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Abstract: Physically active breaks (AB) are currently being proposed as an interesting tool to improve
students’ attention. Reviews and meta-analyses confirm their effect on attention, but also warned
about the sparse evidence based on vigilance and university students. Therefore, this pilot study
aimed to (a) determine the effects of AB in comparison with passive breaks on university students’
vigilance and (b) to validate an analysis model based on machine learning algorithms in conjunction
with a multiparametric model based on electroencephalography (EEG) signal features. Through
a counterbalanced within-subject experimental study, six university students (two female; mean
age = 25.67, STD = 3.61) had their vigilance performances (i.e., response time in Psycho-Motor
Vigilance Task) and EEG measured, before and after a lecture with an AB and another lecture
with a passive break. A multiparametric model based on the spectral power, signal entropy and
response time has been developed. Furthermore, this model, together with different machine learning
algorithms, shows that for the taken signals there are significant differences after the AB lesson,
implying an improvement in attention. These differences are most noticeable with the SVM with
RBF kernel and ANNs with F1-score of 85% and 88%, respectively. In conclusion, results showed
that students performed better on vigilance after the lecture with AB. Although limited, the evidence
found could help researchers to be more accurate in their EEG analyses and lecturers and teachers to
improve their students’ attentions in a proper way.

Keywords: attention; physical exercise; electroencephalography; machine learning

1. Introduction

There is a growing body of research showing the cognitive benefits that physical
activity (PA) has on cognition and academic-related outcomes [1,2]. The inclusion of PA
during lessons might be of special interest for the learning outcomes of students. Among the
different ways of introducing PA in the classroom, active breaks (AB) are seen as a novel
approach of special interest for researchers and teachers [3], since they can be carried out
in any school space or context without the need of a specific equipment nor personnel [4].
Concretely, AB are short bouts of moderate-to-vigorous PA (i.e., between 5 and 15 min) led
by the teachers at any educational level embedded into the lessons or between them [4].

At university level, students usually suffer from changes in their lifestyle by decreasing
PA—a fact that has motivated different proposals for increasing the PA levels during this
period [5]. In this sense, sedentary and passive behaviours during lectures compromise
attention and memorisation in undergraduate students and AB can be an useful way
of maintaining higher levels of attention during the lessons [2]. Attention “acts as a
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‘gate’ into working memory, regulating the flow of sensory information into conscious
awareness” [6]. It can be defined as the ability to resist distraction [6] and is one of the core
executive functions [1,7]. Together with the other cognitive and metacognitive functions [1],
attention [8] plays an essential role for learning and, therefore, negative effects on attention
might turn into decreases in students’ learning [9]. The inclusion of AB into academic
lessons has been demonstrated to improve attention levels, especially selective attention,
in a wide range of educational levels including university students [8]. However, there is a
lack of research at this educational level regarding the effects of AB on sustained attention
or vigilance (i.e., the ability to accurately and quickly respond to relevant stimuli presented
in a random frequency [10]).

Adult-based evidence has shown that acute PA positively affects vigilance performance
in terms of response time [11]. Nevertheless, the advances in electroencephalography (EEG)
allow to address this issue from the point of view of brain functioning through the study of
brain oscillations. Previous studies have shown that attentional performance after a single
bout of PA was correlated with increased activation in some attentional control-related
areas such as middle and superior frontal gyrus and superior parietal lobe [12]. Acute PA
has also been followed by changes in activation in alpha, theta, beta and delta frequency
bands in brain oscillations [13]. Nevertheless, the EEG approach is especially scarce within
the current research regarding vigilance [14]. In addition, no prior EEG-based study exists
that focuses on the effects of AB on vigilance. The present study tries to fill this gap in the
current literature by conducting an experimental pilot study that is innovative for this area
of research due to the counterbalanced within-subject design under laboratory conditions,
which simulates an actual academic lesson.

In this regard, the use of a multiparametric model is introduced in this paper in
order to differentiate whether there are differences between the performance of AB in
the attention context using different machine learning techniques over EEG signals. Such
algorithms have shown to be effective in emotionally oriented tasks [15–18], cognitive stress
detection [19,20] and others by using EEG signals alone [21,22] or in conjunction with other
physiological signals such as electrodermal activity (EDA) [23,24], blood volume pressure
(BVP) [25], electrocardiogram (ECG) and electromyography (EMG), among others [26–28].
Therefore, the aim of this pilot study has been twofold. On the one hand, one objective
was to determine the effects of AB in comparison with passive breaks on vigilance (i.e.,
sustained attention) performance in university students. On the other hand, another aim
was to validate an analysis model based on MLA in conjunction with a multiparametric
model based on EEG signal features.

