
����������
�������

Citation: Kulmaganbetov, M.; Bevan,

R.J.; Anantrasirichai, N.; Achim, A.;

Erchova, I.; White, N.; Albon, J.;

Morgan, J.E. Textural Feature Analysis

of Optical Coherence Tomography

Phantoms. Electronics 2022, 11, 669.

https://doi.org/10.3390/

electronics11040669

Academic Editor: Abdeldjalil Ouahabi

Received: 3 January 2022

Accepted: 20 February 2022

Published: 21 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Textural Feature Analysis of Optical Coherence Tomography Phantoms
Mukhit Kulmaganbetov 1,2,* , Ryan J. Bevan 1,3, Nantheera Anantrasirichai 4 , Alin Achim 4 , Irina Erchova 1,
Nick White 1, Julie Albon 1 and James E. Morgan 1

1 School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ, UK;
bevanrj@cardiff.ac.uk (R.J.B.); erchovai@cardiff.ac.uk (I.E.); optomschooloffice@cardiff.ac.uk (N.W.);
albonj@cardiff.ac.uk (J.A.); morganje3@cardiff.ac.uk (J.E.M.)

2 Kazakh Eye Research Institute, Almaty A05H2A8, Kazakhstan
3 UK Dementia Research Institute, Cardiff University, Cardiff CF24 4HQ, UK
4 Visual Information Laboratory, University of Bristol, Bristol BS8 1TH, UK;

n.anantrasirichai@bristol.ac.uk (N.A.); alin.achim@bristol.ac.uk (A.A.)
* Correspondence: kulmaganbetovm@cardiff.ac.uk

Abstract: Optical coherence tomography (OCT) is an imaging technique based on interferometry of
backscattered lights from materials and biological samples. For the quantitative evaluation of an
OCT system, artificial optical samples or phantoms are commonly used. They mimic the structure
of biological tissues and can provide a quality standard for comparison within and across devices.
Phantoms contain medium matrix and scattering particles within the dimension range of target
biological structures such as the retina. The aim was to determine if changes in speckle derived
optical texture could be employed to classify the OCT phantoms based on their structural composition.
Four groups of phantom types were prepared and imaged. These comprise different concentrations
of a medium matrix (gelatin solution), different sized polystyrene beads (PBs), the volume of PBs
and different refractive indices of scatterers (PBs and SiO2). Texture analysis was applied to detect
subtle optical differences in OCT image intensity, surface coarseness and brightness of regions of
interest. A semi-automated classifier based on principal component analysis (PCA) and support
vector machine (SVM) was applied to discriminate the various texture models. The classifier detected
correctly different phantom textures from 82% to 100%, demonstrating that analysis of the texture of
OCT images can be potentially used to discriminate biological structure based on subtle changes in
light scattering.

Keywords: optical coherence tomography; phantoms; texture analysis; principal component analysis;
support vector machine

1. Introduction

Optical coherence tomography (OCT) is now in routine use for the assessment of
morphological and physiological characteristics of biological structures such as the retina
at micron scales. OCT generates images derived from interferometry of incident and
backscattered beams of coherent light [1]. Commercially available OCT devices use low
coherence light sources typically centered in the wavelength range around 840 nm or
1040 nm; their axial resolution is determined by the full width at half maximum (FWHM)
of the light source and not by the aberrations of the optic system [2]. Thus, for a light source
of 1040 nm central wavelength with FWHM of 70 nm, the axial resolution is about 7 µm in
air (NP photonics 1-M-ASE-HPE-S). The resolution in clinical systems is not isotropic with
a lateral (aberration limited) resolution for ocular imaging in the range of 10 to 15 µm [3].

Variations in contrast along the imaging axis are analyzed to generate axial intensity
profiles that correlate with the underlying biological structure. Fourier-domain OCT
measures the phase of the Fourier transform of the spectral interference between the
backscattered lights from both arms of a device [4]. This phase is an estimate of structural
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information about the sample refractive index (RI) within the implicit coherence gating
enforced by the spectral bandwidth of the light source [5]. The measurement of retinal
layers is based on the segmentation and texture analysis of multi-cellular structures along
each axial intensity line.

