluate the fixed-angle rotated validating sets. Figures 24–27 show the RIMS-

CNN had the best accuracy in FASHION-MNIST, CIFAR-10, and CIFAR-100, but not

MNIST; however, this had only a 0.004 difference from the best value. We also found that

the RIMS-CNN with multi-scale RI-stacking, which is used to stack the eight direction

features without pooling, was worse than the RIMS-CNN with multi-scale RI-pooling.

Therefore, we cannot use all multi-scale features directly as final classification features.

Too many features from each scale significantly drop the classification accuracies.

Figure 24. Evaluating different feature-extracting structures on the fixed-angle rotated MNIST.

Figure 25. Evaluating different feature-extracting structures on the fixed-angle rotated FASHION-

MNIST.

Figure 23. Comparing RI-max pooling with RI-average pooling in the different CIFAR-100 settings.

4.3.4. Evaluating Different Feature-Extracting Structures in RIMS-CNN

We used different structures but with the same number of filter settings (128-256-512-
1024) to evaluate the fixed-angle rotated validating sets. Figures 24–27 show the RIMS-CNN
had the best accuracy in FASHION-MNIST, CIFAR-10, and CIFAR-100, but not MNIST;
however, this had only a 0.004 difference from the best value. We also found that the
RIMS-CNN with multi-scale RI-stacking, which is used to stack the eight direction features
without pooling, was worse than the RIMS-CNN with multi-scale RI-pooling. Therefore,
we cannot use all multi-scale features directly as final classification features. Too many
features from each scale significantly drop the classification accuracies.

Electronics 2022, 11, 661 15 of 21

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22

Figure 23. Comparing RI-max pooling with RI-average pooling in the different CIFAR-100 settings.

4.3.4. Evaluating Different Feature-Extracting Structures in RIMS-CNN

We used different structures but with the same number of filter settings (128-256-512-

1024) to evaluate the fixed-angle rotated validating sets. Figures 24–27 show the RIMS-

CNN had the best accuracy in FASHION-MNIST, CIFAR-10, and CIFAR-100, but not

MNIST; however, this had only a 0.004 difference from the best value. We also found that

the RIMS-CNN with multi-scale RI-stacking, which is used to stack the eight direction

features without pooling, was worse than the RIMS-CNN with multi-scale RI-pooling.

Therefore, we cannot use all multi-scale features directly as final classification features.

Too many features from each scale significantly drop the classification accuracies.

Figure 24. Evaluating different feature-extracting structures on the fixed-angle rotated MNIST.

Figure 25. Evaluating different feature-extracting structures on the fixed-angle rotated FASHION-

MNIST.

Figure 24. Evaluating different feature-extracting structures on the fixed-angle rotated MNIST.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22

Figure 23. Comparing RI-max pooling with RI-average pooling in the different CIFAR-100 settings.

4.3.4. Evaluating Different Feature-Extracting Structures in RIMS-CNN

We used different structures but with the same number of filter settings (128-256-512-

1024) to evaluate the fixed-angle rotated validating sets. Figures 24–27 show the RIMS-

CNN had the best accuracy in FASHION-MNIST, CIFAR-10, and CIFAR-100, but not

MNIST; however, this had only a 0.004 difference from the best value. We also found that

the RIMS-CNN with multi-scale RI-stacking, which is used to stack the eight direction

features without pooling, was worse than the RIMS-CNN with multi-scale RI-pooling.

Therefore, we cannot use all multi-scale features directly as final classification features.

Too many features from each scale significantly drop the classification accuracies.

Figure 24. Evaluating different feature-extracting structures on the fixed-angle rotated MNIST.

Figure 25. Evaluating different feature-extracting structures on the fixed-angle rotated FASHION-

MNIST.

Figure 25. Evaluating different feature-extracting structures on the fixed-angle rotated FASHION-
MNIST.

Electronics 2022, 11, x FOR PEER REVIEW 16 of 22

Figure 26. Evaluating different feature-extracting structures on the fixed-angle rotated CIFAR-10.

Figure 27. Evaluating different feature-extracting structures on the fixed-angle rotated CIFAR-100.

4.3.5. Evaluating Models on Original Training Sets and Validating Sets

In this experiment, we used the original training sets for model training and used the

original validating set for evaluating the accuracy of each model. The evaluation results

are shown in Table 3. The best results occurred in FASHION-MNIST, CIFAR-10, and

CIFAR-100, but not MNIST. The results show that our model is effective.

