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Abstract: Recently, the concept of the difference and sum coarray has attracted increasing interest
in the direction of the arrival estimation field because it can generate enhanced degrees of freedom.
In this paper, we propose an improved transformed nested array design strategy by relaxing the
constraints on the dense subarray of the transformed nested array. Then, three conditions are given
for the array design to ensure the continuity of the difference and sum coarray. Based on the strategy,
we develop a novel nested configuration named coprime transformed nested array (CTNA) whose
dense subarray is a coprime structure, and the closed-form expressions for the sensor positions
and the range of consecutive coarray are derived. CTNA can increase the number of degrees of
freedom (DOFs) compared to the existing nested arrays, while the mutual coupling effect can be
maintained at the same low level as the coprime arrays, which indicates that CTNA has the merits of
both nested array and coprime array. Numerical simulations are performed to verify the superiority
of the proposed array configuration in terms of the number of DOFs, mutual coupling and direction
of arrival (DOA) estimation accuracy.

Keywords: degree of freedom; difference and sum coarray; DOA estimation; mutual coupling

1. Introduction

Direction of arrival (DOA) estimation is an important topic in array signal processing
and has been extensively applied in various fields, such as radar, sonar, navigation and
wireless communication [1–8]. Traditional subspace-based DOA estimation methods, such
as MUSIC [9] and ESPRIT [10], can identify at most R− 1 sources with an R-sensor uniform
linear array (ULA). Thus, more sensors are needed in ULA for identifying more sources,
resulting in higher hardware cost and computational complexity.

In order to identify more sources than the number of sensors, sparse arrays, such
as minimum redundancy array (MRA) [11] and minimum hole array (MHA) [12], are
proposed. By vectorizing the covariance matrix of the received signal, the difference
coarray of these sparse arrays can provide O(R2) degrees of freedom (DOFs) with only
R sensors. However, MRA and MHA do not have closed-form expressions for the array
geometry and the number of achievable DOFs, which limits their application in practice.

The recently proposed nested array and coprime array have received considerable
interest since they can overcome the shortcomings of MRA and MHA. Prototype nested
array (NA) [13] consists of a dense ULA and a sparse ULA, which can provide a large
number of DOFs. Due to the closely arranged sensors in the dense ULA, NA suffers from a
severe mutual coupling effect. To tackle the problem, super nested array (SNA) [14,15] is
developed by redistributing the sensors of the dense ULA to reduce the mutual coupling.
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To increase the number of DOFs and reduce mutual coupling at the same time, augmented
nested array (ANA) [16] and extended nested array (ENA) [17] are proposed by separating
the dense ULA into two sections, then rearranging one section to the right of the sparse ULA.
On the other hand, prototype coprime array (CA) [18–20] is composed of an M-element
ULA with inter-element spacing N units and an N-element ULA with inter-element spacing
M units, where M and N are coprime integers. Since many holes exist in the difference
coarray of CA, the accuracy of the DOA estimation will deteriorate when spatial smoothing-
based algorithms [21,22] are used. Conventional coprime array (CCA) developed in [23]
can obtain more consecutive virtual elements by increasing the number of sensors in one
subarray from M to 2M. A thinned coprime array (TCA) [24] is constructed by removing
dM/2e redundant sensors from CCA, and the difference coarray of TCA is the same as that
of CCA. Therefore, TCA can further increase the number of available DOFs and reduce the
mutual coupling effect. Padded coprime array (PCA) [25] and rearranged coprime array
(RCA) [26] introduce a subarray to fill the holes in the difference coarray so more DOFs can
be achieved.

However, the aforementioned work only considers the difference coarray. If the
difference coarray and the sum coarray can be used jointly, the DOA estimation accuracy
can be further improved. In [27], the authors propose a vectorized conjugate augmented
MUSIC (VCAM) algorithm. This algorithm can construct the difference and sum coarray
(diff-sum coarray) by using both the spatial information and the temporal information
of the received signal. Some novel sparse arrays are developed based on the diff-sum
coarray. To increase the number of consecutive virtual elements, the diff-sum nested
array (DsNA) [28] is designed by rearranging half of the sensors in the dense subarray
to the sparse subarray. In [29], the authors propose a transformed nested array (TNA) by
exchanging the positions of the two subarrays of prototype NA, which can decrease the
overlapping virtual elements between the difference and the sum coarray. The extended
transformed nested array (ETNA) proposed in [30] can further reduce the redundancy
by redesigning the dense subarray of TNA. By using dM/2e unimportant sensors of
CCA to construct a supplementary subarray, the supplementary coprime array (SCA) [31]
can expand the consecutive diff-sum coarray range and reduce mutual coupling at the
same time.