Due to the influence on the quality and the performance of OCT scans, speckle is often
considered a type of noise that is routinely removed [6] to facilitate the segmentation and the
delineation of retinal layers. While this is a useful and pragmatic engineering solution, there
is evidence that a component of the speckle contains information of biological relevance.
Schmitt et al. [7] classified two types of speckles: ‘chance’ (stochastic) speckle and ‘inherent’
speckle. ‘Chance’ speckle is random and arises from multiply scattered photons, the width
of which equals one pixel and can be removed by averaging OCT scans. By contrast, larger
‘inherent’ speckle is consistent and located in the same region in repeated OCT images;
this speckle arises from the wavefronts from multiple scatterers, located in the same focal
volume [7]. Cumulatively, these speckle components produce a specific aggregate texture
from the region of interest, which can provide an optical signature that correlates with
structural changes that cannot be discerned by conventional OCT techniques [8]. The
texture is a measure of subtle optical differences in OCT image intensity, surface coarseness
and brightness of regions of interest [9,10]. Analysis of these parameters is based on the
assessment of the optical characteristics that contribute to an overall texture pattern within
an image; this method is frequently used in classification [11,12], segmentation [13,14] and
synthesis [15] of images.

Scatter has great potential as an image analysis method but is limited to providing
abstract textural indices that correlate with potential small-scale changes, particularly in
the context of imaging subcellular components. It is important that the rationale for using
speckle derived indices is validated and optical phantoms provide essential ground truth
objects for the purpose of such validation [16–19]. Phantoms with particle dimensions and
refractive indices that replicate the scales within the biological structure of interest can
produce an explicit textural picture. These similarities relate to the refractive incidence of
the component particles.

Therefore, in this study, we developed optical phantoms with components within the
scale range of cellular organelles (1–5 µm) to determine if changes in speckle derived optical
texture could be employed to classify the phantoms on the basis of their optical compositions.

2. Materials and Methods
2.1. OCT Device

Images were acquired using a custom OCT (Figure 1). The light source 1-M-ASEHPE-S
(NP Photonics, USA) has a center wavelength of 1040 nm and a FWHM of 70 nm. It was
connected via a 2× 2 optical fiber coupler (AFW Technologies, Australia) to the sample and
reference arms. The sample arm included close-coupled 2-dimensional optical scanners
(Cambridge Technology Division, Germany), an achromatic off-axis parabolic reflector
and a near-infrared telecentric scan lens from Thorlabs (UK). Parabolic mirror collimator
provides an optical beam of Ø 2 mm (1/e2). Given the lateral resolution of 15.6 µm (NA of
eye = 0.029), the minimum scaling distance per pixel is 7.8 µm. For a standard 512-pixel OCT
scan, the maximum angular size the image can be in order to achieve Nyquist sampling
is 3994.4 µm. This is the theoretical maximum; it is likely that the real lateral resolution is
slightly worse due to optical aberrations and the true Nyquist sampling distance may be
slightly higher. The maximum scan angle is therefore 13.3◦ for a standard eye.

2.2. Phantom Preparation and Imaging

Polymer beads, in a range of sizes that correspond to subcellular organelles (1–15 µm)
were embedded in a gelatin matrix. Polystyrene beads (PBs) are most frequently used for
retinal phantom fabrication purposes [20] and consist of embedded hydrogel-based agents,
such as gelatin and agarose [21,22] whose refractive index is close to commonly imaged
biological structures. Four groups of phantoms were fabricated: various concentrations of
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gelatin solution (1); diverse diameter of PBs (2), their volume differences in the solution (3)
and scatterer RIs (4).
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Figure 1. OCT system structure (explained in the text).

If the RI of the retina equals 1.36 [23], the refractive indices of the cell nucleus and
isolated mitochondria amount to 1.36–1.39 [24,25] and 1.41 [26], respectively. So, the RIs of
medium (gelatin = 1.33) and scatterer (polystyrene beads = 1.57) were determined using
an Abbe Refractometer Model 60/70. The steps for phantom preparation are shown in
Figure 2.
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Figure 2. The preparation procedure of the retinal phantoms for the OCT.

Five OCT scans of size 512 × 512 × 1024 pixels, x, y, z) were collected from each
phantom with Z max = 1 mm. The first scan (Z0) was taken below the surface of the
phantom to avoid the refractive effects of the air-phantom interface. Each pixel was sorted
at 8-bit resolution (0–255) with a grayscale applied for visualization. For each image,
five volumes of interest (VOIs) were extracted (30 × 30 × 30 pixels) for the analysis of
texture and classification of OCT images (Figure 3).