The remainder of this article is structured as follows. Section 2 introduces the experi-
ment design, the dataset and the methods used for analysis. Section 3 reports the results
obtained in detail. Next, in Section 4, the results are discussed and put in context. Finally,
in Section 5, the most relevant conclusions obtained in this pilot study are offered.

2. Materials and Methods
2.1. Participants

A total of six Spanish, Caucasian, right-handed participants was recruited for this pilot
study. Six students, four men and two women, aged between 22 and 32 (mean age = 25.67,
STD = 3.61). All were recruited among the students of the Faculty of Education of the
Universidad de Castilla-La Mancha, Albacete, Spain. All students belonged to the univer-
sity community, being of Caucasian ethnicity and Spanish native speakers. The inclusion
criteria for the participants were (i) reporting normal vision, no partial/chronic injury and
no history of neuropsychological impairment that could affect the results of the experiment,
(ii) not presenting any injuries during the last two months, (iii) giving consent, and (iv)
participating in all sessions during the study period (see Table 1). The participants obtained
information about the main aims of the investigation and they had to sign an informed
consent form. All participants completed the Physical Activity Questionnaire (IPAQ) [29]
to verify their lifestyle. In this questionnaire, they were asked about current sports habits,
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addictions and diseases that could prevent them from the practice of physical exercise. All
subjects completed the same number of AB sessions.

Table 1. Information of each participant.

Subject Gender Age Starting Condition

1 Male 32 AB
2 Male 23 Control
3 Female 26 AB
4 Male 22 Control
5 Female 24 AB
6 Male 27 Control

2.2. Experimental Design

This study followed a counterbalanced within-subject experimental design under
laboratory conditions; that is, each of the six participants took part into two conditions,
namely control (i.e., passive break; Control Condition) and experimental (i.e., physical
activity break; AB Condition) in random order, leaving a minimum 24 h washing period.
The participants were previously asked not to engage into intense PA during the 24 h before
the data gathering. Each experimental session carried out individually in a laboratory
lasted around 90 min (see Figure 1). First, they were asked to wear a heart rate registration
band and a smartwatch. and they had to answer control questions about their subjective
arousal, sleep quality and previous intake of caffeinated drinks. Then, in the same room,
the research team placed the EEG and started the pretest. This consisted of completing the
15 min Psycho-Motor Vigilance Task (PVT) on an iPad. Then, the EEG device was removed,
and the participant was moved to another room where they started a typical theoretical
lecture. After 20 min of lecture, one of the experimental conditions previously assigned at
random was applied during 15 min. Just after that time, the participant was moved again
to the first room; the EEG was placed and the post-test (i.e., the same 15-min PVT task)
was carried out. Finally, the participant was asked about their subjective arousal and the
data-gathering process finished. Each participant repeated this procedure after 24 h but
with a change in the experimental condition.

For the pretest and the post-test, it was ensured that the headset was placed in the
same position for each participant. For this purpose, a series of considerations were applied.
Firstly, the participant’s head was measured to select the correct cap size. Once placed on
the participant’s head, the relative distances between the eyes, ears and forehead to the cap
were measured to leave it in the same position for both uses.

Figure 1. Schematic representation of experimental design.

In this context, the two conditions that have been assessed are:
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• Control Condition: After 20 min, the teacher stopped the lesson and asked the partic-
ipant to take a break by silently reading a scientific article for 10 min sitting at their
desk.

• Experimental condition: After 20 min, the teacher stopped the lesson and asked the
participant to stand up to taking an active break. The active break consisted of 10 min
of moderate-to-vigorous and vigorous noncognitively engaging (or «aerobic», please
see [14]) physical activity, carried out behind the participant’s desk.

2.3. EEG Configuration

Versatile EEG 32 channels from Bitbrain [30] was used to acquire the EEG signals
while carrying out the PVT in the pilot study. This EEG cap is being used in many neuro-
physiological experiments due to its simplicity and ease of wear. It does not require
conductive gel on its electrodes as it uses a saline solution. Versatile EEG 32 is a wireless
device using a Bluetooth connection. It has 32 acquisition channels for EEG signals with
a 286 Hz sampling rate. Figure 2 shows the placement and the available electrodes of
the device: (a) shows the placement of the EEG device on the participant; (b) shows the
32 electrodes available on the device and their position according to the 10-10 electrode
placement system [31].

Figure 2. (a) Versatile EEG 32 channels from Bitbrain. (b) EEG Channel locations.