Table 3. Evaluating models on the original training and validating sets.

Models

Accuracy of the Original Validating Sets

MNIST
FASHION-

MNIST
CIFAR-10 CIFAR-100

RIMS-CNN

(Single FC Layer)
0.9756 0.9472 0.88 0.6312

DenseNet121

(Single FC Layer)
0.9962 0.9158 0.7635 0.4461

MobileNetV2

(Single FC Layer)
0.9952 0.9176 0.6887 0.3149

ResNet50V2

(Single FC Layer)
0.9962 0.9206 0.7467 0.4386

VGG-16

(Single FC Layer)
0.9967 0.938 0.8611 0.5267

InceptionV3

(Single FC Layer)
0.9962 0.9237 0.7742 0.405

Figure 26. Evaluating different feature-extracting structures on the fixed-angle rotated CIFAR-10.

4.3.5. Evaluating Models on Original Training Sets and Validating Sets

In this experiment, we used the original training sets for model training and used the
original validating set for evaluating the accuracy of each model. The evaluation results are
shown in Table 3. The best results occurred in FASHION-MNIST, CIFAR-10, and CIFAR-100,
but not MNIST. The results show that our model is effective.

Electronics 2022, 11, 661 16 of 21

Electronics 2022, 11, x FOR PEER REVIEW 16 of 22

Figure 26. Evaluating different feature-extracting structures on the fixed-angle rotated CIFAR-10.

Figure 27. Evaluating different feature-extracting structures on the fixed-angle rotated CIFAR-100.

4.3.5. Evaluating Models on Original Training Sets and Validating Sets

In this experiment, we used the original training sets for model training and used the

original validating set for evaluating the accuracy of each model. The evaluation results

are shown in Table 3. The best results occurred in FASHION-MNIST, CIFAR-10, and

CIFAR-100, but not MNIST. The results show that our model is effective.

Table 3. Evaluating models on the original training and validating sets.

Models

Accuracy of the Original Validating Sets

MNIST
FASHION-

MNIST
CIFAR-10 CIFAR-100

RIMS-CNN

(Single FC Layer)
0.9756 0.9472 0.88 0.6312

DenseNet121

(Single FC Layer)
0.9962 0.9158 0.7635 0.4461

MobileNetV2

(Single FC Layer)
0.9952 0.9176 0.6887 0.3149

ResNet50V2

(Single FC Layer)
0.9962 0.9206 0.7467 0.4386

VGG-16

(Single FC Layer)
0.9967 0.938 0.8611 0.5267

InceptionV3

(Single FC Layer)
0.9962 0.9237 0.7742 0.405

Figure 27. Evaluating different feature-extracting structures on the fixed-angle rotated CIFAR-100.

Table 3. Evaluating models on the original training and validating sets.

Models

Accuracy of the Original Validating Sets

MNIST FASHION-
MNIST CIFAR-10 CIFAR-100

RIMS-CNN
(Single FC Layer) 0.9756 0.9472 0.88 0.6312

DenseNet121
(Single FC Layer) 0.9962 0.9158 0.7635 0.4461

MobileNetV2
(Single FC Layer) 0.9952 0.9176 0.6887 0.3149

ResNet50V2
(Single FC Layer) 0.9962 0.9206 0.7467 0.4386

VGG-16
(Single FC Layer) 0.9967 0.938 0.8611 0.5267

InceptionV3
(Single FC Layer) 0.9962 0.9237 0.7742 0.405

4.3.6. Evaluating Models on Original Training Sets and Fixed-Angle Rotated
Validating Sets

The original training sets were then input to train all the models. The fixed-angle
rotated validating sets were used for evaluation. The results are shown in Table 4, in
which the proposed model presented strong rotational invariance in the four datasets.
The reason is that we embed the Dih4 transformation and multi-scale RI features to learn
rotational features in the proposed model. Other models did not effectively learn rotational
features without rotating training data. Compared to the TI-pooling CNN designed for
the transformation invariant problem, our model has better accuracy in FASHION-MNIST,
CIFAR-10, and CIFAR-100.