2.3. Texture Analysis

For the purpose of texture analysis, feature extraction and image classification were
achieved using the plug-ins of ImageJ (NIH) and MATLAB Simulink (MathWorks). Groups
of parameters from the grey-level co-occurrence matrix (GLCM) were selected. The GLCM
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provides a spatial histogram of the image, showing the relationship between each intensity
level caused by alterations between grey levels i and j. For the quantification of grey-scale
distributions, probability density functions Sθ (i, j|d,θ) were calculated [27]. In the present
study, the distance d between i-th reference pixel and j-th pixel was equal to 1 pixel and the
directions θ between i and j pixels were 0◦, 90◦, 180◦, 270◦.

Electronics 2022, 11, 669 4 of 13 
 

 

 
(a) 

 
(b) 

 
  (c) 

Figure 3. Image processing and data preparation for the classifier: (a)—OCT scan of phantom and 
the VOI cube image; (b)—schematic view of the 3D cube of the size 30 × 30 × 30 pixels; (c)—extraction 
of grey level of each pixel for further grey-level co-occurrence matrix analysis. 

2.3. Texture Analysis 
For the purpose of texture analysis, feature extraction and image classification were 

achieved using the plug-ins of ImageJ (NIH) and MATLAB Simulink (MathWorks). 
Groups of parameters from the grey-level co-occurrence matrix (GLCM) were selected. 
The GLCM provides a spatial histogram of the image, showing the relationship between 
each intensity level caused by alterations between grey levels i and j. For the quantification 
of grey-scale distributions, probability density functions Sθ (i, j |d,θ) were calculated [27]. 
In the present study, the distance d between i-th reference pixel and j-th pixel was equal 
to 1 pixel and the directions θ between i and j pixels were 0°, 90°, 180°, 270°. 

Five GLCM parameters were extracted from each VOI in all θ: entropy, energy (or 
angular second moment), inverse difference moment (IDM), correlation and inertia (or 
contrast) (Equations (1)–(5)). Therefore, a total of 20 GLCM features were derived from 
each VOI. The regularity of the local greyscale distribution was measured by the angular 
second moment by the sum of the squares of Sθ (i, j |d,θ). Inertia provides higher weights 
to each value in the matrices and corresponds to areas of higher contrast. The sum of the 
multiplication of each probability density function value by the log of this function com-
putes the entropy as a measure of randomness. The inverse difference moment parameter 
measures the local minimal changes and correlation calculates the joint probability of oc-
currence. The latter is higher in regions with uniform grey-scale values. 𝐺𝐿𝐶𝑀 𝐴𝑆𝑀 =  ∑ ∑ ሾ𝑆𝜃(𝑖, 𝑗|𝑑)ሿଶ௅ିଵ௝ୀ଴௅ିଵ௜ୀ଴   (1)𝐺𝐿𝐶𝑀 𝑖𝑛𝑒𝑟𝑡𝑖𝑎 =  ∑ ∑ (𝑖 െ 𝑗)ଶ𝑆𝜃(𝑖, 𝑗|𝑑)௅ିଵ௝ୀ଴௅ିଵ௜ୀ଴   (2)𝐺𝐿𝐶𝑀 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 =  ∑ ∑ 𝑆𝜃(𝑖, 𝑗|𝑑) log(𝑆𝜃(𝑖, 𝑗|𝑑))௅ିଵ௝ୀ଴௅ିଵ௜ୀ଴    (3)𝐺𝐿𝐶𝑀 𝐼𝐷𝑀 =  ∑ ∑ ଵଵା(௜ି௝)మ 𝑆𝜃(𝑖, 𝑗|𝑑)௅ିଵ௝ୀ଴௅ିଵ௜ୀ଴   (4)

Figure 3. Image processing and data preparation for the classifier: (a)—OCT scan of phantom and the
VOI cube image; (b)—schematic view of the 3D cube of the size 30 × 30 × 30 pixels; (c)—extraction
of grey level of each pixel for further grey-level co-occurrence matrix analysis.