Generally speaking, the existing nested arrays can provide more DOFs but suffer from
a severe mutual coupling effect. In contrast, coprime arrays are not sensitive to mutual
coupling, but provide fewer DOFs than nested arrays. In this paper, we focus on designing
a sparse array with the merits of nested array and coprime array based on the diff-sum
coarray. Firstly, we propose an improved transformed nested array design strategy, which
relaxes the constraints on the dense subarray of TNA and provides three continuity condi-
tions to ensure that the corresponding diff-sum coarray has a long consecutive segment.
Based on this strategy, we design a novel nested configuration named coprime transformed
nested array (CTNA), whose dense subarray is a coprime array. The coprime array is more
sparse than the existing dense subarrays since the number of sensor pairs with small spac-
ing is independent of the array size, which significantly reduces the mutual coupling effect.
Meanwhile, CTNA can provide more DOFs than the existing sparse arrays. Extensive
simulations are performed to evaluate the effectiveness of the proposed array configuration,
according to the number of DOFs, mutual coupling and DOA estimation accuracy.

The rest of the paper is organized as follows. Section 2 introduces the signal model and
the VCAM algorithm. Section 3 provides the improved transformed nested array design
strategy and develops the CTNA array configuration. The properties of CTNA, including
the number of available DOFs and the weight function values, are presented in Section 4.
Numerous simulation results are shown in Section 5. Section 6 concludes this paper.

Notations: In this paper, we use (·)∗, (·)T , (·)H to represent complex conjugation,
transpose and conjugate transpose, respectively. E[·] and vec(·) denote statistical expec-
tation and vectorization, respectively. The symbol ⊗ is a Kronecker product and � is a
Khatri–Rao product. In is the n× n identity matrix. A− B = {a− b|a ∈ A, b ∈ B} and
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A+B = {a + b|a ∈ A, b ∈ B} respectively represent the difference set and the sum set of
A and B.

2. Preliminaries
2.1. Data Model

Assume K far-field narrowband uncorrelated sources from direction {θ1, θ2, ..., θK} imping-
ing on an R-element linear sparse array whose sensor positions are given by L = {l1, l2, ..., lR}d,
where d represents the unit inter-element spacing and is set to half the wavelength of
the signals. According to [27], the k-th signal can be expressed as sk(t) = Akej(ωc+ωk)t,
where Ak is complex amplitude, and ωc and ωk denote the carrier frequency and baseband
frequency, respectively. Without loss of generality, we assume that the carrier frequency is
much larger than the baseband frequency, i.e., ωc � ωk, and different signals have different
baseband frequencies, i.e., ωk 6= ωm if k 6= m. Then, the received signal is demodulated to
the intermediate frequency, the k-th signal becomes sk(t) = Akejωkt, and the received data
can be modeled as

x(t) =
K

∑
k=1

a(θk)sk(t) + n(t) = As(t) + n(t), (1)

where a(θk) = [ej2πl1dsin(θk)/λ, ej2πl2dsin(θk)/λ, ..., ej2πlRdsin(θk)/λ]T is a steering vector corre-
sponding to the kth signal with λ being the carrier wavelength; A = [a(θ1), a(θ2), ..., a(θK)]
represents the manifold matrix; s(t) = [s1(t), s2(t), ..., sK(t)]T is the source vector; and
n(t) = [n1(t), n2(t), ..., nR(t)]T denotes the white Gaussian noise vector with zero mean
and variance σ2

n .

