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Abstract: Peer-to-peer locking is a promising way to combine the power of high-power microwave
oscillators. The peer-to-peer locking of gyrotrons is especially important because arrays of coupled
gyrotrons are of special interest for fusion and certain other applications. However, in case of coupled
microwave oscillators, the effect of delay in coupling is very significant and should be taken into
account. In this article, we present the model of two delay-coupled gyrotrons. We develop an
approximate theory of phase locking based on the generalized Adler’s equation, which allows for the
treatment of in-phase and anti-phase locking modes. We also present a more rigorous bifurcation
analysis of phase locking by using XPPAUT software under the limitation of small delay time.
The structure of the phase-locking domains on the frequency-mismatch–coupling-strength plane of
parameters is examined. Finally, we verify the results by numerical simulations in the case of finite
delay time. The simulations reveal various regimes, including peer-to-peer locking, the suppression
of one gyrotron by another, as well as the excitation of one gyrotron by another.

Keywords: gyrotron; peer-to-peer locking; delay coupling

1. Introduction

The power combining of high-power microwave oscillators is a promising way to
achieve ultra-high power levels [1]. Coherent power summation of relativistic mag-
netrons [2–7], vircators [8–11], and relativistic backward-wave oscillators [12–14] at up-
to-multi-gigawatt power levels has been demonstrated. Recently, the power combining
of gyrotrons has attracted a special interest since arrays of high-power gyrotrons are of
great importance for electron-cyclotron-resonance plasma heating [15] and certain other
applications [16]. A critical issue for the coherent power summation is phase and frequency
locking. Both injection locking [4,6,10,14,17–19] and peer-to-peer locking [2–4,7–9,20,21]
techniques have been widely studied. The injection locking [22,23] and peer-to-peer [24]
locking of gyrotrons is currently a subject of active investigation.

Since at microwave frequencies, the distance between coupled oscillators significantly
exceeds the operating wavelength, the delay of the signal propagating between the oscilla-
tors should be taken into account, which greatly increases the complexity of the system.
In [25,26], we studied a simple model of two delay-coupled oscillators in the form of two
coupled delay-differential equations (DDEs). Due to the delay, the coupling signal acquires
a phase shift that strongly affects the locking process. We presented the detailed theoretical
analysis showing that, depending on the phase shift, the system can demonstrate the
behavior typical for either dissipative (diffusive) or conservative (reactive) coupling. In the
first case, the oscillators may lock either in-phase or anti-phase, while in the second case,
both in phase and anti-phase locking may occur, i.e., the bistability of the phase-locked
states appears.

In [27,28], we proposed a simple model, which extends the analysis presented in [25,26]
to the peer-to-peer locking of gyrotrons. This model allows for a comprehensive theoretical
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analysis of peer-to-peer locking regimes, including the use of modern software tools for
the bifurcation analysis of nonlinear dynamical systems. On the other hand, it can predict
the main characteristics, such as power, efficiency, and oscillation frequency, with the same
accuracy as the nonstationary theory of a gyrotron with a fixed RF field profile.

It is well-known that the maximal interaction efficiency of high-power gyrotrons is
usually attained in the regime of hard self-excitation. This significantly complicates the
pattern of phase locking. In this article, we study the peer-to-peer locking of gyrotrons
operating at the point of maximal efficiency, i.e., in the hard excitation mode. In Section 2,
we briefly review the basic equations of the gyrotron with the fixed profile of the RF
field, as well as the DDE model of two coupled gyrotrons. In Section 3, we present the
results of theoretical and numerical analysis. First, we study the peer-to-peer locking in
the phase approximation assuming that the oscillation amplitudes of the weakly coupled
gyrotrons are close to those of the free-running gyrotrons. We derive the modified Adler’s
equation, which allows for an analysis of the phase-locked modes in different cases. Then,
we present the results of a more relevant analysis not limited to the case of weak coupling.
We examine the stability of the in-phase and anti-phase synchronous states and reveal the
complicated pattern of the phase-locking domains on the frequency mismatch—coupling
strength parameter plane.