Five GLCM parameters were extracted from each VOI in all θ: entropy, energy (or angu-
lar second moment), inverse difference moment (IDM), correlation and inertia (or contrast)
(Equations (1)–(5)). Therefore, a total of 20 GLCM features were derived from each VOI. The
regularity of the local greyscale distribution was measured by the angular second moment
by the sum of the squares of Sθ (i, j|d,θ). Inertia provides higher weights to each value in
the matrices and corresponds to areas of higher contrast. The sum of the multiplication of
each probability density function value by the log of this function computes the entropy as
a measure of randomness. The inverse difference moment parameter measures the local
minimal changes and correlation calculates the joint probability of occurrence. The latter is
higher in regions with uniform grey-scale values.

GLCM ASM = ∑L−1
i=0 ∑L−1

j=0 [Sθ(i, j|d )]2 (1)

GLCM inertia = ∑L−1
i=0 ∑L−1

j=0 (i− j)2Sθ(i, j|d) (2)

GLCM entropy = ∑L−1
i=0 ∑L−1

j=0 Sθ(i, j|d) log(Sθ(i, j|d )) (3)

GLCM IDM = ∑L−1
i=0 ∑L−1

j=0
1

1 + (i− j)2 Sθ(i, j|d) (4)
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GLCM correlation =
∑L−1

i=0 ∑L−1
j=0 (i− µx)

(
j− µy

)
Sθ(i, j|d)

σxσy
(5)

where Sθ (i, j|d,θ) is the i-th and j-th elements of GLCM and L is the number of grey levels
in the image.

Then, extracted parameters were analyzed by principal component analysis (PCA) and
support vector machine (SVM). PCA is a vector space transform method, which converts
high-dimensional data sets into a set of values of linearly uncorrelated variables. This can
subsequently be employed to reduce the feature dimensions by eliminating redundant
data. PCA computes the eigenvalue decomposition of the covariance matrix of the image
without matrix-to-vector conversion [28]. The SVM is a supervised machine learning
tool, which constructs a set of hyperplanes in feature space to allow the separation of the
data into different classes. The datasets were then classified by SVM with and without
preliminary PCA.

3. Results

For the purpose of classification, we developed 4 phantom groups based on differences
in the concentration of gelatin, particle size, particle concentration and particle refractive
index. 10 OCT scans were obtained for each phantom variable (160 scans in total, Table 1).
Ø 5–15 µm particles, which fell within the resolution limit of the OCT could be discerned
as discrete objects. As expected, particles below 5 µm in diameter could still be discerned
as discrete entities although collectively they generated differences in the overall texture
of the phantom. Submicron (384 nm) polystyrene beads had no discernible effect on the
optical properties of the phantom; single- or multi-pixel speckle noise in the scans from
these phantoms (Figure 4). OCT scan thresholding was achieved using ImageJ software
built-in technique for automatic computing of a value cutoff.

Table 1. Groups and types of phantoms.

Phantom Groups Phantom Types Number of OCT Scans

Different concentrations of
gelatin solution

2% gelatin solution (2% GS) 10
5% gelatin solution 10
10% gelatin solution 10

Different size of scatterers

2% GS + 384 nm 50 µL PBs 10
2% GS + 1 µm 50 µL PBs 10
2% GS + 2 µm 50 µL PBs 10
2% GS + 5 µm 50 µL PBs 10
2% GS + 15 µm 50 µL PBs 10

Different concentration of scatterers

2% GS + 1 µm 5 µL PBs 10
2% GS + 1 µm 10 µL PBs 10
2% GS + 1 µm 20 µL PBs 10
2% GS + 1 µm 30 µL PBs 10
2% GS + 1 µm 40 µL PBs 10
2% GS + 1 µm 50 µL PBs 10

Different refractive index of scatterers
2% GS + 1 µm 50 µL PBs 10
2% GS + 1 µm 50 µL SiO2 10

Following the learning of the model with various random training and validation
datasets, a test dataset was evaluated with the generated function codes and the whole
procedure was reiterated 10 times and the results are average.

Phantoms with different concentrations of gelatin in the medium could be segregated
with a classification accuracy of 91.8% with PCA and 100% without (Table 2). While 2% and
10% gelatin solutions could be classified accurately in 96% and 99% of cases, respectively,
only 74% of 5% gelatin solution was truly discriminated by PCA and SVM (Figure 5). We
found that OCT texture generated by a “5% solution” can mimic the texture of “2% and
10% gelatin solutions” in 16% and 9% of cases, respectively. These ‘false positive’ and ‘false
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negative’ results can be the consequences of the local variations of the texture within the
gelatin solution.
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Table 2. Classification accuracy of different phantom groups.

