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Abstract: Network-based intrusion detections become more difficult as Internet traffic is mostly en-
crypted. This paper introduces a method to detect encrypted malicious traffic based on the Transport
Layer Security handshake and payload features without waiting for the traffic session to finish while
preserving privacy. Our method, called TLS2Vec, creates words from the extracted features and
uses Long Short-Term Memory (LSTM) for inference. We evaluated our method using traffic from
three malicious applications and a benign application that we obtained from two publicly available
datasets. Our results showed that TLS2Vec is promising as a tool to detect such malicious traffic.

Keywords: privacy preserving IDS; TLS; Network Intrusion Detection System; encrypted malicious
traffic

1. Introduction

Most Internet traffic is encrypted, which can be seen in the number of active certificates
issued by Let’s Encrypt [1], Firefox Telemetry [2], and Google transparency report [3]. Along
with this change, malware has started to TLS to hide its malicious activities. They share
their information by receiving, sending instructions, and retrieving sensitive data from
the infected machines. In 2020, VMWare [4] had estimated that 70% of the attacks would
leverage encryption and will be increased more in the next year.

The traffic encryption prevents a traditional Network Intrusion Detection System
(NIDS) from inspecting the payload, which is crucial to determine whether the traffic is
benign or malicious. On the other hand, the most well-known approaches to classification,
such as port-based [5] and signature-based [6], do not work well. Port-based inspection
can classify traffic according to the service name and port number registry assigned by
Internet Assigned Number Authority (IANA) [7]. However, this approach does not work
correctly if the application changes to a custom port. Signature-based IDS may solve the
problem, but needs a predetermined set of rules and features, which is cannot reliably
detect unknown malicious traffic. A lof of research used payload-independent statistical
approaches from 1999 until recent years [8–11]. The use of flow attributes such as packet
length, inter-arrival time, and flow duration makes it unnecessary to dissect the payload
and avoid breaching the user’s privacy [12].

For detecting malicious encrypted traffic, we propose an approach that uses Deep
Learning techniques incorporated with Word2Vec, which we call TLS2Vec. In this research,
our goal is to detect encrypted malicious traffic that utilizes SSL/TLS using packets from
the TLS handshake and the payloads without waiting for the conversation to finish. Hence,
with TLS2Vec we preserve privacy as the traffic is not decrypted and we can take an
immediate action while the traffic is running. We assume that TLS2Vec is used as a part of
an ensemble of NIDS, which the ensemble includes a host behavior analysis system and
others. Our method has two important characteristics: first, we do not need to decrypt
the traffic, which will impact in keeping privacy. Second, we can take immediate action as
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soon as we determine that the traffic is malicious. We use two datasets that use encryption
protocol in their traffic for our evaluations: the CTU-Malware-Capture dataset [13] and
Jason Stroschein’s public Github malware samples [14]. The contribution from our paper is
detecting malicious traffic using a TLS session before the conversation finishes between
client and server.

We organize our paper as follows. We review the existing related works and provide
the essential features extracted from their techniques in Section 2. The datasets are described
in Section 3, while Section 4 covers our proposed method, TLS2Vec. Section 5 provides
the evaluation results and analysis. Finally, the last section concludes our paper, including
future work, and open questions.

2. Related Works

The detection of encrypted malicious traffic has gained attention in the network
security fields. While many research topics are related to traffic classification with different
techniques, only a few studies focus on encrypted malicious traffic. The signature-based
approach proposed by [15] relies on Snort [16] to detect encrypted malicious traffic. While
Snort is capable of Deep Packet Inspection (DPI), the pattern matching rules are inadequate
to handle malicious traffic, especially encrypted. Papadogiannaki et al. [17] proposed a
fast signature-based NIDS, detecting malicious traffic even if it is encrypted. While the
detection in signature-based is swift for known attacks, its rules must be updated regularly
to keep up with all available attack signatures.

Callegati et al. and Sen et al. proposed man-in-the-middle (MITM) and DPI [18,19].
MITM and DPI must decrypt traffic using a key for inspections, hence they are expensive
and cannot work without the key, and potentially breach privacy. That is why traffic analysis
is preferred [20], but analysis without decryption has challenges due to conversations over
encrypted channels.