4.3.7. Evaluating Models on Fixed-Angle Rotated Training Sets and Fixed-Angle Rotated
Validating Sets

Here, we prepared the fixed-angle rotated training sets for each model to learn rota-
tional features. The number of data was four times the size of the original sets. Table 5
shows that our model performed better than other models in FASHION-MNIST, CIFAR-10,
and CIFAR-100. Compared to the results in Table 3, we know that if specific directional
features were desired, the corresponding directional datasets could be generated to increase
the accuracy.

Electronics 2022, 11, 661 17 of 21

Table 4. Evaluating models on the original training sets and the fixed-angle rotated validating sets.

Models

Accuracy of the Fixed-Angle Rotated Validating Sets

MNIST FASHION-
MNIST CIFAR-10 CIFAR-100

RIMS-CNN
(Single FC Layer) 0.9756 0.9472 0.88 0.6312

TI-Pooling
(Single FC Layer) 0.9799 0.9229 0.7524 0.5042

DenseNet121
(Single FC Layer) 0.4475 0.3267 0.4373 0.2358

MobileNetV2
(Single FC Layer) 0.4329 0.3469 0.3945 0.1768

ResNet50V2
(Single FC Layer) 0.4166 0.3306 0.4187 0.2218

VGG-16
(Single FC Layer) 0.4438 0.3402 0.4645 0.2645

InceptionV3
(Single FC Layer) 0.3465 0.345 0.3057 0.1172

Table 5. Evaluating models on the fixed-angle rotated training sets and the fixed-angle rotated
validating sets.

Models

Accuracy of the Fixed-Angle Rotated Training Sets

MNIST FASHION-
MNIST CIFAR-10 CIFAR-100

RIMS-CNN
(Single FC Layer) 0.9756 0.9472 0.88 0.6312

TI-Pooling
(Single FC Layer) 0.9799 0.9229 0.7524 0.5042

DenseNet121
(Single FC Layer) 0.9954 0.9188 0.7692 0.4564

MobileNetV2
(Single FC Layer) 0.9936 0.9196 0.6903 0.3563

ResNet50V2
(Single FC Layer) 0.9953 0.9223 0.75 0.4128

VGG-16
(Single FC Layer) 0.9956 0.9398 0.8442 0.5375

InceptionV3
(Single FC Layer) 0.9951 0.9232 0.2046 0.0325

4.3.8. Evaluating Models on Fixed-Angle Rotated Training Sets and Random-Angle
Rotated Validating Sets

We used the fixed-angle rotated training set to evaluate all the models on the random-
angle rotated validating data. The results in Table 6 show that our method was suitable
for the fixed-angle rotated validating sets and performed better than the other models in
the random-angle rotated validating data. However, we can see that our model did not
perform as well as the other models in the MINIST and FASHION-MNIST datasets. This
shows that our model might increase misclassification probability in different classes with
the same rotating features, such as the single-digit numbers 6 and 9.

4.3.9. Evaluating RIMS-CNN and VGG-16 on Fixed-Angle Rotated Testing Sets and
Random-Angle Testing Sets

According to the experimental results in Sections 4.3.3 and 4.3.4, we can see that the
validating accuracy of VGG-16 was close to RIMS-CNN. Therefore, we further split each
training set into 75% training data and 25% validating data to train the RIMS-CNN and
VGG-16 models. Then we evaluated the models on the four testing sets, which were fixed-

Electronics 2022, 11, 661 18 of 21

angle rotation and random-angle rotation. We can see that RIMS-CNN is not as effective as
VGG-16 in Figure 28.

Table 6. Evaluating models on the random-angle rotated validating sets.

Models

Accuracy of the Random-Angle Rotated Validating Sets

MNIST FASHION-
MNIST CIFAR-10 CIFAR-100

RIMS-CNN
(Single FC Layer) 0.891 0.5391 0.7083 0.4846

TI-Pooling
(Single FC Layer) 0.8869 0.5338 0.6343 0.3898

DenseNet121
(Single FC Layer) 0.9499 0.4913 0.6167 0.3626

MobileNetV2
(Single FC Layer) 0.9293 0.4727 0.5685 0.2766

ResNet50V2
(Single FC Layer) 0.9461 0.4831 0.5844 0.3314

VGG-16
(Single FC Layer) 0.9481 0.494 0.6723 0.4167

InceptionV3
(Single FC Layer) 0.9217 0.5435 0.5363 0.2168

Electronics 2022, 11, x FOR PEER REVIEW 18 of 22

(Single FC Layer)