Phantom Groups
Accuracy of SVM AUC

with PCA without PCA with PCA without PCA

Different concentrations of
gelatin solution 91.9% 100% 0.99 1.00

Different size of scatterers 100% 100% 1.00 1.00

Different size of scatterers
with submicron particles 82.5% 100% 1.00 1.00

Different concentration
of scatterers 86.7% 99.9% 1.00 1.00
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Phantoms with Ø 1 µm, 2 µm, 5 µm and 15 µm of latex beads could be categorized
correctly in 100% of cases using SVM with and without PCA (Figure 6a). However, the
level of discrimination was significantly reduced with submicron PBs (384 nm), where only
27% of 384 nm PBs were detected correctly (Figure 6b). The latter was not unexpected
given the axial resolution limit of the optical coherence tomography in the range of 1–5 µm.
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Figure 6. Confusion matrix of different sizes of scatterers: (a)—without 384 nm PBs; (b)—with 384 nm PBs.

The SVM-based classification of various scatterers’ concentrations with PCA reached
86.7% of accuracy and 99.9% without PCA (Table 2). Along with other GLCM properties,
contrast and angular second moment (ASM) discriminated the most benefit to the classification
performance during the feature selection process, the example of which is illustrated in
Figure 7a: clusters of various phantom types were separable in the feature space, except 20 µL
and 30 µL of scatterers in 2% gelatin solution. Figure 7b shows the similarity of textures
generated by these two phantoms: 60% of 30 µL PBs was classified as a 20 µL PBs sample.

With a refractive index (RI) of PBs equal to 1.57, SiO2 has the lower RI—1.43 [29].
Classification with and without PCA in both scenarios correctly discriminated the texture
of differing scatterers in all cases. The principal component scores of each scattering particle
for the 3 components are plotted in X, Y and Z dimensions (Figure 8a). According to the
type of scatterers (PBs = red, SiO2 = blue), the segregation of the clusters into different
types along the components can be detected. To illustrate the distribution of the groups
along with individual components, plots (b), (c) and (d) are projected.
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classification performance; (b)—confusion matrix.
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distribution of the groups along with 2nd and 3rd components. The 3-component solution included
95% of the variance within the data.

4. Discussion

Although commercial clinical OCT machines with an axial resolution of 3–5 µm are
widely used for the diagnosis of retinal diseases, high-resolution OCT allows imaging of
the biological tissue structure with the axial resolution of 2–3 µm [30]. Neither of these
resolutions allows the unequivocal imaging of subcellular components. In this study, we
show that texture data can be extracted that correlates with light scatter from particles that
lie within and beyond the resolution limits of the OCT. Importantly, the texture information
can be used to classify phantoms with a high degree of accuracy.

The use of texture-based image analysis is gaining in popularity and has a number of
applications in the analysis of biological structures. GLCM has been used to quantify the
necrosis in cell cultures from microscope images [31], to discriminate the various prostatic
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tissues from ultrasonic B-scans [32] and to detect the normal and pathologic tissues from
OCT images [10]. Gossage et al. [10,33] reported that GLCM texture analysis provides better
outcomes than other features as it provides more valuable texture-context information than
the intermediate matrices of other texture analysis algorithms.

For the purpose of analysis of multidimensional data, we used an n-dimensional PCA
(nD-PCA) as suggested by Hongchuan and Bennamoun [34]. nD-PCA extends the PCA
method to a higher dimensional dataset and reduces the dimensionality of such datasets.
Moreover, the algorithm increases the interpretability while minimizing the information
loss as seen in the results (Table 2).

In this study, the classification of OCT scans was based solely on linear SVM. Although
other types of non-linear SVM were used in the study of Anantrasirichai et al. [12], linear
SVM significantly outperformed the radial basis and polynomial function SVM kernels in
our study.