2.4. Cognitive Measurement on the Psycho-Motor Vigilance Task

An iPad (iOS 12.4.5) was used to present the stimuli of the PVT and collect relevant
data during a 15-min session (see Figure 1, for more information). The iPad was previously
blocked for any type of external notification. The iPad screen was placed around 50 cm
approx from the participants’ head at eyes level. Verbal and written instructions were given
to the participant prior to the start of the PVT in every session, stressing that they had to
fixate on the centre of the grey-background screen, try not to move their eyes, and respond
as quickly as possible (while avoiding anticipation errors) as soon as a chronometer at the
speed of a real stopwatch would start at the centre of the screen.

The stimuli (in form of chronometer) were presented on the screen after a random
time interval that ranged between 2000 and 10,000 ms. The reaction of the participants
were collected through pressing the screen of the device. The participants had to press
the centre of the device as quickly as possible. The exact number of trials for each partic-
ipant depended on the individual’s response reaction time. The participants completed
83.21 ± 7.32 and 81.49 ± 10.38 trials in Control Condition and AB Condition, respectively.

2.5. Signal Processing

The MATLAB framework called FASTER (Fully Automated Statistical Thresholding
for EEG artefact Rejection) was used to process the acquired EEG signals. Signal processing
was carried out in different stages. The first stage consisted in the elimination of the baseline
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of each of the EEG channels by employing a forward or backward filter. More concretely,
a linear-phase finite-impulse response filter was applied. The second stage consisted in
the application of a band-pass filter with cut-off frequencies between 3 Hz and 45 Hz to
select only that frequency spectrum. A notch filter has also been applied to remove the
50 Hz band to eliminate noise from the electrical grid. After that, the EEG signals were
re-referenced to the mean value of channels.

It should be highlighted that after this preprocessing stage, the EEG signals were not
yet ready for use, partly due to interfering artefacts. Those artefacts were mainly due to eye
and facial muscle movements. Fortunately, eye movements are clearly detectable because
of their high power at low frequencies and a diminishing trend in the EEG spectrum as
the frequency rises. Thus, the next step was the elimination of the artefacts by using
independent component analysis [32,33]. This method helped us to determine which part
of the captured signal came from the brain and which was due to external artefacts [34,35].
After that, the remaining the analysis was performed with EEGLAB, another MATLAB
framework specifically created for EEG signal processing [36].

2.6. Data Augmentation

As the study only included a small number of participants, and even so the EEG signals
obtained had a long duration (±15 min each), it was necessary to use data-augmentation
techniques to extend the information provided. These techniques are generally based on
successive segmentation techniques. For this study, in has been chosen to use the sliding-
window segmentation technique with overlapping [37]. Several overlap windows were
tested on 10 s temporal length segments. It was empirically observed that a 0.5 s sliding
window provided the necessary quantity of information to feed the different classifiers.

2.7. Feature Extraction

A multiparametric model was applied to differentiate between the two conditions
established in the experimental set-up. Two sets of parameters were selected based on the
spectral power and entropy metrics [38], as well as the response time, as shown in Table 2.

Table 2. Features used to characterise the EEG signals.

Feature Type Name Acronym

Spectral Power Total Absolute PSD PSDabs
Theta PSD θabs
Alpha Absolute PSD αabs
Beta Absolute PSD βabs
Gamma Absolute PSD γabs
Total Relative PSD PSDrel
Theta Relative PSD θrel
Alpha Relative PSD αrel
Beta Relative PSD βrel
Gamma Relative PSD γrel

Entropy Shannon ESha
Logarithmic ELog

Time Response time RT

The frequency bands in the EEG signal spectrum to calculate the different features’
spectral power were theta (4–8 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma
(30–45 Hz) [39]. The Welch’s power spectral density (PSD) was calculated to estimate
the power of a signal in the several frequency bands. This method uses estimations of
the periodogram spectrum, which is the result of transforming a signal from time-domain
to frequency-domain. First, a time series was divided into overlapping subsequences by
creating a window for each subsequence and then averaging the periodogram of each
subsequence. The length of the window controlled the trade-off between the bias and the
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variance of the resulting power spectral density. In this regard, two computations were
performed for each of the frequency bands. One, the relative PSD measure, PSDrel , is de-
fined as the relation between the PSD of the frequency band to test and the total frequency
spectrum. The force of the relative PSD is the reduction in between-subjects variation
associated with the absolute power, which arises from differences in the conductivity of
the skull and scalp [40–42]. The second, the absolute PSD measure, PSDabs, reflects the
classical computation of the PSD by Welch’s method in the frequency bands. In this regard,
both metrics are necessary to set up a proper information of brain [43].