InceptionV3

(Single FC Layer)
0.9951 0.9232 0.2046 0.0325

4.3.8. Evaluating Models on Fixed-Angle Rotated Training Sets and Random-Angle Ro-

tated Validating Sets

We used the fixed-angle rotated training set to evaluate all the models on the ran-

dom-angle rotated validating data. The results in Table 6 show that our method was suit-

able for the fixed-angle rotated validating sets and performed better than the other models

in the random-angle rotated validating data. However, we can see that our model did not

perform as well as the other models in the MINIST and FASHION-MNIST datasets. This

shows that our model might increase misclassification probability in different classes with

the same rotating features, such as the single-digit numbers 6 and 9.

Table 6. Evaluating models on the random-angle rotated validating sets.

Models

Accuracy of the Random-angle Rotated Validating Sets

MNIST
FASHION-

MNIST
CIFAR-10 CIFAR-100

RIMS-CNN

(Single FC Layer)
0.891 0.5391 0.7083 0.4846

TI-Pooling

(Single FC Layer)
0.8869 0.5338 0.6343 0.3898

DenseNet121

(Single FC Layer)
0.9499 0.4913 0.6167 0.3626

MobileNetV2

(Single FC Layer)
0.9293 0.4727 0.5685 0.2766

ResNet50V2

(Single FC Layer)
0.9461 0.4831 0.5844 0.3314

VGG-16

(Single FC Layer)
0.9481 0.494 0.6723 0.4167

InceptionV3

(Single FC Layer)
0.9217 0.5435 0.5363 0.2168

4.3.9. Evaluating RIMS-CNN and VGG-16 on Fixed-Angle Rotated Testing Sets and

Random-Angle Testing Sets

According to the experimental results in Sections 4.3.3 and 4.3.4, we can see that the

validating accuracy of VGG-16 was close to RIMS-CNN. Therefore, we further split each

training set into 75% training data and 25% validating data to train the RIMS-CNN and

VGG-16 models. Then we evaluated the models on the four testing sets, which were fixed-

angle rotation and random-angle rotation. We can see that RIMS-CNN is not as effective

as VGG-16 in Figure 28.

Figure 28. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated

MNIST.

Figure 28. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated MNIST.

It still shows that our model may decrease accuracies on the image with highly sym-
metric rotation patterns, such as the single-digit numbers 6 and 9. However, Figures 29–31
show consistent results that RIMS-CNN is better than VGG-16.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 22

It still shows that our model may decrease accuracies on the image with highly sym-

metric rotation patterns, such as the single-digit numbers 6 and 9. However, Figures 29–

31 show consistent results that RIMS-CNN is better than VGG-16.

Figure 29. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated FASH-

ION-MNIST.

Figure 30. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated

CIFAR-10.

Figure 31. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated

CIFAR-100.

4.3.10. Comparison of RIMS-CNN and Some Other Rotation-Invariant Models

Here we compare the results by RIMS-CNN and some other approaches which pos-

sess the property of rotation invariance. The results are shown in Table 7. These ap-

proaches are trained by the original training set and evaluated by the random-angle ro-

tated validating data. We can see that all the accuracies from the approaches differed little

for the MNIST dataset, but that RIMS-CNN was the best. However, for CIFAR-10 and

CIFAR-100, RIMS-CNN was significantly better than the other models. The results explain

that our model has an excellent ability to learn the rotation invariance of complex images.

Figure 29. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated
FASHION-MNIST.

4.3.10. Comparison of RIMS-CNN and Some Other Rotation-Invariant Models

Here we compare the results by RIMS-CNN and some other approaches which possess
the property of rotation invariance. The results are shown in Table 7. These approaches are
trained by the original training set and evaluated by the random-angle rotated validating
data. We can see that all the accuracies from the approaches differed little for the MNIST

Electronics 2022, 11, 661 19 of 21

dataset, but that RIMS-CNN was the best. However, for CIFAR-10 and CIFAR-100, RIMS-
CNN was significantly better than the other models. The results explain that our model
has an excellent ability to learn the rotation invariance of complex images.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 22

It still shows that our model may decrease accuracies on the image with highly sym-

metric rotation patterns, such as the single-digit numbers 6 and 9. However, Figures 29–

31 show consistent results that RIMS-CNN is better than VGG-16.