Due to the inhomogeneities in the refractive index of the tissue structures, light is
reflected at various angles [7,35], which can contribute to the texture signal. Speckle arises
from the source of optical information about the microscopic structures of the tissue and
as noise [7]. Hence, in the process of noise filtering, some valuable data can be removed.
Consequently, this can lead to misinterpretation of the OCT results. Efficient noise reduction
is one of the main goals of image processing but remains one of the most challenging as it
needs to balance noise reduction and texture preservation.

Our data support the application of OCT derived speckle signatures from biological
structures. In the context of retinal imaging, one of the most popular applications of OCT,
texture analysis has great potential for the quantification of retinal neuronal health since
the fragmentation of neuronal organelles (in particular mitochondria) will generate texture
changes within the resolution of existing OCT devices. Gelatin-based matrix has the desired
absorbance, scattering, and background fluorescence. In the study of De Grand et al. (2006),
the optical properties of gelatin-containing medium were constant from 600 to 1000 nm for
2 weeks and more [36]. The index of refraction of gelatin phantom is 1.35 and the scattering
coefficient amounts to 1 at the central wavelength of 1280 nm, computed by Mie theory [37].
Due to their unique optical properties (controllable scattering coefficient and refractive
index), micro particles based on polystyrene beads are the first choice for OCT phantom
preparation. In gelatin-based phantoms, polystyrene nanoparticles are used frequently as a
scattering constituent.

Scattering and absorption properties of gelatin phantoms can be controlled and recre-
ated by mixing with lipid emulsion (Cubeddu et al. 1997; Wagnieres et al. 1997).

Further investigation into the utility of texture-based analysis will benefit from the
availability of white light superluminescent diodes with broader spectral bandwidth and
axial resolutions in the range 1–2 µm. However, robust evaluation of the potential of this
method will require the use of custom devices where speckle data has not been discarded
as a pre-processing step for tissue segmentation.

5. Conclusions

We introduce a semi-automated approach for image classification of high-resolution
OCT imagery using SVM-based machine-learning analysis. Although the OCT has insuffi-
cient resolution to differentiate subcellular components, the study results propose that the
changes in light scatter generated by particles distributed within the phantoms produce
meaningful optical signals. The quantification of speckle by texture analysis with machine
learning classification tools provides a convenient method that can be more widely applied
to the analysis of biological structures such as the retinal inner plexiform layer in the onset
of glaucoma and Alzheimer’s disease.
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13. Kajić, V.; Považay, B.; Hermann, B.; Hofer, B.; Marshall, D.; Rosin, P.L.; Drexler, W. Robust segmentation of intraretinal layers in
the normal human fovea using a novel statistical model based on texture and shape analysis. Opt. Express 2010, 18, 14730–14744.
[CrossRef] [PubMed]

14. González-López, A.; Remeseiro, B.; Ortega, M.; Penedo, M.; Charlón, P. A Texture-Based Method for Choroid Segmentation in Retinal
EDI-OCT Images; Springer International Publishing: Cham, Switzerland, 2015. [CrossRef]

15. Costantini, R.; Sbaiz, L.; Susstrunk, S. Higher Order SVD Analysis for Dynamic Texture Synthesis. IEEE T. Image Process 2008, 17,
42–52. [CrossRef] [PubMed]

16. Baxi, J.; Calhoun, W.; Sepah, Y.J.; Hammer, D.X.; Ilev, I.; Pfefer, T.J.; Nguyen, Q.D.; Agrawal, A. Retina-simulating phantom for
optical coherence tomography. J. Biomed. Opt. 2014, 19, 21106. [CrossRef] [PubMed]

17. Kennedy, B.F.; Loitsch, S.; McLaughlin, R.A.; Scolaro, L.; Rigby, P.; Sampson, D.D. Fibrin phantom for use in optical coherence
tomography. J. Biomed. Opt. 2010, 15, 030507. [CrossRef] [PubMed]

18. Esmonde-White, F.W.L.; Esmonde-White, K.A.; Kole, M.R.; Goldstein, S.A.; Roessler, B.J.; Morris, M.D. Biomedical tissue
phantoms with controlled geometric and optical properties for Raman spectroscopy and tomography. Analyst 2011, 136,
4437–4446. [CrossRef] [PubMed]

19. Erickson, S.J.; Martinez, S.L.; DeCerce, J.; Romero, A.; Caldera, L.; Godavarty, A. Three-dimensional fluorescence tomography of
human breast tissues in vivo using a hand-held optical imager. Phys. Med. Biol. 2013, 58, 1563. [CrossRef]