The second group was based on entropy metrics. The classical Shannon entropy
(ESha) gives an mean measurement of the average information yielded by a set of events
and shows its uncertainty. This measurement emerges as a natural candidate for the
quantification of the signals’ complexity [44,45]. In addition, these results were expressed in
logarithmic form (ELog) [45,46]. Finally, the last group referred to the time taken to complete
the task. Response time (RT) was an external parameter obtained directly from the task
that can be useful to determine a change in the participant’s performance.

2.8. Statistical Analysis

A one-way analysis of variance (ANOVA) was chosen as the statistical analysis to
test possible differences between RTs on PVT and between the electrodes at the different
experimental conditions and times. Regarding PVT, the null hypothesis was that there are
no significant differences between the different RTs for each of the experimental conditions.
In addition, for EEG signals, the null hypothesis was that there are no statistically significant
differences for each of the electrodes for both conditions [47]. To accept or reject our null
hypothesis, a significance level p-value ≤ 0.05 was set using the Bonferroni correction [48].
Statistical analysis software IBM SPSS Statistics 25 was used [49,50].

2.9. Classification

In addition to statistical analysis, MLA were used to differentiate between the two
proposed conditions. For this purpose, different classifiers based on supervised learning
were implemented [51]. All MLA were run on a computer cluster with a 20-core Intel
Xeon Xtreme 10Th Gen processor, 64 GB of RAM and an Nvidia Quadro P5000 with 11 GB
of VRAM. Python 3.8 and Tensorflow and Keras frameworks were employed for data
processing and model training [52,53].

A combination of repeated random subsampling validation and a holdout cross-
validation methodology was applied. Thus, a random partitioning of the dataset was
performed, into training (75%), test (15%) and validation (10%) datasets. The training
process was performed with 200 epochs, but the majority of the configurations converged
between 20 and 70 epochs. To provide a consistent results, between 20 and 100 iterations
(depending on the complexity of the algorithm) were carried out for each machine learning
model. Early stopping was added so as no more resources than necessary were used.

A multiparametric design approach was chosen using the features obtained from EEG
signal processing and RT. The range of classifiers selected were divided into seven main
groups: support vector machines (SVM), decision trees (DT), ensemble trees (ET), linear
discriminant analysis (LDA), logistic regression (LR), k-nearest neighbours (KNN) and
artificial neural networks (ANN). These major groups address the problem of classification
from different perspectives. A grid-search process was conducted in most algorithms
to achieve optimal configurations that prevented overfitting and underfitting from the
dataset generated from data augmentation techniques. This technique is widely used to
find hyperparameters and network topologies in an automated manner for each MLA.
The selection was made based on conditions of maximum F1-score and area under the
curve (AUC) and minimum mean square error (MSE) [54–56].

In this regard, the search criteria were set to find the following parameters: kernel, C
and gamma parameters for SVM; division’s number for DT; type of kernel, neighbours and
number of estimators for ET; minimum distances and number of neighbouring clusters
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for KNN; and, for ANN, different topologies were searched, choosing neurons per layer,
number of layers, dropout coefficients and learning rate (LR) with Adam optimiser. Table 3
displays the different hyperparameters established with the grid-search method.

Table 3. Basic configuration of each classifier.

Classifier Type Configuration

SVM Linear C = 0.74 γ = 420
SVM Quadratic C = 0.84 γ = 324
SVM RBF C = 1.30 γ = 235

DT Fine 4 splits
DT Medium 20 splits
DT Coarse 120 splits

LDA Standard –

ET Boosted Adaboost
ET Bagged 45 estimators
ET Sub-KNN 40 neighbours

KNN Euclidean 4 neighbours
KNN Euclidean 28 neighbours
KNN Euclidean 287 neighbours
KNN Cosine 12 angular distance
KNN Manhattan 14 neighbours

ANN Conf. 1 I1(12) + FC1(34) + FC2(10) + D1(0.63)+
FC3(20) + SFT(2)

ANN Conf. 2 I1(12) + FC1(44) + FC2(36) + FC3(8) + D1(0.79)
+FC4(98) + FC5(68) + SFT(2)

Notes: FCi: fully connected layers
Di: dropout layers
SFT softmax layers

2.10. Performance Metrics

A number of metrics were selected to properly assess the performance of the different
models. The following four fundamental parameters were calculated: true positives (TP),
false positives (FP), true negatives (TN) and false negatives (FN) [23,24]. In addition,
the metrics used to assess the models were the following:

• The precision (P) indicates the probability to make a correct positive classification:

P =
TP

TP + FP
(1)

• The recall (R) is defined as the percentage of positive cases caught, explaining how
sensitive the model is towards identifying the positive class:

R =
TP

TP + FN
(2)

• The F1-score, also called F-measure, is a statistical measure to rate performance. It is
defined as the harmonic mean between accuracy and recall:

F1-score =
2 × P × R

P + R
× 100 (3)
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3. Results
3.1. PVT Statistical Results

First, the ANOVA test shows that both conditions’ RT are not statistically differ-
ent at pretest (F = 1.64, p = 0.25, η2 = 0.24; mean RT at pretest in control condi-
tion: 345.42 ± 27.01 ms; mean RT at pretest in AB condition: 348.88 ± 28.22 ms). Second,
no significant main effects are found in control condition between pretest and post-test
(F = 1.34, p = 0.29, η2 = 0.21; mean RT at pretest: 345.42 ± 27.01 ms, mean RT at post-test:
360.88 ± 37.85 ms), while a significant main effect of AB condition (F = 1.49, p = 0.012,
η2 = 0.23; mean RT at pretest: 348.88 ± 28.22 ms, mean RT at post-test: 327.51 ± 28.22 ms)
was revealed. Participants’ RT are lower at post-test in comparison with the pretest only in
AB condition. The main effect of RT and the interaction between condition and RT are not
significant (F < 1) [47].

3.2. EEG Statistical Results

As aforementioned, statistically significant differences on the EEG signals were eval-
uated through a one-way ANOVA analysis with Bonferroni correction. The data were
found to follow a normal, homoscedastic distribution using the Levene and Shapiro–Wilks
tests. Figure 3 shows the results for both experimental conditions (Control Condition and AB
Condition) in terms of the variation of the PSD. Within a chromatic continuum, red-colored
zones indicates an increased PSD (i.e., higher activation), while blue-colored zones indicates
a decreased PSD (i.e., lower activation). Yellow-colored zones do not show any significant
change in PSD”.

For the Control Condition, it can be observed in the theta band that there are zones
in the prefrontal and prefrontal–parietal areas (FC1, FZ, Fc2, FC8, Fp2 and F8) with high
activity. The same occurs with the alpha band, but in this case there is a transition towards
the right lateral and frontal zones while a new area appears in C4 (parietal area). In the beta
band, an increase in spectral power is observed that oscillates from the frontal (FC1, FZ, Fc2,
FC8) and frontal–parietal zone with a very high and very localised PSD in pre-C1 (before
the regular rest period) to a more diffuse frontal zone (FC1, AF4, FPz, FP2 FZ, Fc2, FC8),
with less activity (less PSD) in the post-C1 section (after the regular rest period). Finally,
regarding the gamma band, there is lower activation in the two conditions evaluated in
comparison with the other frequency bands. This activity is centred in the central zone
(parietal zone) which tends to attenuate, centred only the Fc1 electrode.

On the other hand, for the AB Condition, two regions with high PSD value can be seen
in the theta band. The first one is located in the left prefrontal–parietal zone and the second
one in the right prefrontal region. For the alpha frequency band, large areas of activity
can be observed. These correspond to the parietal (AF3, Fc1, Fc2, C3, FC6, Cz, CP5, CP6,
Pz) part for the pre-C2 scenario and the midline area of the brain (AF3, Fc1, Cz, Cp2, Pz)
for the post-C2 scenario. In addition, changes can also be observed in the right prefrontal
area (FC6). A similar scenario can be observed for beta frequency band, except that in
this case the PSD value is reduced, especially in the area close to the CP5 channel. Finally,
for gamma band, t is observed that the area located in the cerebral midline increased its
activity. This is reinforced by the activation of two extra areas located in the FC6 and CP6
right-sided electrodes, and CP5 left-sided electrode. This illustrates the “lateralisation” of
the areas with an increased PSD.
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Figure 3. PSD difference map for each frequency band and each condition.

Accordingly, Table 4 shows the electrodes whose activation significantly changed from
pretest to post-test. These results confirmed the maps depicted in Figure 3.

Table 4. Significant electrodes in different frequency bands (p-value ≤ 0.05).