2.2. VCAM Algorithm

We use the VCAM algorithm [27] to construct the diff-sum coarray in this paper. Two
data vectors [x1(1), x1(2), ..., x1(T)] and [xr(1+ τ), xr(2+ τ), ..., xr(T + τ)] can be generated
by collecting T snapshots from the first sensor output x1(t) and the r-th (1 ≤ r ≤ R) sensor
output xr(t). Then, the time average function of x∗1(t) and xr(t + τ) can be calculated as

Rx∗1 xr (τ) =
1
T

T

∑
t=1

x∗1(t)xr(t + τ)

=
K

∑
k=1

K

∑
m=1

a∗1(θk)ar(θm)A∗k Amejωmτ(
1
T

T

∑
t=1

ej(ωm−ωk)t) + Rn∗1 nr (τ),

(2)

where Rn∗1 nr (τ) = 1
T ∑T

t=1 n∗1(t)nr(t + τ) = 0 when τ 6= 0. Since 1
T ∑T

t=1 ej(ωk−ωm)t is
approximately equal to 0 if ωk 6= ωm and T is sufficiently large, (2) can be simplified as

Rx∗1 xr (τ) =
K

∑
k=1

ej2πlrdsin(θk)/λRs∗k sk
(τ), (3)

where Rs∗k sk
(τ) = |Ak|2ejωkτ . As Rs∗k sk

(τ) is similar to the signal sk(t) = Akejωkt, Rs∗k sk
(τ)

can be regarded as an equivalent signal coming from the direction θk.
Combining Rx∗1 xr (τ) for each r = 1, 2, ..., R, the following vector can be generated as

vx(τ) = [Rx∗1 x1(τ), Rx∗1 x2(τ), ..., Rx∗1 xR(τ)]
T = Avs(τ), (4)

where vs(τ) = [Rs∗1 s1(τ), Rs∗2 s2(τ), ..., Rs∗KsK (τ)]
T . Similarly,

v∗x(−τ) = [R∗x∗1 x1
(−τ), R∗x∗1 x2

(−τ), ..., R∗x∗1 xR
(−τ)]T = A∗v∗s (−τ) = A∗vs(τ). (5)

The last equation holds since Rs∗k sk
(τ) = R∗s∗k sk

(−τ) for k = 1, 2, ..., K. Combining

v∗x(−τ) and vx(τ), augmented vector v(τ) can be obtained as
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v(τ) =
[

v∗x(−τ)
vx(τ)

]
=

[
A∗

A

]
vs(τ) = Āvs(τ), (6)

where Ā = [AT , AH ]H = [ā(θ1), ā(θ2)..., ā(θK)], ā(θk) = [a(θk)
T , a(θk)

H ]H . By gathering
augmented vector v(τ) at moment τ = τs, 2τs, ..., Pτs, the pseudo data matrix V can be
constructed as follows:

V = [v(τs), v(2τs), ..., v(Pτs)] = Ā[vs(τs), vs(2τs), ..., vs(Pτs)] = ĀDE, (7)

where τs and P are defined as the pseudo sampling period and the number of pseudo
snapshots, respectively; D = diag{|A1|2, |A2|2, ..., |AQ|2}; E =[v

′
s(τs)v

′
s(2τs), ..., v

′
s(Pτs)]

with v
′
s(pτs) = [ejω1 pτs , ejω2 pτs , ..., ejωK pτs ]T , p = 1, 2, ..., P.

The covariance matrix of augmented vector v(τ) can be obtained as

Rv =
1
P

VV H = ĀD(
1
P

EEH)DH ĀH , (8)

where the (k, m)-th element of 1
P EEH is 1

P ∑P
p=1 ej(ωk−ωm)pτs . If P is sufficiently large and

k 6= m, this element is approximately equal to 0. Therefore, 1
P EEH can be regarded as a

K× K identity matrix, and covariance matrix Rv can be simplified as

Rv = ĀRs ĀH , (9)

where Rs = diag{|A1|4, |A2|4, ..., |AQ|4}. Then, Rv can be vectorized as

z = vec{Rv} = (Ā∗ � Ā)p, (10)

where p = [|A1|4, |A2|4, ..., |AQ|4]T , the k-th column of Ā∗ � Ā is

ā∗(θk)⊗ ā(θk) =

[
a∗(θk)
a(θk)

]∗
⊗
[

a∗(θk)
a(θk)

]
= J


a(θk)⊗ a∗(θk)
a(θk)⊗ a(θk)

a∗(θk)⊗ a∗(θk)
a∗(θk)⊗ a(θk)