Figure 29. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated FASH-

ION-MNIST.

Figure 30. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated

CIFAR-10.

Figure 31. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated

CIFAR-100.

4.3.10. Comparison of RIMS-CNN and Some Other Rotation-Invariant Models

Here we compare the results by RIMS-CNN and some other approaches which pos-

sess the property of rotation invariance. The results are shown in Table 7. These ap-

proaches are trained by the original training set and evaluated by the random-angle ro-

tated validating data. We can see that all the accuracies from the approaches differed little

for the MNIST dataset, but that RIMS-CNN was the best. However, for CIFAR-10 and

CIFAR-100, RIMS-CNN was significantly better than the other models. The results explain

that our model has an excellent ability to learn the rotation invariance of complex images.

Figure 30. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated CIFAR-10.

Electronics 2022, 11, x FOR PEER REVIEW 19 of 22

It still shows that our model may decrease accuracies on the image with highly sym-

metric rotation patterns, such as the single-digit numbers 6 and 9. However, Figures 29–

31 show consistent results that RIMS-CNN is better than VGG-16.

Figure 29. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated FASH-

ION-MNIST.

Figure 30. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated

CIFAR-10.

Figure 31. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated

CIFAR-100.

4.3.10. Comparison of RIMS-CNN and Some Other Rotation-Invariant Models

Here we compare the results by RIMS-CNN and some other approaches which pos-

sess the property of rotation invariance. The results are shown in Table 7. These ap-

proaches are trained by the original training set and evaluated by the random-angle ro-

tated validating data. We can see that all the accuracies from the approaches differed little

for the MNIST dataset, but that RIMS-CNN was the best. However, for CIFAR-10 and

CIFAR-100, RIMS-CNN was significantly better than the other models. The results explain

that our model has an excellent ability to learn the rotation invariance of complex images.

Figure 31. Evaluating RIMS-CNN and VGG-16 on the fixed-angle and random-angle rotated CIFAR-100.

Table 7. Comparison of RIMS-CNN and some other rotation-invariant models.

Model
Accuracy

MNIST CIFAR-10 CIFAR-100

RIMS-CNN (Single FC Layer) (ours) 0.891 0.7083 0.4846
TI-Pooling (Single FC Layer) 0.8869 0.6343 0.3898

ORN-8 (ORPooling) [28] 0.8333 - -
ORN-8 (ORAlign) [28] 0.8379 - -

ORN [28] - 0.4069 0.2164
RotInv Conv. (RP_RF_1) [29] 0.8015 - -

RotInv Conv. (RP_RF_1_32) [29] 0.8780 - -
RotInv Conv. (RP 1234) [29] - 0.4412 0.2294

Covariant CNN [30] 0.8279 - -

5. Conclusions and Future Work

In this paper, we attempt to increase the ability to identify rotated images in IoT
applications. We have proposed three methods to achieve this purpose. First, the weights
of all convolutional layers for a group of Dih4 transformed images are shared to learn
rotational features systematically. Second, RI-pooling is used to integrate eight related
transformed groups of feature maps into one group. Third, multi-scale rotation-invariant
(MSRI) features are used to increase the accuracy. The proposed model was compared with
some other models on four datasets with three versions: the original set, fixed-angle rotation
set, and random-angle rotation set. The experimental results show that the proposed model
could outperform the others on accuracy when the training data was not augmented. Our
proposed model still yielded superior performance, despite using data augmentation on
FASHION-MNIST, CIFAR-10, and CIFAR-100 for the other models.

Object recognition with different rotation angles is usually requested for general
applications such as traffic monitoring, self-driving image recognition, smart glasses, and

Electronics 2022, 11, 661 20 of 21

medical image recognition. The proposed method can effectively identify objects from
different angles to fit the applications. It, thus, has the impact of adding the rotation
invariance to the essential characteristics for actual application scenarios. Also, the Dih4
transformation to an image needs to be done within the GPU memory. Although it can
speed up the operation, the limitation is that it requires a larger amount of GPU memory.