2. Model and Basic Equations

We will proceed from the well-known equations of the gyrotron theory with a fixed
RF profile (see, e.g., [29]). Considering the interactions at the fundamental cyclotron har-
monic,ω0 ≈ ωH , whereω0 andωH are the oscillation frequency and cyclotron frequency,
respectively, the equation of the electron’s motion reads:

dp
dζ

+ i
(

∆H + |p|2 − 1
)

p = iA fs(ζ) (1)

In (1), p is the dimensionless transverse electron momentum, A is the dimension-
less complex amplitude of the RF field, ζ =

(
β2
⊥/2β||

)
ω0z/c is the dimensionless axial

coordinate, β|| = v||0/c, β⊥ = v⊥0/c, v||0 and v⊥0 are the initial axial and transversal

velocities, respectively, and ∆H = 2(ω0 −ωH)/
(
β2
⊥ω0

)
is the cyclotron resonance mis-

match. The function fs(ζ) describing the field profile in the resonator is approximated by
the Gaussian function:

fs(ζ) = exp

[
−3
(

2ζ
ζk
− 1
)2
]

, (2)

where ζk =
(
β2
⊥/2β||

)
ω0L/c is the normalized length of the interaction space. Equation (1)

is solved with the boundary conditions:

p(ζ = 0) = eiϕ0 (3)

where the initial phases ϕ0 are distributed uniformly over the interval [0, 2π].
To find the slow-flow amplitude A, one should solve the excitation equation:

dA
dτ

+ A = I0Φ(A)·A (4)

here τ = ω0t/(2Q) is the normalized time, Q is the Q-factor of the resonator,

Φ(A) =
i
A

ζk∫
0

 1
2π

2π∫
0

p(ζ,ϕ0)dϕ0

 f ∗s (ζ)dζ (5)
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is the complex electronic susceptibility, and

I0 =

(
eµ0
πm0c

)
1

β2
⊥β||γ0

QGmn Ib
N

, (6)

is the normalized beam current parameter. In (6), e and m0 are the electron charge and
rest mass, respectively, Ib is the dc beam current, µ0 = 4π× 10−7 H/m is the magnetic

constant, γ0 =
(

1− β2
‖0 − β

2
⊥0

)−1/2
is the relativistic mass factor, N =

ζk∫
0
| fs(ζ)|2dζ

≈ µ
2
√
π
2 is the wave norm, µ = ζk/

√
3 is the normalized length of the resonator,

Gmn = J2
m−1

(
νmnRb/Rg

)
/
[

J2
m(νmn)

(
ν2

mn −m2)] is the factor of beam coupling with the
operating TEmn mode, Jm is the mth-order Bessel function of the first kind, νmn is the nth
positive root of the equation J′m(ν) = 0, and Rb and Rg are the radii of the electron beam
and the waveguide, respectively.

Solving the equations of motion (1), one can evaluate the real (active) Φ′ ≡ ReΦ and
imaginary (reactive) Φ′′ ≡ Im(Φ) parts of the electronic susceptibility as functions of the
amplitude and cyclotron resonance mismatch. Figure 1 shows Φ′

(
|A|2

)
and Φ′′

(
|A|2

)
calculated at µ = 15.0 and ∆H = 0.534.

Figure 1. Active (a) and reactive (b) electronic susceptibility versus |A|2 calculated at µ = 15.0 and
∆H = 0.534. Stable and unstable states are shown with solid and dotted lines, respectively.

In the regime of steady-state single-frequency oscillation A = R exp(i(Ωt +ϕ)),
where R, Ω, and ϕ are oscillation amplitude, frequency, and phase, respectively. From (4) it
follows that:

1 = I0Φ′(R), (7)

Ω = I0Φ′′ (R) = Φ′′ (R)/Φ′(R). (8)

As is shown in Figure 1a, there exist two steady-state solutions to (7): R+ and R−.
From (4), one can easily find that R− is unstable, while R+ is stable. In Figure 1, stable and
unstable states are shown with solid and dotted lines, respectively. In addition, there exists
the trivial solution A = 0, which is also stable. This confirms that, at the chosen parameters,
the gyrotron operates in the hard-excitation mode.

In the steady-state regime, the orbital electronic efficiency is [27–29]:

η = 2Φ′(R)R2. (9)
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The plots of efficiency versus |A|2 and versus I0 = 1/Φ′
(
|A|2

)
are presented in

Figure 2a,b, respectively. The efficiency attains its maximal value η ≈ 0.7 at I0 ≈ 0.06. The
corresponding value of the amplitude is R ≈ 0.145.

Figure 2. Orbital electronic efficiency versus |A|2 (a) and versus I0 (b) calculated at µ = 15.0 and
∆H = 0.534. Stable and unstable states are shown with solid and dotted lines, respectively.

For the analysis of peer-to-peer locking, consider a system of two coupled gyrotrons,
which are assumed identical, except for small detuning of the eigenfrequencies,
i.e.,ω1,2 = ω0 ± ∆ω/2, where ∆ω << ω0 and the subscripts 1 and 2 refer to the first
and the second gyrotron, respectively. In that case, instead of (4) we obtain a system of two
coupled DDEs [27,28]:

dA1
dτ + i ∆

2 A1 + A1 = I0Φ(A1)·A1 + ρe−iψA2(τ− τd),
dA2
dτ − i ∆

2 A2 + A2 = I0Φ(A2)·A2 + ρe−iψA1(τ− τd).
(10)

In (10), ρ =
√

Pin/Pout is the coupling strength, which is determined by the ratio of the
input and output powers [2–8]; τd = ω0td/2Q is the normalized delay time; and ψ = ω0td
is the phase advance of the coupling signal. The delay time is td ≈ l/c, where l is the
distance between the gyrotrons.