20. Nivetha, K.B.; Sujatha, N. Development of thin skin mimicking bilayer solid tissue phantoms for optical spectroscopic studies.
Biomed. Opt. Express 2017, 8, 3198–3212. [CrossRef]

21. Pan, Y.; Birngruber, R.; Rosperich, J.; Engelhardt, R. Low-coherence optical tomography in turbid tissue: Theoretical analysis.
Appl. Opt. 1995, 34, 6564–6574. [CrossRef]

http://doi.org/10.1126/science.1957169
http://www.ncbi.nlm.nih.gov/pubmed/1957169
http://doi.org/10.1097/IAE.0b013e318285cbd2
http://doi.org/10.1167/iovs.16-19103
http://www.ncbi.nlm.nih.gov/pubmed/27409507
http://doi.org/10.1364/OE.11.000889
http://www.ncbi.nlm.nih.gov/pubmed/19461802
http://doi.org/10.1364/JOSAA.32.002286
http://www.ncbi.nlm.nih.gov/pubmed/26831383
http://doi.org/10.1364/BOE.9.005129
http://www.ncbi.nlm.nih.gov/pubmed/30460118
http://doi.org/10.1117/1.429925
http://doi.org/10.1088/0031-9155/51/6/014
http://doi.org/10.1007/BF01463655
http://doi.org/10.1117/1.1577575
http://doi.org/10.1142/S1793545811001083
http://doi.org/10.1109/ISBI.2013.6556778
http://doi.org/10.1364/OE.18.014730
http://www.ncbi.nlm.nih.gov/pubmed/20639959
http://doi.org/10.1007/978-3-319-27340-2
http://doi.org/10.1109/TIP.2007.910956
http://www.ncbi.nlm.nih.gov/pubmed/18229803
http://doi.org/10.1117/1.JBO.19.2.021106
http://www.ncbi.nlm.nih.gov/pubmed/24042445
http://doi.org/10.1117/1.3427249
http://www.ncbi.nlm.nih.gov/pubmed/20614992
http://doi.org/10.1039/c1an15429j
http://www.ncbi.nlm.nih.gov/pubmed/21912794
http://doi.org/10.1088/0031-9155/58/5/1563
http://doi.org/10.1364/BOE.8.003198
http://doi.org/10.1364/AO.34.006564


Electronics 2022, 11, 669 13 of 13

22. Schmitt, J.M.; Lee, S.L.; Yung, K.M. An optical coherence microscope with enhanced resolving power in thick tissue. Opt. Commun.
1997, 142, 203–207. [CrossRef]

23. Williams, D.R. Visual consequences of the foveal pit. Investig. Ophthalmol. Vis. Sci. 1980, 19, 653–667.
24. Zhang, Q.; Zhong, L.; Tang, P.; Yuan, Y.; Liu, S.; Tian, J.; Lu, X. Quantitative refractive index distribution of single cell by combining

phase-shifting interferometry and AFM imaging. Sci. Rep. UK 2017, 7, 2532. [CrossRef] [PubMed]
25. Rappaz, B.; Marquet, P.; Cuche, E.; Emery, Y.; Depeursinge, C.; Magistretti, P.J. Measurement of the integral refractive index and

dynamic cell morphometry of living cells with digital holographic microscopy. Opt. Express 2005, 13, 9361–9373. [CrossRef]
[PubMed]

26. Haseda, K.; Kanematsu, K.; Noguchi, K.; Saito, H.; Umeda, N.; Ohta, Y. Significant correlation between refractive index and
activity of mitochondria: Single mitochondrion study. Biomed. Opt. Express 2015, 6, 859–869. [CrossRef] [PubMed]

27. Rogowska, J.; Bryant, C.M.; Brezinski, M.E. Cartilage thickness measurements from optical coherence tomography. J. Opt. Soc.
Am. A 2003, 20, 357–367. [CrossRef] [PubMed]

28. Qiao, X.; Chen, Y.-W. A Statistical Texture Model of the Liver Based on Generalized N-Dimensional Principal Component Analysis
(GND-PCA) and 3D Shape Normalization. Int. J. Biomed. Imaging 2011, 2001, 7. [CrossRef] [PubMed]