, (11)

where J is a 4R2 × 4R2 permutation matrix defined in [30].
It can be seen from (11) that ā∗(θk)⊗ ā(θk) consists of four parts, where the first and fourth

parts correspond to difference coarrayLD = L−L = {(l1− l2)d|l1, l2 ∈ L}, the second and third
parts respectively correspond to positive sum coarray L+

S = L+L = {(l1 + l2)d|l1, l2 ∈ L} and
negative sum coarray L−S = −L−L = {−(l1 + l2)d|l1, l2 ∈ L}. As a result, ā∗(θk)⊗ ā(θk)
is the equivalent steering vector of the diff-sum coarray, and z is the equivalent received
signal of the diff-sum coarray. Assume that the diff-sum coarray is continuous in the range
[−lud, lud]. After eliminating the repeated and discrete elements of z, we can obtain

ẑ = Âp, (12)

where Â is the array manifold matrix of consecutive diff-sum coarray elements. After
that, we use the spatial smoothing MUSIC (SS-MUSIC) [21] algorithm to perform the DOA
estimation.

The main computational load of the VCAM algorithm includes the construction of
pseudo data matrix V , calculation of covariance matrix Rv, spatial smoothing operation,
eigenvalue decomposition and spatial spectrum search. The computational complexity
of the above steps is O(2RTP), O(4PR2), O((lu + 1)3), O( 4

3 (lu + 1)3) and O( π
∆θ (lu + 1)2),

respectively, where lu represents the maximum one-side aperture of the consecutive diff-sum
coarray, and ∆θ is the search interval of DOA. As a result, the total computational complexity
of the VCAM algorithm is O(2RTP + 4PR2 + (lu + 1)3 + 4

3 (lu + 1)3 + π
∆θ (lu + 1)2).
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2.3. Mutual Coupling

In practice, the mutual coupling effect between two sensors with small spacing is
inevitable. For a linear array, the mutual coupling matrix C can be modeled as a B-banded
Toeplitz matrix [14,32–34], whose (m, n)-th element is expressed as

[C]m,n =

{
c|lm−ln |, if |lm − ln| ≤ B

0, otherwise
, (13)

where lm, ln ∈ L. The magnitudes of coupling coefficients are inversely proportional to
sensor spacing and satisfy c0 = 1 > |c1| > |c2| > ... > |cB| > 0. In this paper, the coupling
coefficients are set to c0 = 1, c1 = |c1|ejπ/3 and cl = c1e−j(l−1)π/8/l, 2 ≤ l ≤ B. Therefore,
the received data model in (1) can be rewritten as

x(t) = CAs(t) + n(t). (14)

To evaluate the mutual coupling effect conveniently, we introduce the weight function
ω(m) defined as follows.

Definition 1. The weight function ω(m) of a physical array L denotes the number of sensor pairs
with spacing md, i.e.,

w(m) = Card(W(m)), (15)

where

W(m) = {(l1, l2) ∈ L2|l1 − l2 = md}, (16)

Card(·) denotes the cardinality of a set.

We should focus on the weight functions corresponding to small spacing since they
have a significant impact on the mutual coupling effect. In addition, the definition of
coupling leakage is also given to quantify the mutual coupling effect.

Definition 2. The coupling leakage E can be defined as

E =
‖C− diag(C)‖F

‖C‖F
, (17)

where ‖·‖F denotes the Frobenius norm and diag(C) is a diagonal matrix constructed by the
diagonal elements of C.

‖C‖F is the total energy of the mutual coupling matrix, and ‖C− diag(C)‖F represents
the energy of off-diagonal elements. Therefore, the coupling leakage E is the ratio of the
leakage energy to the total energy. The smaller E is, the lesser the mutual coupling.

3. Coprime Transformed Nested Array
3.1. Improved Transformed Nested Array Design Strategy

For prototype NA, the difference coarray is a subarray of the sum coarray [28], which
means that there are many redundant virtual elements in its diff-sum coarray. To solve this
problem, the transformed nested array (TNA) is proposed in [29], whose sensor position
set is given by

LTNA = Ls ∪Ld, (18)

where
Ls = {n1(N2 + 1) | 0 ≤ n1 ≤ N1 − 1},
Ld = {(N1 − 1)(N2 + 1) + n2 | 0 ≤ n2 ≤ N2}.
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Here, all the positions are normalized by d for convenience. It is clear that the sparse
subarray Ls is an N1-element ULA with inter-element spacing (N2 + 1), and the dense
subarray Ld is an (N2 + 1)-element ULA with unit inter-element spacing.