3. Peer-to-Peer Locking Analysis: Case of Small Delay
3.1. Modes of Phase Locking

Following [25–28], consider the situation when the normalized delay time is small,
i.e., τd << 1. In that case, we can neglect the delay in the right-hand sides of (10),
i.e., A1,2(τ− τd) ≈ A1,2(τ), and obtain the system of ordinary differential equations (ODEs):

dA1
dτ + i ∆

2 A1 + A1 = I0Φ(A1)·A1 + ρe−iψA2,
dA2
dτ − i ∆

2 A2 + A2 = I0Φ(A2)·A2 + ρe−iψA1.
(11)

Note that this assumption does not mean that we completely neglect the effect of delay
because the phase advance ψ is determined by the delay time.
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It is convenient to divide the complex Equation (11) into equations for real amplitudes
R1,2 and phases ϕ1,2. Substituting A1,2 = R1,2 exp(iϕ1,2) into (11), after some calculations
we arrive at the third-order ODE system:

.
R1 + R1 = I0Φ′(R1)R1 + ρR2 cos(ψ+ϕ),
.
R2 + R2 = I0Φ′(R2)R2 + ρR1 cos(ψ−ϕ),

.
ϕ = −∆ + I0(Φ′′ (R1)−Φ′′ (R2)) + ρ

[
R1
R2

sin(ψ−ϕ)− R2
R1

sin(ψ+ϕ)
]
,

(12)

where ϕ = ϕ1 −ϕ2,
.
R1,2 = dR1,2/dτ,

.
ϕ = dϕ/dτ.

Let us briefly discuss the possible steady-state solutions of (12), which describe the
regimes of the synchronous oscillations of the two coupled oscillators. For a steady-state
solution, (12) yields:

R1 = I0Φ′(R1)R1 + ρR2 cos(ψ+ϕ),

R2 = I0Φ′(R2)R2 + ρR1 cos(ψ−ϕ),

∆ = I0(Φ′′ (R1)−Φ′′ (R2)) + ρ
[

R1
R2

sin(ψ−ϕ)− R2
R1

sin(ψ+ϕ)
]
.

(13)

For simplicity, assume that the coupling is weak, i.e., ρ << 1. In such a situation, the
values of R1,2 are close to the steady state solutions of the uncoupled equations, i.e., to R±
or to 0. Thus, the steady-state solutions can be classified as follows:

1. R1,2 = R+ + O(ρ);
2. R1,2 = R− + O(ρ);
3. R1 = R+ + O(ρ), R2 = R− + O(ρ) and vice versa;
4. R1 = R+ + O(ρ), R2 = O(ρ) and vice versa;
5. R1 = R− + O(ρ), R2 = O(ρ) and vice versa;

Solution 1 is of the most interest since it corresponds to the regimes of peer-to-peer
locking. Solution 4 describes the situation when one gyrotron suppresses the oscillation of
the second one. Solutions 2, 3, and 5 are always unstable, since R− is the unstable steady
state an uncoupled gyrotron.

In addition, (12) has zero solution R1 = R2 = 0 which, at least at weak coupling,
is stable.

3.2. Generalized Adler’s Equation

A simple method of analysis of the phase locking phenomena is the so-called phase
approximation when it is assumed that the weak coupling does not significantly change
oscillation amplitudes of the two coupled systems and they remain nearly the same as for
the uncoupled oscillators. Assuming R1,2 ≈ R+, the third equation of (12) yields:

.
ϕ+ ∆ = −2ρ cosψ sinϕ (14)

This equation proposed by Adler [30] was widely used for the analysis of locking
phenomena, see, e.g., [2,4,5,19,31,32]. However, in the case of delayed coupling, (14) cannot
provide the complete picture of phase locking. Evidently, (14) is not valid at ψ ≈ πn + π/2
when cosψ ≈ 0. This situation requires more rigorous analysis [25].

Following [25], let us seek the solution R1,2 = R++ r1,2, where r1,2 ∼ ρ. By substituting
this into (13) and expanding Φ′(R1,2) ≈ Φ′(R+) + (dΦ′(R+)/dR)r1,2 up to the second-
order terms, we obtain the approximate solution:

r1 ≈ − ρ
I0dΦ′(R+)/dR cos(ψ+ϕ),

r2 ≈ − ρ
I0dΦ′(R+)/dR cos(ψ−ϕ).