In future work, we will focus on suitable extraction methods for symmetric images,
such as those in MNIST. We will also study capturing features through the different spatial
channels and design more complicated convolution blocks to extract higher-level features.
In another aspect, we may try using a Generative Adversarial Network (GAN) to produce
more diverse training data, not just limiting it to fixed or random angles. Finally, we would
like to combine our proposed concepts with other state-of-the-art models and design other
transforming strategies to embed in our model for improving the accuracy in rotation-
invariant problems.

Author Contributions: Conceptualization, T.-P.H. and M.-J.H.; methodology, T.-P.H. and M.-J.H.;
software, M.-J.H.; validation, T.-P.H., T.-K.Y. and S.-L.W.; formal analysis, T.-P.H. and S.-L.W.; in-
vestigation, M.-J.H. and T.-K.Y.; resources, M.-J.H.; data curation, M.-J.H.; writing—original draft
preparation, M.-J.H. and T.-P.H.; writing—review and editing, T.-K.Y. and S.-L.W.; visualization,
T.-K.Y.; supervision, T.-P.H.; project administration, T.-P.H. and S.-L.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Science and Technology of the Republic of
China under Grant MOST 109-2622-E-390-005 & MOST 110AO12B.

Data Availability Statement: MNIST: https://www.tensorflow.org/versions/r2.1/api_docs/python/
tf/keras/datasets/mnist/load_data; FASHION-MNIST: https://www.tensorflow.org/versions/r2.1
/api_docs/python/tf/keras/datasets/fashion_mnist/load_data; CIFAR-10: https://www.tensorflow.
org/versions/r2.1/api_docs/python/tf/keras/datasets/cifar10/load_data; CIFAR-100: https://
www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/cifar100/load_data.

Conflicts of Interest: This is a modified and expanded version of the paper “Extracting Multi-
Scale Rotation-Invariant Features in Convolution Neural Networks”, presented at the 2020 IEEE
International Conference on Big Data. We also claim that this present study has not been published
nor accepted for publication in other journals.

References
1. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86,

2278–2324. [CrossRef]
2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. In Proceedings of

the Neural Information Processing Systems (NIPS), Stateline, NV, USA, 3–8 December 2012; pp. 1097–1105.
3. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the

International Conference on Learning Representations (ICLR), San Diego, CA, USA, 7–9 May 2015.
4. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Vision and

Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
5. He, K.; Zhang, X.; Ren, S.; Sun, J. Identity mappings in deep residual networks. In Proceedings of the European Conference on

Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 630–645.
6. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with

convolutions. In Proceedings of the IEEE Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015;
pp. 1–9.

7. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception architecture for computer vision. In Proceedings
of the IEEE Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826.

8. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

9. Gens, R.; Domingos, P.M. Deep symmetry networks. In Proceedings of the Neural Information Processing Systems (NIPS),
Montréal, QC, Canada, 8–11 December 2014; pp. 2537–2545.

10. Lo, S.C.B.; Freedman, M.T.; Mun, S.K.; Gu, S. Transformationally identical and invariant convolutional neural networks through
symmetric element operators. arXiv 2018, arXiv:1806.03636.

11. Jain, A.; Sai Subrahmanyam, G.R.K.; Mishra, D. Stacked features based CNN for rotation invariant digit classification. In
Proceedings of the Pattern Recognition and Machine Intelligence (PReMI), Kolkata, India, 5–8 December 2017; pp. 527–533.

https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/mnist/load_data
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/mnist/load_data
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/fashion_mnist/load_data
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/fashion_mnist/load_data
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/cifar10/load_data
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/cifar10/load_data
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/cifar100/load_data
https://www.tensorflow.org/versions/r2.1/api_docs/python/tf/keras/datasets/cifar100/load_data
http://doi.org/10.1109/5.726791

Electronics 2022, 11, 661 21 of 21

12. Kang, S. Rotation-invariant wafer map pattern classification with convolutional neural networks. IEEE Access 2020, 8,
170650–170658. [CrossRef]

13. Laptev, D.; Savinov, N.; Buhmann, J.M.; Pollefeys, M. Ti-pooling: Transformation-invariant pooling for feature learning in
convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; pp. 289–297.

14. Dieleman, S.; Willett, K.W.; Dambre, J. Rotation-invariant convolutional neural networks for galaxy morphology prediction. Mon.
Not. R. Astron. Soc. 2015, 450, 1441–1459. [CrossRef]

15. Dieleman, S.; De Fauw, J.; Kavukcuoglu, K. Exploiting cyclic symmetry in convolutional neural networks. arXiv 2016,
arXiv:1602.02660.