Frequency Bands (Hz)
Brain Region Theta (4–8) Alpha (8–12) Beta (13–30) Gamma (30–45)

C
on

tr
ol

C
on

di
ti

on

Frontal Fz, Fc1, Fc2 F3, Fz, Fc1 F3, Fz, Fc1 Fc1, Fc2, F4
F8, Fc6, Fp2 F8, F4, Fc2 Fpz, F4 F8

AF3, AF4
Parietal C4 C4 C4 C4, T8
Temporal Cp5 Cp5
Occipital – – – –

A
B

C
on

di
ti

on

Frontal Fp1, Fp2, AF3 AF3, Fc1, Fc2 Fp1, Fp2, AF3 Fp1, Fp2, Fpz
Fc5, F3, Fc1 C3, FC6, Cz F8, Fc6, Fc2 Fc1, Fc6, Cz
Fc2, F4, F8 Pz

Parietal CP5, Cp1 CP5, CP6, Pz CP5, CP6, C3 Cp5, Cp6
Cz, Pz

Temporal T8 – T8
Occipital – – – O1, Oz, O2
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3.3. Classification Results
3.3.1. Training Times

An important aspect to consider in machine learning is the time needed for training
the different models. the different ML models have been trained with and without the
RT feature. Table 5 shows that the best time of all classifiers is obtained by ET (boosted)
with a total of around 34 and 48 min for the Control Condition. In contrast, for AB Condition,
the best performer is SVM (Linear) with an estimated time of 47 min 43 s and 48 min 56 s
for the two proposed scenarios.

Table 5. Training time for each classification algorithm.

Control Condition AB Condition
Classifier Without RT With RT Without RT With RT

SVM (Linear) 46 min 53 s 48 min 39 s 47 min 43 s 48 min 56 s
SVM (Quadratic) 1 h 3 min 1 h 12 min 1 h 4 min 1 h 16 min
SVM (RBF) 1 h 8 min 1 h 16 min 1 h 9 min 1 h 12 min

DT (Fine) 1 h 20 min 1 h 30 min 1 h 24 min 1 h 35 min
DT (Medium) 58 min 46 s 1 h 3 s 57 min 34 s 1 h 3 s
DT (Coarse) 1 h 12 min 1 h 34 min 1 h 20 min 1 h 44 min

LDA (Standard) 41 min 56 s 57 min 13 s 41 min 56 s 57 min 13 s

ET (Boosted) 34 min 2 s 48 min 3 s 2 h 56 min 2 h 43 min
ET (Bagged) 37 min 28 s 41 min 8 s 1 h 45m 1 h 34m
ET (Sub-KNN) 46 min 2 s 53 min 3 h 3 min 2 h 50 min

KNN (Euclidean 4) 1 h 3 s 1 h 18 min 3 h 40 min 3 h 31 min
KNN (Euclidean 28) 51 min 3 s 56 min 58 s 2 h 47 min 2 h 40 min
KNN (Euclidean 287) 1 h 21 min 1 h 16 min 2 h 10 min 2 h 1 min
KNN (Cosine) 1 h 12 s 1 h 10 min 2 h 39 min 2 h 28 min
KNN (Manhattan) 58 min 20 s 1 h 32 min 1 h 45m 1 h 42m

ANN (Conf. 1) 51 min 49 s 50 min 26 s 1 h 17m 1 h 12m
ANN (Conf. 2) 1 h 58 s 1 h 37 s 2 h 38 min 2 h 28 min

On the other hand, for the AB Condition, it can be observed that the algorithm that
requires the least time is SVM with linear kernel, with slightly more than 47 and 48 min
each. We found that for SVM, the best training time ranges between 46 and 48 min for
both experimental conditions. For DT, it may be noted that in both conditions, the medium
configuration is the best performer with 59 min, 1 h 3 s, 57 min and 1 h 3 s, respectively.
In the KNN group, for Control Condition, it should be noted that the Euclidean distance
with 28 neighbours setup has a time of 51 and 56 min, respectively. In comparison, for the
AB Condition, the Manhattan metric setting performs as the best one with 1 h 45 min
and 1 h 42 min, respectively. Finally, for the ANN group, configuration 1 shows the best
performance with a range of times from 51 min to 1 h 17 min for both conditions in the
different scenarios.

3.3.2. F1-Score Results

F1-score results have been obtained for each of the algorithms used. Table 6 shows the
different results obtained in the several iterations. In this case, the results have been grouped
according to the use of the reaction time for both conditions in each of the classifiers.

In first place, the case where RT is added as a parameter to the classifier is analysed.
For the SVM group, it is found that an F1-score of 78.62% is obtained in the Control Condition.
In contrast, for the AB Condition, a score of 84.02% is gotten for the same radial basis function
(RBF) kernel setup. In the group of DT, it can be observed that 59.10% has been obtained for
the medium and 60.03% for the coarse setup in the two scenarios. The LDA group obtains
poor results, reaching in both scenarios 50.12% and 51.24%, respectively. In the cluster of
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ET methods, it can be seen that for Control Condition we have 68.01% and for AB Condition
67.32%. For the KNN algorithms, the best performance is achieved with the Manhattan
metric with results of 71.01% and 68.90% in each scenario. Finally, for ANN, it is observed
that the best result is 81.42% and 87.27% when configuration 2 is used.