(15)
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From (15) we find:

R1
R2
≈ 1− 2ρ

I0R+dΦ′(R+)/dR sinψ sinϕ,
R2
R1
≈ 1 + 2ρ

I0R+dΦ′(R+)/dR sinψ sinϕ.
(16)

and substitute (16) in the third equation of (12). In addition, Φ′′ (R1,2) should be expanded
up to the second-order terms. As a result, we obtain the generalized Adler’s equation:

.
ϕ+ ∆ = −2ρ

(
cosψ− dΦ′′/dR

dΦ′/dR
sinψ

)
sinϕ− 2ρ2

I0R+dΦ′/dR

(
sin2ψ− R+d2Φ′′/dR2

4dΦ′/dR
sin 2ψ

)
sin 2ϕ (17)

The terms proportional to sinϕ and to sin 2ϕ on the right-hand side of (17) represent
dissipative (diffusive) and conservative (reactive) coupling, respectively [25]. In the phase-
locked state, when

.
ϕ = 0, we obtain:

∆ = −2ρ
(

cosψ− dΦ′′/dR
dΦ′/dR

sinψ
)

sinϕ− 2ρ2

I0R+dΦ′/dR

(
sin2ψ− R+d2Φ′′/dR2

4dΦ′/dR
sin 2ψ

)
sin 2ϕ. (18)

From this equation, one can find the locking bandwidth. The edge of the locking
region can be found from the condition d∆/dϕ = 0 (see, e.g., [25]), which yields:(

cosψ− dΦ′′/dR
dΦ′/dR

sinψ
)

cosϕ+
2ρ

I0R+dΦ′/dR

(
sin2ψ− R+d2Φ′′/dR2

4dΦ′/dR
sin 2ψ

)
cos 2ϕ = 0. (19)

Equations (18) and (19) allow the domains of stability of the phase-locked states on
the ∆, ρ-plane to be plotted.

A special attention should be paid to two particular cases. The first is the case of
purely dissipative coupling, which occurs when:

tanψ =
R+d2Φ′′/dR2

2dΦ′/dR
. (20)

In that case, from (18) we obtain:

sinϕ = − ∆

2ρ
(

cosψ− dΦ′′ /dR
dΦ′/dR sinψ

) (21)

Depending on ψ, the oscillators are locked either in-phase or anti-phase. Indeed, at
∆ = 0, ϕ is either 0, or π. Phase locking occurs when the frequency mismatch ∆2 ≤ ∆2

max,
where:

∆max = 2ρ
∣∣∣∣cosψ− dΦ′′/dR

dΦ′/dR
sinψ

∣∣∣∣ (22)

is the locking bandwidth.
The second case is a purely conservative coupling, which occurs when:

cotψ =
dΦ′′/dR
dΦ′/dR

(23)

Instead of (21), the equation for the locked phase is:

sin 2ϕ = − ∆
2ρ2 ·

I0R+dΦ′/dR

sin2ψ− R+d2Φ′′ /dR2

4dΦ′/dR sin 2ψ
(24)
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and the locking bandwidth is given by:

∆max = 2ρ2·

∣∣∣∣∣∣ sin2ψ− R+d2Φ′′ /dR2

4dΦ′/dR sin 2ψ

I0R+dΦ′/dR

∣∣∣∣∣∣. (25)

The locking bandwidth is proportional to ρ2, in contrast with the case of dissipative
coupling, when it is proportional to ρ.

In Figure 3, phase-locking domains on the ∆, ρ-plane are plotted at I0 = 0.06 and
different values ofψ. In the case of dissipative coupling (Figure 3a), only in-phase locking is
possible. The boundary on the ∆, ρ-plane has the classical shape of Arnold’s tongue [31,32].
With the increase in ψ, the locking bandwidth reduces and the domain of the anti-phase
locking appears (Figure 3b). Then, the boundary of the anti-phase mode shifts downwards
(Figure 3c). At ψ ≈ 0.7π, the coupling becomes purely conservative. The boundaries of the
in-phase and anti-phase modes merge (Figure 3d). Inside the locking region, the oscillators
may lock either in-phase or anti-phase, i.e., there appears to be phase bistability [25]. The
classic Adler’s equation (14) fails to describe this situation. At ψ > 0.7π the anti-phase
mode dominates. The domain of in-phase locking shifts upward and vanishes (Figure 3e,f).