Wala and Cotton [21] studied traffic analysis with fingerprinting by aggregating
several pieces of information from Zeek-IDS [22], such as operating system and the version,
open ports on a host, and types of browsers. Prasse et al. [23] proposed how to detect
malware traffic on client computers based on HTTPS traffic analysis based on statistical
patterns in the timing and the sequence of the network flows from and to the client.

Anderson and McGrew [24] analyzed the network flow with a feature set involving do-
main experts in supervised learning. The analysis was based on millions of TLS encrypted
sessions from a commercial malware sandbox for more than one year. Shekhawat et al. [25]
proposed detecting malicious traffic by performing feature analysis on several logs gen-
erated from Zeek-IDS. This analysis determined the relative importance of these features
from three of the logs. Zheng et al. [26] proposed two-layer detection to identify malicious
TLS flow. The author’s method uses two different layers. In the first layer, a set of TLS
handshake features was employed and trained to distinguish between benign and mali-
cious TLS. The second layer is then used to identify malware families using TLS handshake
features and statistical features. The authors claimed 99.45% accuracy was reached using
their method. Dai et al. [27] proposed malicious traffic detection based on multi-view
features. The authors extract the features from multiple views such as flow statistics, SSL
handshake field, and certificate key. While their methods are comprehensive, using flow
statistics requires communication to finish between client and server. At the same time, it
will affect the delay of the action because we need to wait for the session to finish between
communicating parties.

Several works have been carried out in unsupervised learning to detect anomalies
within network flow. The work in [28] proposed an unsupervised Network Intrusion
Detection System (NIDS) to detect unknown network attacks in encrypted networks.
Su et al. [29] implemented a hierarchical clustering algorithm to extract huge training data.
At the same time, Li et al. [30] proposed a clustering algorithm with a combination of
K-Nearest Neighbors (KNN) for detecting anomalies. The advantage of unsupervised
learning is detecting unknown malicious traffic within an encrypted network. However,
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without adequate information to determine the ground truth, there is a possibility that a
high false alarm rate may occur. Furthermore, the algorithm might take time to analyze
any possibilities.

Based on Baroni et al. [31], the implementation of Word2Vec has proven to be successful
in different areas. In non-network areas, Baek and Chung [32] used Word2Vec to build a
multimedia recommendation system based on trust relationships by encoding the sentiment
words in related comments into word vectors. At the same time, Chuan et al. [33] adopted
Word2Vec to capture the relationship between harmonic and meaningful tonal in music.
Ring et al. [34] proposed a similarity measure between IP Addresses using Word2Vec,
where the idea is to extract available context information from the network connection.
Goodman et al. [35] proposed translated packets into vectorized representations then
formed a sequence of words. In contrast, Li et al. [36] used Word2Vec to deal with the
semantic gap in the anomalous HTTP traffic.

3. Dataset Description

In this research, we used two public datasets that contain malicious encrypted traffic.
We chose datasets with more encrypted malicious traffic than the other publicly available
datasets. We did not include datasets, such as [37], that are not publicly available. CTU-
Malware-Capture [13] is a dataset produced from Malware Capture Facility Project [38]
responsible for long-term captures. Second, we use Jason Stroschein’s public Github
malware samples [14]. We use Zeus, benign, and Cobalt from TU-Malware-Capture and
Trickbot from Jason Stroschein. The choice of Zeus, Cobalt, and Trickbot is based on their
communication utilizing encryption, the variety of the activities [39], and how their activity
opens the backdoor for further malicious applications [40].

All the datasets were raw PCAP files consisting of TLS packets and any other packets.
We considered only the TLS packets. Table 1 shows the basic information of label, total
packets, total TLS sessions, and the average number of application data packets per session
(Avg. App Data/Session) from the total of the datasets. The Zeus, Benign, and Cobalt are
from CTU-Malware-Capture. While Trickbot is from public Github of Jason Stroschein.

Table 1. Basic information of the datasets.

Label Total Packets Total TLS Sessions Avg. App Data/Session

Zeus 2,201,308 10,581 1.932
Benign 1,601,294 1461 1.249
Cobalt 1,471,709 250 2.000

Trickbot 895,172 33 1.909

4. Methodology

The key of our research is to analyze the TLS session by identifying the features from
the TLS handshake and the payload. Most of the encrypted network traffic has a specific
format that differs from the others. Thus, using the knowledge of this format, it is possible
to differentiate and identify the malicious traffic. TLS2Vec has three steps:

(1) Feature Extraction: extracts features from raw PCAP to build a corpus.
(2) Building Vocabulary and Token Parser: uses tokenization technique to extract

words from the training dataset and then applies word embedding technique to
represent words.