16. Wu, F.; Hu, P.; Kong, D. Flip-rotate-pooling convolution and split dropout on convolution neural networks for image classification.
arXiv 2015, arXiv:1507.08754.

17. Marcos, D.; Volpi, M.; Tuia, D. Learning rotation invariant convolutional filters for texture classification. In Proceedings of the
International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016; pp. 2012–2017.

18. Lo, S.B.; Freedman, M.T.; Mun, S.K.; Chan, H.-P. Geared rotationally identical and invariant convolutional neural network
Systems. arXiv 2018, arXiv:1808.01280.

19. Kim, J.; Jung, W.; Kim, H.; Lee, J. CyCNN: A rotation invariant CNN using polar mapping and cylindrical convolutional layers.
arXiv 2020, arXiv:2007.10588.

20. Woods, J.W. Multidimensional Signal, Image, and Video Processing and Coding, 2nd ed.; Academic Press: London, UK, 2011; pp. 28–30.
21. Judson, T.W. Abstract Algebra: Theory and Applications; Virginia Commonwealth University Mathematics: Richmond, VA, USA,

2009; pp. 81–83.
22. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 8–16 October 2016; pp. 21–37.
23. MNIST Handwritten Digit Database. Yann LeCun, Corinna Cortes and Chris Burges. Available online: http://yann.lecun.com/

exdb/mnist/ (accessed on 17 December 2021).
24. Xiao, H.; Rasul, K.; Vollgraf, R. Fashion-mnist: A novel image dataset for benchmarking machine learning algorithms. arXiv 2017,

arXiv:1708.07747.
25. CIFAR-10 and CIFAR-100 Datasets. Available online: https://www.cs.toronto.edu/~{}kriz/cifar.html (accessed on 17 December

2021).
26. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
27. Prechelt, L. Early stopping-but when? In Neural Networks: Tricks of the Trade, 2nd ed.; Müller, O., Ed.; Springer: Berlin/Heidelberg,

Germany, 1998; pp. 53–67.
28. Zhou, Y.; Ye, Q.; Qiu, Q.; Jiao, J. Oriented response networks. In Proceedings of the IEEE Computer Vision and Pattern Recognition

(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4961–4970.
29. Follmann, P.; Bottger, T. A rotationally-invariant convolution module by feature map back-rotation. In Proceedings of the IEEE

Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018; pp. 784–792.
30. Salas, R.R.; Dokladalova, E.; Dokladal, P. Rotation invariant CNN using scattering transform for image classification. In

Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019;
pp. 654–658.

http://doi.org/10.1109/ACCESS.2020.3024603
http://doi.org/10.1093/mnras/stv632
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~{}kriz/cifar.html

	Introduction
	Related Work
	Rotation Invariance and the Dihedral Group D4 (Dih4)
	Multi-Scale Learning
	TI-Pooling CNN

	Methods
	Image Transformation
	Feature Extraction
	RI-Conv Block Structure
	Buffers in the RIMS-CNN Architecture
	Rotation-Invariant Pooling (RI-Pooling) Unit

	Image Classification
	Time Complexity of RIMS-CNN

	Experimental Results and Discussion
	Datasets and Preprocessing
	Experimental Settings
	Experimental Results
	Different Design of the Feature Extraction Layers
	Comparing RI-Max Pooling with RI-Average Pooling in Different Filters of RIMS-CNN
	Comparing RI-Max Pooling with RI-Average Pooling in Different Datasets
	Evaluating Different Feature-Extracting Structures in RIMS-CNN
	Evaluating Models on Original Training Sets and Validating Sets
	Evaluating Models on Original Training Sets and Fixed-Angle Rotated Validating Sets
	Evaluating Models on Fixed-Angle Rotated Training Sets and Fixed-Angle Rotated Validating Sets
	Evaluating Models on Fixed-Angle Rotated Training Sets and Random-Angle Rotated Validating Sets
	Evaluating RIMS-CNN and VGG-16 on Fixed-Angle Rotated Testing Sets and Random-Angle Testing Sets
	Comparison of RIMS-CNN and Some Other Rotation-Invariant Models

	Conclusions and Future Work
	References