Figure 3. Boundaries of in-phase (blue curves) and anti-phase (red curves) locking calculated at
I0 = 0.06, µ = 15.0, ∆H = 0.534, and ψ = 0.4π (a), 0.5π (b), 0.6π (c), 0.7π (d), 0.8π (e), and 1.0π (f).
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3.3. Structure of Locking Domains

The generalized Adler’s equation provides only a qualitative picture of phase locking
since, strictly speaking, it is valid only in the case of weak coupling, ρ << 1. For a more
rigorous analysis, we investigate the third-order ODE system (12) employing the XPPAUT
public-domain software [33] that is a powerful tool for bifurcation analysis of ODEs. In [26],
we applied XPPAUT for a detailed analysis of peer-to-peer locking of two coupled Landau–
Stuart oscillators with a weak cubic nonlinearity. We revealed a complicated structure of
locking domains on the ∆, ρ-plane and intriguing scenarios of transition to the phase-locked
modes. The behavior of two coupled gyrotrons with a strong nonlinearity operating in the
hard-excitation mode is even more complicated. In particular, this is due to presence of a
large number of steady-state oscillation modes, as discussed in Section 3.1.

As mentioned above, for a gyrotron with a Gaussian profile of the RF field at µ = 15.0
and ∆H = 0.534, the orbital efficiency reaches its maximal value η ≈ 0.7 when the amplitude
of the stable steady-state oscillation is R+ = 0.145. This value is attained when the beam’s
current parameter is set to I0 = 0.06. However, in the system of two coupled gyrotrons
the amplitude, will increase (in case of in-phase locking) or decrease (in case of anti-phase
locking). This causes a decrease in efficiency [28].

Therefore, it is beneficial to slightly reduce the current. With the increase in coupling,
the amplitudes will increase and approach the optimal value at which the maximal ef-
ficiency is provided [28]. So, we set the current parameter to I0 = 0.05. At that value,
R+ = 0.128 and the efficiency of the uncoupled gyrotron is η ≈ 0.66.

First, we considered the case ψ = 0.2π when the coupling is dissipative. In Figure 4a,
the domain of phase locking on the ∆ f , ρ-plane is shown, where ∆ f is non-normalized
frequency mismatch. To evaluate ∆ f , we assume that the cold cavity resonant frequency
and Q-factor are f0 = 170 GHz and Q = 1370, respectively. These values are typical for
MW-power fusion gyrotrons [15].

Figure 4. (a) Locking domain on the ∆ f , ρ-plane at µ = 15.0, ∆H = 0.534, I0 = 0.05, and ψ = 0.2π
(shaded). Boundaries of saddle-node and Andronov–Hopf bifurcations are shown with red and blue
lines, respectively. Dashed lines show the stability boundaries of the regimes when one gyrotron
suppresses the other. Dotted line shows the locking boundary obtained from the generalized Adler’s
equation (Section 3.2). (b) Efficiencies of the first and second gyrotrons and oscillation frequency
versus ∆ f at ρ = 0.3. The results of simulation of the DDE model (10) at ψ = π and τd = 3.0 are
shown with circles.

In Figure 4a, the domain of in-phase locking is shaded. It is bounded by the lines of
saddle-node and Andronov–Hopf bifurcations. The boundary of the saddle-node bifurca-
tion is close to the locking boundary obtained via the generalized Adler’s Equation (17)
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shown with dotted line. However, this approximation is valid only in the domain of very
small ∆ f .

In the locking regime, the amplitudes of the first and second gyrotrons are close. In
addition, there exist regimes in which the first gyrotron suppresses the second one and vice
versa (Section 3.1). Accordingly, the amplitudes are strongly different. These regimes are
stable below the dashed lines shown in Figure 4a.

In Figure 4b, the orbital efficiencies of the first and second gyrotron calculated at
the coupling strength ρ = 0.3 are plotted. Despite the reduced current, the coupling
compensates the decrease in efficiency. In most of the locking band, the efficiency is close
to the maximal value η = 0.7. A similar behavior was reported in [28].

Figure 5 illustrates the situation of conservative coupling. As predicted in Section 3.2,
both in-phase and anti-phase locking is possible. Similar to Figure 4a, in the domain of
small ∆ f , the stability boundaries are in reasonable agreement with the generalized Adler’s
equation. The locking bandwidth is much narrower than in the case of dissipative coupling.
Thus, the case of conservative coupling is not favorable for peer-to-peer locking. On the
other hand, it is possible to realize fast stepwise frequency modulation by controllable
switching between the two modes, as suggested in [28].

Figure 5. Locking domain on the ∆ f , ρ-plane at µ = 15.0, ∆H = 0.534, I0 = 0.05, and ψ = 0.8π.
Boundaries of saddle-node and Andronov–Hopf bifurcations are shown with red and blue lines,
respectively. Dashed lines show the stability boundaries of the regimes when one gyrotron suppresses
the other. Dotted line shows the locking boundary obtained from the generalized Adler’s equation
(Section 3.2). The domains of in-phase and anti-phase locking are shown by dark and light shading,
respectively.