Table 6. F1-score (%) of each algorithm for each classification algorithm.

Conditions without RT Conditions with RT

Classifier Control AB Control AB

SVM (Linear) 68.28 (0.02) 74.28 (1.19) 74.96 (1.40) 75.21 (0.03)
SVM (Quadratic) 71.62 (0.10) 74.02 (0.76) 80.32 (0.44) 81.98 (0.12)
SVM (RBF) 78.62 (0.10) 84.02 (0.21) 84.62 (0.14) 85.21 (0.04)

DT (Fine) 58.08 (2.30) 52.64 (3.97) 55.73 (1.05) 50.27 (4.52)
DT (Medium) 59.10 (0.23) 57.79 (0.03) 56.45 (2.09) 51.94 (2.00)
DT (Coarse) 57.99 (0.72) 60.03 (2.87) 57.03 (0.06) 53.07 (0.02)

LDA (Standard) 50.12 (0.44) 51.24 (0.26) 52.27 (0.98) 52.65 (1.03)

ET (Boosted) 68.01 (0.02) 67.09 (0.06) 69.12 (0.41) 69.04 (0.61)
ET (Bagged) 66.17 (1.20) 67.32 (0.23) 68.97 (0.01) 69.48 (0.03)
ET (Sub-KNN) 66.43 (0.00) 66.05 (0.01) 68.33 (0.15) 67.78 (0.31)

KNN (Euclidean 4) 66.17 (1.20) 67.32 (0.23) 68.97 (0.01) 69.39 (0.02)
KNN (Euclidean 28) 68.24 (0.04) 62.65 (0.30) 67.03 (0.00) 68.05 (0.01)
KNN (Euclidean 287) 64.96 (3.02) 64.20 (0.37) 65.56 (0.00) 66.87 (0.00)
KNN (Cosine) 68.71 (0.02) 65.66 (0.09) 64.00 (0.00) 66.10 (0.00)
KNN (Manhattan) 71.01 (2.52) 68.90 (0.38) 69.92 (0.00) 69.40 (0.01)

ANN (Conf. 1) 79.94 (0.02) 86.87 (0.29) 86.01 (0.04) 86.18 (0.00)
ANN (Conf. 2) 81.42 (0.05) 87.27 (0.00) 87.81 (0.00) 88.54 (0.01)

When the response time (RT) is added as an extra parameter to each of the classifiers,
it can be seen that for the SVM group an F1-score of 84.62% and 85.21% are obtained for
Control Condition and AB Condition for the RBF kernel configuration. In the category of
DT, again, the best result is obtained in the coarse category with 57.03% and 53.07% for
each of the two conditions. For LDA, the results are very similar to those obtained in the
DT, with a result of 52.27% and 52.65%, respectively. Within the classifiers based on ET
methods, the F1-score of 69.12% and 69.48% can be observed for the boosted and bagged
methods, respectively, in the two conditions tested. For the KNN methods, it can be seen
that the values are very similar, having 69.92% and 69.40% for the Manhattan metric in the
respective conditions and another one in the second condition of 69.39% for the Euclidean
4-neighbour metric. In the group of ANN, it can be noticed that there are high values in
terms of F1-score. The F1-score is 87.81% and 88.84%, respectively.

4. Discussion

This pilot study investigated the effects of AB on university students’ vigilance perfor-
mance (i.e., sustained attention) and EEG signals in comparison with passive breaks. It also
aimed to validate an analysis model based on MLA in conjunction with a multiparametric
model based on EEG signal features. Despite the fact that the obtained results are of great
interest and support scientific literature about cognition and acute exercise, this study can
be considered a pilot study in terms of analysing the physiological and neuro-physiological
effects of active rest on a set of participants. Since one final aim of this area of research is to
extrapolate the benefits of AB to actual educational environments, this study was carefully
designed to allow us to determine whether neural-physiological alterations occur in the
same direction of attentional performance after AB condition.
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4.1. Psycho-Motor Vigilance Task (PVT)

A differential analysis of variance of repeated measures (ANOVA) was performed with
the average of the participants’ RTs with the condition and time-on-task (15 min). In this
context, our findings showed faster RTs after AB (Post-C2) with respect to pre-C2. It would
appear then that AB translate into better cognitive performance. Note, though, that this
finding further supports the PVT as a reliable tool to measure vigilance [8]. In addition, as it
can be seen in Figure 4 our results seem to support the idea that acute produces selective
benefits in cognitive performance [57]. In any case, our PVT results show the capacity to
keep the attentional focus in the main stimuli and respond quickly and accurately, which
supports the idea that an adequate vigilance level could be related to mechanisms such as
cognitive control and interrelated with better performance in school abilities [58–60].