(3) Training Model: TLS2Vec trains the dataset using LSTM and BiLSTM.

Our study analyzes whether the TLS handshake and payload can be used to identify
the malicious traffic from benign before the conversation finishes between client and server.
We want to emphasize that the results from our methods can be used to take immediate
action as soon as we can classify the traffic as malicious. Since opening and analyzing
the encrypted content without a private key is almost impossible, this leaves us with the
unencrypted content that resides in the header, the TLS handshake, and the statistical
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information of payload. We decided to analyze the TLS handshake and payload and
remove the rest.

We do not include the analysis of the host’s behavior in this research. The analysis of
the host’s behavior is used to determine the encrypted communication from remote access
trojan (RAT). The method includes the study of the transmission multiple session-based
using 5-tuple. Thus, our method cannot run independently but as an ensemble with the
NIDS based on host behavior.

4.1. Feature Extraction

TLS improves the SSL version 3 protocol that provides transport-level security over
TCP [41]. TLS consists of a Record Protocol that acts as an envelope for Application
Data [42]. The possibility of extracting information from encrypted content is limited. How-
ever, it is possible to obtain information in two ways: the unencrypted and its properties
and the packet length of the payload. We can get information from the unencrypted phase:
the initial handshake and its properties, and the authentication information exchange iden-
tifier from the client and the server. During the initial TLS handshake, the client and server
negotiate with both exchanging cipher suites information and which protocol version is
used. Many cipher suites exist and are not all implemented by the client’s application.
Usually, the client’s application specify the supported cipher suites and which cipher suites
are recommended for the initial handshake. The important thing from this behavior is
distinguishing malicious applications coming from the client. The next is the authentication
exchange information, such as the extensions [43]. Our method considered extensions such
as elliptic_curves and ec_point_formats for the features. The malicious applications tend to
use weak encryption and offer fewer extensions. Such weak encryption is probably because
of the lack of concern with a strong encryption mechanism. Several authors disregard
the encryption mechanism. On the other hand, others are only concerned with strong
encryption [44].

In payload-based inspection, most of the techniques use the information from the
payload of the application layer [45]. Our method is different from [18,19], which requires
decrypting the traffic using the key. The packet length from the TCP Application Data
is the additional information feature extracted from encrypted traffic. Although some
TLS server communication parameters can be changed over time, an application-specific
profile usually reflects the Application Data’s content size. We considered using the TCP
packet length from Application Data. While we cannot see into the unencrypted content,
the packet length is directly linked to the payload of the traffic and usually follows an
application-specific profile [46]. Thus, we can use packet length to determine which traffic
is benign or malicious based on the specific application profile.

The unencrypted phase communication between client and server follows TLS pro-
tocol, which can be treated as one sentence in a TLS session. Each sentence has a specific
pattern that can distinguish between malicious and benign. Similar words with correlation
are represented by similar vectors closely placed in a vector space. In the network, the
sequence from the TLS sessions is textual data that should be encoded into a numeric
representation. In this case, we argue that a numeric vector can represent the sequence of
traffic with similar vectors in the embedding space. Similar traffic represented by words
will have the same vector space, benign or malicious.

Figure 1 shows the steps from feature extraction to building a corpus. The single box
is a TLS session with two payloads from a PCAP file with a right arrow representing a
client’s packet and a left arrow representing a server’s packet with features. The first two
arrows in the left box are handshakes while the rest represent TCP Application Data, which
we call payload. We collected zero to a total of two or more payloads from each client and
server. Multiple TLS sessions exist in the PCAP file with the symbol of TLSt. The arrow
in the middle represents the features that are being extracted to a corpus. The document
symbol on the right represents a corpus containing a TLS handshake and two payloads
from the features.
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The TLS sessions consist of hundreds of features. Most of the contents are encrypted
except the handshake containing handshake protocols like Client Hello, session ID, the
version of the TLS, length, the cipher suites, compression method, and extensions. The
PCAP contains multiple session conversations between the client and the server, from the
three-way handshake to the TLS sessions. We extract the features from the raw PCAP
from two datasets and preprocess the data based on the session. Consider a raw PCAP
with multiple TLS sessions (TLSt, TLSt+1. . . TLSt+n). For each session, we extract the TLS
handshake TLS/SSL version (version), Cipher Suites List from Client Hello or Server
Hello (cipher), Extension Length from Client Hello or Server Hello (ext_len), Elliptic
Curves from Client Hello (elliptic_curves), Elliptic Curve Point Formats from Client Hello
(ec_point_formats), and the payload (len). The extracted features are then constructed
into words. Each record in our dataset describes one TLS session, which can be viewed as
a sentence.