4. Numerical Simulations in the Case of Arbitrary Delay

The results obtained in the small-delay approximation were verified by numerical
integration of the DDEs (10). In the simulations, the normalized delay time was set to
τd = 3.0, which corresponds to nearly a 2 m distance between the gyrotrons [28]. The
simulation reveals all of the possible regimes discussed above. In the simulations, we choose
large initial values of the amplitudes close to the amplitudes of uncoupled gyrotrons, which
was necessary since the gyrotrons operated in the hard-excitation mode. Depending on the
phase difference, different regimes are observed. Figure 6a illustrates the regime of peer-to-
peer locking. Under somewhat different initial conditions, the first gyrotron suppresses
the oscillation of the second one, as is shown in Figure 6b. Moreover, the complete mutual
suppression of both gyrotrons (oscillation death) may take place (Figure 6c).
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Figure 6. Time histories of efficiencies of the first and second gyrotron illustrating different regimes at
I0 = 0.05, µ = 15.0, ∆H = 0.534, ρ = 0.5, ψ = 1.0π, τd = 3.0: (a) peer-to-peer locking; (b) suppression
of one gyrotron by another; (c) oscillation death; (d) excitation of one gyrotron by another.

On the contrary, the coupling of the gyrotrons may also lead to the excitation of one
gyrotron by another. Figure 6d illustrates the case when the initial amplitude of the second
gyrotron is zero. If the gyrotrons are uncoupled, this state would be stable because the
gyrotron operates in the hard-excitation mode. However, the first gyrotron drives the
second gyrotron. Its oscillation starts to grow, and finally, the locking mode is established.

The results obtained by the simulation of the DDE model (10) are in a rather good agree-
ment with the results obtained in the small-delay approximation, as shown in Figure 4b.
However, in the case of finite delay, there appears an additional phase shiftωτd, whereω
is the oscillation frequency [25,26]. Thus, the phase advance ψ should be adjusted to obtain
a good agreement. When ψ is set to π, a very good agreement is observed.
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5. Discussion and Conclusions

In this article, we present the model of the peer-to-peer locking of two coupled gy-
rotrons. The gyrotrons are assumed to operate in the hard-excitation mode, which is
necessary to obtain high values of the electron orbital efficiency. The system demonstrates
a behavior similar to that reported in our previous work [25,26], where delay-coupled
oscillators with weak cubic nonlinearity were studied. In particular, depending on the
phase of the coupling signal, either dissipative or conservative coupling may dominate.
The dissipative coupling is more favorable for peer-to-peer locking because of the much
wider locking bandwidth.

An approximate theory of phase locking is developed based on the generalized Adler’s
equation. However, this approximation is valid only for small frequency detuning and
weak coupling.

A more rigorous analysis in the case of small delay is presented. This approximation
allows for a detailed bifurcation analysis by using XPPAUT software. Such analysis is very
useful because the domains of phase locking may have a very complicated structure. For
the typical parameters of high-power fusion gyrotrons, the locking bandwidth is on the
order of 100 MHz.

To verify the results, we performed a numerical integration of the DDE model in the
case of finite delay time. A good agreement between the two approaches is observed if the
phase advance is properly adjusted. The simulations reveal various regimes of interaction
of the gyrotrons. In addition to the modes of phase locking, which may be in-phase as
well as anti-phase, there exist the regimes of suppression of one gyrotron by another and
the mutual suppression of both gyrotrons, i.e., the oscillation death. On the contrary, the
excitation of one gyrotron by another is observed.

Author Contributions: Conceptualization, methodology, theoretical analysis, writing—review and
editing, N.M.R.; numerical simulations, visualization, writing—original draft preparation, A.B.A.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded the Ministry of Science and Higher Education of the Russian
Federation within the framework of a state assignment.

Data Availability Statement: The data that support the results of the presented research are available
from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, J.; Zhang, D.; Fan, Y.; He, J.; Ge, X.; Zhang, X.; Ju, J.; Xun, T. Progress in narrowband high-power microwave sources. Phys.

Plasmas 2020, 27, 010501. [CrossRef]
2. Benford, J.; Sze, H.; Woo, W.; Smith, R.R.; Harteneck, B. Phase locking of relativistic magnetrons. Phys. Rev. Lett. 1989, 62, 969–971.

[CrossRef] [PubMed]
3. Levine, J.S.; Aiello, N.; Benford, J.; Harteneck, B. Design and operation of a module of phaselocked relativistic magnetrons.

J. Appl. Phys. 1991, 70, 2838–2848. [CrossRef]
4. Woo, W.; Benford, J.; Fittinghoff, D.; Harteneck, B.; Price, D.; Smith, R.; Sze, H. Phase locking of high power microwave oscillators.