29. Kischkat, J.; Peters, S.; Gruska, B.; Semtsiv, M.; Chashnikova, M.; Klinkmüller, M.; Fedosenko, O.; Machulik, S.; Aleksandrova, A.;
Monastyrskyi, G.; et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide,
aluminum nitride, and silicon nitride. Appl. Optics 2012, 51, 6789–6798. [CrossRef] [PubMed]

30. Drexler, W.; Morgner, U.; Ghanta, R.K.; Kärtner, F.X.; Schuman, J.S.; Fujimoto, J.G. Ultrahigh-resolution ophthalmic optical
coherence tomography. Nat. Med. 2001, 7, 502. [CrossRef] [PubMed]

31. Yogesan, K.; Jørgensen, T.; Albregtsen, F.; Tveter, K.J.; Danielsen, H.E. Entropy-based texture analysis of chromatin structure in
advanced prostate cancer. Cytometry 1996, 24, 268–276. [CrossRef]

32. Basset, O.; Sun, Z.; Mestas, J.L.; Gimenez, G. Texture Analysis of Ultrasonic Images of the Prostate by Means of Co-occurrence
Matrices. Ultrason. Imaging 1993, 15, 218–237. [CrossRef]

33. Conners, R.W.; Harlow, C.A. A theoretical comparison of texture algorithms. IEEE T. Pattern Anal. 1980, 2, 204–222. [CrossRef]
34. Hongchuan, Y.; Bennamoun, M. 1D-PCA, 2D-PCA to nD-PCA. In Proceedings of the 18th International Conference on Pattern

Recognition (ICPR’06), Hong Kong, China, 20–24 August 2006; pp. 181–184. [CrossRef]
35. Schmitt, J.M.; Knüttel, A.; Yadlowsky, M.; Eckhaus, M.A. Optical-coherence tomography of a dense tissue: Statistics of attenuation

and backscattering. Phys. Med. Biol. 1994, 39, 1705. [CrossRef] [PubMed]
36. De Grand, A.M.; Lomnes, S.J.; Lee, D.S.; Pietrzykowski, M.; Ohnishi, S.; Morgan, T.G.; Gogbashian, A.; Laurence, R.G.;

Frangioni, J.V. Tissue-like phantoms for near-infrared fluorescence imaging system assessment and the training of surgeons.
J. Biomed. Opt. 2006, 11, 014007. [CrossRef] [PubMed]

37. Schmitt, J.M. OCT elastography: Imaging microscopic deformation and strain of tissue. Opt. Express 1998, 3, 199–211. [CrossRef]
[PubMed]

http://doi.org/10.1016/S0030-4018(97)00280-0
http://doi.org/10.1038/s41598-017-02797-8
http://www.ncbi.nlm.nih.gov/pubmed/28566684
http://doi.org/10.1364/OPEX.13.009361
http://www.ncbi.nlm.nih.gov/pubmed/19503137
http://doi.org/10.1364/BOE.6.000859
http://www.ncbi.nlm.nih.gov/pubmed/25798310
http://doi.org/10.1364/JOSAA.20.000357
http://www.ncbi.nlm.nih.gov/pubmed/12570303
http://doi.org/10.1155/2011/601672
http://www.ncbi.nlm.nih.gov/pubmed/22013432
http://doi.org/10.1364/AO.51.006789
http://www.ncbi.nlm.nih.gov/pubmed/23033094
http://doi.org/10.1038/86589
http://www.ncbi.nlm.nih.gov/pubmed/11283681
http://doi.org/10.1002/(SICI)1097-0320(19960701)24:3&lt;268::AID-CYTO10&gt;3.0.CO;2-O
http://doi.org/10.1177/016173469301500303
http://doi.org/10.1109/TPAMI.1980.4767008
http://doi.org/10.1109/ICPR.2006.19
http://doi.org/10.1088/0031-9155/39/10/013
http://www.ncbi.nlm.nih.gov/pubmed/15551540
http://doi.org/10.1117/1.2170579
http://www.ncbi.nlm.nih.gov/pubmed/16526884
http://doi.org/10.1364/OE.3.000199
http://www.ncbi.nlm.nih.gov/pubmed/19384362

	Introduction 
	Materials and Methods 
	OCT Device 
	Phantom Preparation and Imaging 
	Texture Analysis 

	Results 
	Discussion 
	Conclusions 
	References