Our study treated a sentence as a TLS language that follows TLS protocol. Because
we extract TLS session raw PCAP files, the decimal representation from the extracted data
will create a row of numbers representing a communication session between a client and a
server. We then add a symbol on each feature based on their representation, as shown in
Figure 1 in the document symbol. In the document symbol from Figure 1, C, ET, EC, ECP,
CAPP, or SAPP represent cipher, ext_len, elliptic_curves, ec_point_formats, and len. The
information in the document symbol is a sample of a single TLS session from the client
and server taken from Trickbot malicious traffic. The collection of all these words is called
a corpus.

Figure 1. Overview of TLS2Vec.

4.2. Building Vocabulary and Token Parser

In this phase, converting words from the corpus into vector space models uses
Gensim [47] version 4.1.2. Word2vec technique trains each word in the corpus and converts
each into a 300-dimensional vector. We chose a dimension of 300 because prior research has
shown it to be a good choice [48–50]. In this phase, building vocabulary utilizes the tok-
enization technique to extract words from the training dataset and apply word embedding.
A token parser then used the vocabulary to convert each TLS session in the dataset into a
token sequence.

In general, the Word2Vec technique has two architectures, the Continuous Bag-of-
Words (CBOW) and Skip-gram. The CBOW tries to predict the target word based on the
surrounding words’ context. On the other hand, Skip-gram tries to predict the context word
from a word. In CBOW, the representation words are combined to predict the word in the
middle. Both architectures might be used for different purposes in the NIDS incorporated
with machine learning. Regarding training time between CBOW and Skip-gram, the former
is slightly faster and has less computational cost, while Skip-gram might better predict a
large dataset. Skip-gram is more suitable for anomaly detection, which does not make any
assumption about the malicious traffic instead of on benign traffic. While in CBOW, the
prediction of malicious traffic is based on the surrounding information and its similarity.
To determine which one has a better prediction, we evaluated both CBOW and Skip-gram.
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4.3. Training Model

Two types of Recurrent Neural Network (RNN) were used to evaluate the performance:
Long Short-Term Memory (LSTM) and Bidirectional LSTM (BiLSTM). LSTM and BiLSTM
have a specialty of their effectiveness in memorizing particular patterns. At the same time,
both algorithms are suitable for detecting malicious traffic with payloads [51,52].

5. Evaluations

This section evaluates the performance of the TLS2Vec by performing with binary
and multiclass targets. We grouped three malicious traffic from the Zeus, Cobalt, and
Trickbot into a single class Malicious for the binary target. The total number of TLS sessions
of Malicious traffic was 10,163 after grouping. The considered evaluation used 5-fold
cross-validation (CV-5). Note that an imbalance of data distribution exists in this dataset.
We used both the categorical_crossentropy and binary_crossentropy for the loss function.
The Adam optimizer was applied with a learning rate of 0.001. The rest of the hyper-
parameters used their default values. The softmax was used for the activation function
for categorical_crossentropy, while sigmoid was used for binary_crossentropy. Figure 2
illustrates the evaluation procedure. Table 2 provides the hyper-parameters regarding
detection based on LSTM and BiLSTM.

Figure 2. The evaluation procedure.

Table 2. LSTM and BiLSTM hyper-parameter for binary dan multiclass target.

Hyper-Parameter Binary Target Multiclass Target

Activation Function sigmoid softmax
Epoch 30 30

Optimizer adam adam
Learning Rate 0.001 0.001

Batch Size 32 32
Loss Function binary_crossentropy categorical_crossentropy
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In general, the overall accuracy metric might be used to measure the results in the
binary target. However, to rely on the performance only for accuracy is unfavorable,
especially when involving a class imbalance dataset. We adopted F1-score to give more
insight into the dataset in this research. Based on our analysis of the datasets, we found
that most of the payloads from the malicious traffic from each session mainly were two
payloads, with several sessions having only three and very few sessions having more than
that. From this result, we proceed with our analysis using zero payload, one payload,
and two or more payloads. We compared our analysis with a non-TLS2Vec method. In
non-TLS2Vec we used the same features as in TLS2Vec except we did not use Word2Vec
and removed the symbols that represent features such as cipher, ext_len, elliptic_curves,
ec_point_formats, and len. We did this because as far as we know, we did not find any
similar methods.