J. Appl. Phys. 1989, 65, 861–866. [CrossRef]
5. Sze, H.; Smith, R.R.; Benford, J.N.; Harteneck, B.D. Phase-locking of strongly coupled relativistic magnetrons. IEEE Trans.

Electromagn. Compat. 1992, 34, 235–241. [CrossRef]
6. Zhang, Y.; Huang, K.; Agrawal, D.K.; Slawecki, T.; Zhu, H.; Yang, Y. Microwave power system based on a combination of two

magnetrons. IEEE Trans. Electron Devices 2017, 64, 4272–4278. [CrossRef]
7. Liu, J.; Zha, H.; Shi, J.; Qiu, J.; Wang, C.; Han, Y.; Wang, J.; Tang, C.; Chen, H. Power combining of dual X-Band coaxial magnetrons

based on peer-to-peer locking. IEEE Trans. Electron Devices 2021, 68, 6518–6524. [CrossRef]
8. Sze, H.; Price, D.; Harteneck, B. Phase locking of two strongly coupled vircators. J. Appl. Phys. 1990, 67, 2278–2282. [CrossRef]
9. Hendricks, K.J.; Adler, R.; Noggle, R.C. Experimental results of phase locking two virtual cathode oscillators. J. Appl. Phys.

1990, 68, 820–825. [CrossRef]
10. Sze, H.; Price, D.; Harteneck, B.; Cooksey, N. Master-oscillator driven phase-locked vircator array. J. Appl. Phys. 1990, 68,

3073–3079. [CrossRef]

http://doi.org/10.1063/1.5126271
http://doi.org/10.1103/PhysRevLett.62.969
http://www.ncbi.nlm.nih.gov/pubmed/10040384
http://doi.org/10.1063/1.349347
http://doi.org/10.1063/1.343079
http://doi.org/10.1109/15.155835
http://doi.org/10.1109/TED.2017.2737555
http://doi.org/10.1109/TED.2021.3121225
http://doi.org/10.1063/1.345521
http://doi.org/10.1063/1.346762
http://doi.org/10.1063/1.346401


Electronics 2022, 11, 811 12 of 12

11. Selemir, V.D.; Dubinov, A.E.; Voronin, V.V.; Zhdanov, V.S. Key ideas and main milestones of research and development of
microwave generators with virtual cathode in RFNC-VNIIEF. IEEE Trans. Plasma Sci. 2020, 48, 1860–1867. [CrossRef]

12. El’chaninov, A.A.; Klimov, A.I.; Koval’chuk, O.B.; Mesyats, G.A.; Pegel’, I.V.; Romanchenko, I.V.; Rostov, V.V.; Sharypov, K.A.;
Yalandin, M.I. Coherent summation of power of nanosecond relativistic microwave oscillators. Tech. Phys. 2011, 56, 121–126.
[CrossRef]

13. Sharypov, K.A.; El’chaninov, A.A.; Mesyats, G.A.; Pedos, M.S.; Romancheko, I.V.; Rostov, V.V.; Rukin, S.N.; Shpak, V.G.;
Shunailov, S.A.; Ul’masculov, M.R.; et al. Coherent summation of Ka-band microwave beams produced by sub-gigawatt
superradiance backward wave oscillators. Appl. Phys. Lett. 2013, 103, 134103. [CrossRef]

14. Xiao, R.; Deng, Y.; Chen, C.; Shi, Y.; Sun, J. Generation of powerful microwave pulses by channel power summation of two X-band
phase-locked relativistic backward wave oscillators. Phys. Plasmas 2018, 25, 033109. [CrossRef]

15. Thumm, M.K.A.; Denisov, G.G.; Sakamoto, K.; Tran, M.Q. High-power gyrotrons for electron cyclotron heating and current drive.
Nucl. Fusion 2019, 59, 073001. [CrossRef]

16. Benford, J. Space applications of high-power microwaves. IEEE Trans. Plasma Sci. 2008, 36, 569–581. [CrossRef]
17. Wu, Y.; Li, Z.H.; Xu, Z. Experimental study of an X-band phase-locked relativistic backward wave oscillator. Phys. Plasmas

2015, 22, 113102. [CrossRef]
18. Sharypov, K.A.; Shunailov, S.A.; Ginzburg, N.S.; Zotova, I.V.; Romanchenko, I.V.; Rostov, V.V.; Ulmasculov, M.R.; Shpak, V.G.;

Yalandin, M.I. Development of the concept of high-power microwave oscillators with phase locking by an external signal.
Radiophys. Quantum Electron. 2020, 62, 447–454. [CrossRef]