Figure 4. Mean RT (±STD) as a function of conditions.

4.2. EEG Statistical Analysis

Other studies have revealed the importance of the beta band in the attentional process
and its deficits [61,62]. It has been shown that beta-band activity may serve as a carrier
of attentional activation in multiple thalamic and cortical centres [63,64]. In this context,
the analysis of the different electrodes in the different frequency bands has shown that there
is a noticeable difference between the Control Condition and AB Condition, corresponding to
the AB condition. An increment in the number of electrodes with statistically significant
differences (p-value < 0.05) can be observed in Table 4, especially in the frontal, parietal
occipito–temporal region. Conducting this experiment has proven the feasibility of moni-
toring attention-related changes in brain activity by using the EEG approach in an ordinary
day-to-day setting.

Another phenomenon occurring in this study is brain lateralisation, which plays
an important role in complex cognitive functions [65]. The results show that there are
significant differences between the two hemispheres, with one hemisphere dominating the
other. This is seen in the theta bands and to a lesser extent in beta, alpha and gamma [66].
In accordance, this results in an increase of PSD in the left hemisphere versus the right
hemisphere (asymmetry) may be due to the fact that most participants are right-handed.
If the cognitive complexity of the experimental load is taken into account, it is possible to
assume that the presence of laterally and cortical asymmetry is in line with the processes of
studying and coping with the purposed task.
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4.3. Multi-Parametric Classifiers Model

Other aspects to be taken into account when evaluating the proposed parametric
model and its use for monitoring attention in the educational environment is its reliability
and accuracy [67,68]. In this sense, studies have been found that use parameters such as
spectral power (PSD) for each of the frequency bands [69–71]. The proposed model not only
uses PSD parameters and their derivatives (relative and absolute), but also makes use of
nonlinear metrics such as entropy derivatives, such as Shannon‘s entropy and Logarithmic
entropy. In this respect, it has been found that the use of these nonlinear metrics provides
differential values when assessing different EEG patterns [72,73].

Another approach that has been used to determine whether the classifiers can distin-
guish between the different states for each of the proposed conditions is the use of the mean
response time (RT) to feed each of the classifiers. It can be observed that an increase in
the performance of the classifiers exists, especially those that are able to work with a large
number of parameters such as ANNs and SVMs. In fact, after conducting the experiment,
we could restrict the algorithms to these two and analyse other topologies in greater depth,
seeking to optimise time, classifier topologies, number of input parameters and features.

4.4. Time Consumption in Multiparametric Classifiers Model Training

The use of model training time has also been taken into account. This factor can be of
interest not only when evaluating a model, but also when establishing a series of selection
guidelines for different classifiers. In this regard, although it can be observed that the
classifier that consumes the least time is ET (boosted) for the Control Condition and LDA for
the AB Condition, considering their F1-Score results, ANN and SVM should be the classifiers
of choice. Although the training time is longer, this is compensated for by the increase in
accuracy. Therefore, a compromise solution must be used that will allow us to take as little
time as possible, with the highest accuracy possible.

4.5. Limitations and Future Works

This study suffers from a notable limitation owing to the small sample size with six
participants. Despite this limitation, this study provides an important and innovative
strategic approach to improve cognition on vigilance performance in university students.
In fact, this is one of the few studies dedicated to the effects of AB in university students.
However, more research is needed in this regard and future studies should replicate the
procedures designed in the present work with larger sample sizes.

Moreover, future EEG analyses should consider the inclusion of RT and focus on SVM
and ANN more broadly, making them to be more optimal in terms of results, training times
and number of parameters.

5. Conclusions

The present work has provided evidence on the acute effects of AB on vigilance
performance in undergraduates. On the one hand, we found differences between conditions
and significant effects on PVT reflected in faster RT in post-C2. Complementary activation
in frontal, parietal, and occipito–temporal regions has also been detected, which may
suggest that AB produces better cognitive performance [74]. Indeed, this perspective is
further reinforced by the findings on beta bands and cerebral lateralisation.

Moreover, SVMs and ANNs have been identified as the best performers, especially
when an extra RT component is used as a parameter in our multiparametric model. The ev-
idence collected in this pilot study has revealed that EEG analyses form a promising
approach for the investigation of physical activity and cognition in educational contexts.

We are convinced that this approach will help teachers to integrate AB in real educa-
tional settings in a more appropriate and targeted way, so that students can improve their
attention levels and thus their effective learning.
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