In the first evaluation, we started with a TLS handshake with zero, one, and two or
more payloads with TLS2Vec with CBOW, TLS2Vec with Skip-gram, and a Non-TLS2Vec.
As illustrated in Figure 3, both CBOW and Skip-gram with LSTM and BiLSTM performed
similarly well in detection, with the former slightly better. The better performance was
understandable with both can predict the next words in the input sentence from the TLS.
In a non-TLS2Vec method, the performance significantly decreased along with the addition
of one to two or more payloads. In CBOW-LSTM, the high F1 score started with zero then
was relatively stable in one to two or more, meaning the LSTM can detect almost all the
Malicious and Benign with the default hyper-parameter. Compared with the counterparts,
CBOW-BiLSTM slightly decreased after zero payload and then increased again in two
or more. The primary reason was that CBOW-BiLSTM needed to fetch more training
data to reach equilibrium with one payload. On the other hand, Skip-gram BiLSTM was
slightly better than Skip-gram LSTM. The figure showed us that starting from zero and then
increasing after one payload indicates that having more payload is better for improving
the performance. The result was consistent as BiLSTM has run inputs in two ways, and
this implies that having more payloads might detect more in Benign and Malicious using
default hyper-parameters. Based on this result, we continued to use TLS2Vec with CBOW
and Non-TLS2Vec, and exclude TLS2Vec with Skip-gram In the subsequent evaluation, we
used a different strategy for detection by using a multiclass target. The results showed in
Figure 4.

Figure 3. The evaluation between TLS2Vec with CBOW, TSL2Vec with Skip-gram, and Non-TLS2Vec.
The x-axis is the payload from zero, one, and two or more payloads, while the y-axis is the F1 score.

The figure illustrated the trend in the increase of detection for both CBOW-LSTM,
CBOW-BiLSTM, and non-TLS2Vec. In CBOW-LSTM, both Zeus and Cobalt were stable,
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starting from zero, one, and two or more. The result indicates LSTM can detect all the Zeus
and Trickbot starting from the TLS handshake. While in the Benign class, the performance
slightly decreases with one payload and then slightly increases with two or more payloads.
The results showed that LSTM needed fetching more training data to reach the same
performance with zero payload for one to two or more. As for the counterpart, Trickbot
was increased along with payloads. Although the performance went up, the trend was
stable. In a non-TLS2Vec, the performance was decreased along with the addition of the
payloads for all classes.

Figure 4. The multiclass target with LSTM (upper) and BiLSTM (lower). The x-axis is the payload
from zero to two or more, while the y-axis is the F1 score.

In the following evaluation, we added more parameters for evaluation using dis-
cretization transformation by binning the payload. Discretization transformation reduced
the traffic patterns and discriminated among the traffic by grouping those with similar
payloads [53,54]. Furthermore, binning reduced the vocabulary. The payload from the
datasets has 872 unique values.

The problem in the discretization was selecting the intervals or bins. We used two
different methods for selecting the number of bins: bit-length, which we called Bit-Width,
and the Sturges rule, used for constructing histogram and non-stationary data [55]. For
the Bit-Width (BW), we used intervals from 0 to 63, 64 to 127, 128 to 255, 256 to 511, 512
to 1023, and 1024 or more. The payload in the intervals of six categories will be converted
according to the bins. For the Sturges rule, we used two different combinations called
Sturges-EqualWidth (SEW) and Sturges-EqualFreq (SEF). SEW ensured each bin has an
equal range of the original value, while with SEF, each bin has the same number of samples.
For SEW and SEF, selecting a number of bins followed the Sturges rule for only one payload.
The bins range results from one payload then applied to the payload two or more.
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Notice that during the binning process with SEW, we found that several bins had zero
members (see Figure 5). The results were due to SEW’s nature, which groups members by
their equal range. From this point, if the bin’s range was zero, no payload exists within the
range. In the subsequent evaluation, we started with implementing BW, SEW, and SEF and
then evaluated all four classes. Figures 6–8 show the results of the multiclass target using
LSTM and BiLSTM with BW, SEW, and SEF, respectively.