19. Pengvanich, P.; Neculaes, V.B.; Lau, Y.Y.; Gilgenbach, R.M.; Jones, M.C.; White, W.M.; Kowalczyk, R.D. Modeling and experimental
studies of magnetron injection locking. J. Appl. Phys. 2005, 98, 114903. [CrossRef]

20. Pengvanich, P.; Lau, Y.Y.; Cruz, E.; Gilgenbach, R.M.; Hoff, B.; Luginsland, J.W. Analysis of peer-to-peer locking of magnetrons.
Phys. Plasmas 2008, 15, 103104. [CrossRef]

21. Song, M.; Bi, L.; Meng, L.; Qin, Y.; Liu, H.; Wang, B.; Li, H.; Yin, Y. High-efficiency phase-locking of millimeter-wave magnetron
for high-power array applications. IEEE Electron Device Lett. 2021, 42, 1658–1661. [CrossRef]

22. Bakunin, V.L.; Denisov, G.G.; Novozhilova, Y.V.; Fokin, A.P. Mode competition effect on frequency locking of a multimode
gyrotron by a monochromatic external signal. Radiophys. Quantum Electron. 2017, 59, 638–647. [CrossRef]

23. Bakunin, V.L.; Denisov, G.G.; Novozhilova, Y.V. Principal enhancement of THz-range gyrotron parameters using injection locking.
IEEE Electron Device Lett. 2020, 41, 777–780. [CrossRef]

24. Rozental, R.M.; Ginzburg, N.S.; Glyavin, M.Y.; Sergeev, A.S.; Zotova, I.V. Mutual synchronization of weakly coupled gyrotrons.
Phys. Plasmas 2015, 22, 093118. [CrossRef]

25. Usacheva, S.A.; Ryskin, N.M. Phase locking of two limit cycle oscillators with delay coupling. Chaos 2014, 24, 023123. [CrossRef]
26. Adilova, A.B.; Balakin, M.I.; Gerasimova, S.A.; Ryskin, N.M. Bifurcation analysis of multistability of synchronous states in the

system of two delay-coupled oscillators. Chaos 2021, 31, 113103. [CrossRef] [PubMed]
27. Adilova, A.B.; Ryskin, N.M. Study of synchronization in the system of two delay-coupled gyrotrons using a modified quasilinear

model. Izv. VUZ Appl. Nonlin. Dynam. 2018, 26, 68–81. [CrossRef]
28. Adilova, A.B.; Ryskin, N.M. Influence of the delay on mutual synchronization of two coupled gyrotrons. Radiophys. Quantum

Electron. 2021, 63, 703–715. [CrossRef]
29. Nusinovich, G.S. Introduction to the Physics of Gyrotrons; The Johns Hopkins University Press: Baltimore, MD, USA, 2004.
30. Adler, R. A study of locking phenomena in oscillators. Proc. IRE 1946, 34, 351–357. [CrossRef]
31. Pikovsky, A.; Rosenblum, M.; Kurths, J. Synchronization: A Universal Concept in Nonlinear Science; Cambridge University Press:

Cambridge, UK, 2001.
32. Balanov, A.; Janson, N.; Postnov, D.; Sosnovtseva, O. Synchronization. From Simple to Complex; Springer: Berlin, Germany, 2009.
33. XPPAUT 8.0. Available online: http://www.math.pitt.edu/~{}bard/xpp/xpp.html (accessed on 31 January 2022).

http://doi.org/10.1109/TPS.2020.2974868
http://doi.org/10.1134/S1063784211010099
http://doi.org/10.1063/1.4823512
http://doi.org/10.1063/1.5022808
http://doi.org/10.1088/1741-4326/ab2005
http://doi.org/10.1109/TPS.2008.923760
http://doi.org/10.1063/1.4935053
http://doi.org/10.1007/s11141-020-09990-2
http://doi.org/10.1063/1.2132513
http://doi.org/10.1063/1.2992526
http://doi.org/10.1109/LED.2021.3112563
http://doi.org/10.1007/s11141-017-9730-1
http://doi.org/10.1109/LED.2020.2980218
http://doi.org/10.1063/1.4931746
http://doi.org/10.1063/1.4881837
http://doi.org/10.1063/5.0065670
http://www.ncbi.nlm.nih.gov/pubmed/34881617
http://doi.org/10.18500/0869-6632-2018-26-6-68-81
http://doi.org/10.1007/s11141-021-10091-x
http://doi.org/10.1109/JRPROC.1946.229930
http://www.math.pitt.edu/~{}bard/xpp/xpp.html

	Introduction 
	Model and Basic Equations 
	Peer-to-Peer Locking Analysis: Case of Small Delay 
	Modes of Phase Locking 
	Generalized Adler’s Equation 
	Structure of Locking Domains 

	Numerical Simulations in the Case of Arbitrary Delay 
	Discussion and Conclusions 
	References