Figure 5. The histogram of one-payload length with BW (left), SEW (center), and SEF (right). The
x-axis is the bin range, while y-axis is the member count.

Figure 6. Multiclass target evaluation results using BW-LSTM and BW-BiLSTM. The x-axis is the
payload from zero (with no binning), one, and two or more, while the y-axis is the F1 score.

Figure 7. Multiclass target evaluation results using SEW-LSTM and SEW-BiLSTM. The x-axis is the
payload from zero (with no binning), one, and two or more, while the y-axis is the F1 score.
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Figure 8. Multiclass target evaluation results using SEF-LSTM and SEF-BiLSTM. The x-axis is the
payload from zero (with no binning), one, and two or more, while the y-axis is the F1 score.

BW, SEW, and SEF were relatively stable for Zeus and Benign. While for Cobalt, we
found a decrease in BW and SEF. Similarly, Trickbot also decreased in SEW and SEF. The
results showed that binning has no significant effect on detection.

We concluded that our methods can be used to detect encrypted malicious traffic based
on our results. We can see in the evaluation using CBOW-LSTM, CBOW-BiLSTM, then
using Skip-gram LSTM, and Skip-gram BiLSTM. We then continued the evaluation using
three different kinds of binnings. First, we compared CBOW and Skip-gram starting with
zero to two or more payloads, which increase performance. Our method can detect Benign
and Malicious with an average of 0.999 using only TLS handshake information. Both of
the models can learn to distinguish between Malicious and Benign. The TLS handshake
consists of a cipher suite produced from the Malicious was different from the Benign,
and the model can learn and detect to distinguish this information. The reason is that
the TLS handshake from non-malicious traffic might be produced from the library of the
OS. In contrast, the TLS handshake from the malicious traffic produced by the malicious
application [56]. From this point, we can generalize our model using a TLS handshake.

Another advantage of using our method is that we can detect the binary target and
the multiclass target using the payload from each traffic. The average detection rate is 0.82
for total from Zeus, Benign, Cobalt, and Trickbot combined. We then evaluated our method
using three different binnings: BW, SEW, and SEF, to better characterize the traffic by
reducing the vocabulary. However, implementation of binnings will reduce the vocabulary.
In general, the implementation of binning has no significant effect on detecting malicious
traffic. Furthermore, we found that using our method has disadvantages over the minority
class when combined with the binnings. Our results found that using only a TLS handshake
is enough to detect encrypted malicious traffic. The additional payloads from one and two
or more can increase the performance. However, the effect depends on the TLS handshake.

6. Conclusions and Future Work

Today, most of the network traffic is changing from unencrypted to encrypted. While
encryption preserves user’s privacy, at the same time, many threats start increasing their
malicious intent over the network. The contribution of this paper is a method for detecting
malicious traffic using a TLS session before the conversation finishes between client and
server. To achieve this, we extract meaningful information from the TLS handshake and
some portion from the TCP length of Application Data, which we call payload, and then
create a corpus of traffic. We then predicted malicious traffic using based on the TLS session
and payload.

Based on the evaluation, we conclude that TLS2Vec is promising to handle encrypted
malicious traffic with higher accuracy, especially as malicious applications use their own
TLS library instead of available library in the host. We also find that TLS2Vec performs
better than Non-TLS2Vec, which use neither symbols nor Word2Vec embedding. Binning
the payload length in order to reduce the vocabulary does not improve the performance, but
rather it gives worse performance for the minority class. We want to conclude our research
that LSTM and BiLSTM have advantages in CBOW for detecting encrypted malicious traffic.
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Furthermore, we want to highlight the points that make our solution different from others.
Using our method, TLS2Vec can detect encrypted malicious traffic using TLS handshake
and a portion of the payload. The impact is that we do not need to dissect the traffic to
maintain the user’s privacy.

There are at least three open questions based on this paper. In terms of traffic analysis
and NIDS, shorter packets from the payload must be further analyzed. Another question
is how NIDS may work given the traffic is encrypted. In terms of Deep Learning, future
research should address whether we can use the corpus to detect the variants of malicious
traffic, such as Zeus.
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