Different from prototype NA, the dense subarray Ld is on the right side of the sparse
subarray Ls in TNA. By swapping the positions of the two subarrays, the corresponding
difference coarray remains unchanged, and the positive and the negative sum coarray
are shifted to both sides along with the axis, respectively. Thus, the redundancy between
the difference coarray and the sum coarray can be significantly reduced. The diff-sum
coarray of TNA can provide more DOFs than that of prototype NA. An example of TNA
with parameters N1 = 4, N2 = 6 is illustrated in Figure 1. Due to the symmetry of the
diff-sum coarray, only the non-negative virtual elements are considered. It can be seen
that the difference coarray and the sum coarray are continuous in the range [0, 27] and
[21, 54], respectively. Thus, the diff-sum coarray possesses all the virtual elements in the
range [0, 54]. There are only 10 overlapping elements between the difference coarray and
the sum coarray.

The difference coarray of TNA consists of the self-difference sets Ld −Ld, Ls −Ls and
the cross-difference set Ld −Ls, where Ls −Ls is a subset of Ld −Ls. The sum coarray of
TNA consists of the self-sum sets Ld +Ld, Ls +Ls and the cross-sum set Ld +Ls, where
Ls + Ls is a subset of (Ld − Ls) ∪ (Ld + Ls). It is noteworthy that Ld − Ld and Ld + Ld
make little contribution to the diff-sum coarray; most of the virtual elements in the diff-sum
coarray are generated by cross sets Ld −Ls and Ld +Ls. As shown in Figure 1b,c, Ld −Ld
is completely contained in Ld − Ls, and half of the elements in Ld + Ld overlap with
Ld +Ls. In addition, TNA suffers from a severe mutual coupling effect due to the closely
distributed sensors in the dense subarray. So we hope to find a more sparse structure
instead of the ULA as the dense subarray of TNA to increase the number of DOFs and
reduce the mutual coupling effect. First, the novel dense subarray must ensure that the
cross-difference set Ld −Ls and the cross-sum set Ld +Ls can generate a long continuous
segment in the diff-sum coarray.

210 22 237 24 2514 26

0 5 10 15 20

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25

(a)

(b)

(c)

(d)

physical sensor virtual sensor hole

27

25

45 50

30 35 40 45 50

𝕃d𝕃s

Figure 1. An example of transformed nested array and its coarrays, where N1 = 4, N2 = 6. (a) Physical
array. (b) Difference coarray. Green dashed box and blue solid box respectively represent the elements
in Ld −Ls and Ld −Ld. (c) Sum coarray. Green dashed box and blue solid box respectively represent
the elements in Ld +Ls and Ld +Ld. (d) Diff-sum coarray.

For the original dense subarray Ld = {(N1 − 1)(N2 + 1) + n2 | 0 ≤ n2 ≤ N2}, any
element li ∈ Ld, i = 1, 2, ..., N2 + 1 can be rewritten as li = ai(N2 + 1) + bi, where ai and bi
are quotient and remainder of li/(N2 + 1), ai = N1 − 1, bi ∈ [0, N2]. Therefore, the dense
subarray of TNA satisfies two constraints. The first one is the remainder constraint, that
is,R[Ld]N2+1 = {b1, b2, ..., bN2+1} = [0, N2], whereR[A]b = {a mod b | a ∈ A} represents
the remainder set of A and mod is the modulo operation. The second one is the quotient
constraint, that is, a1 = a2 = · · · = aN2+1 = N1 − 1. We find that if Ld only satisfies the
remainder constraint but not the quotient constraint, Ld will be more sparse, and the cross
sets (Ld −Ls)∪ (Ld +Ls) can still produce a large number of consecutive virtual elements
in the diff-sum corray. To illustrate this situation, we give an example in Figure 2. It can be
seen from Figure 2a that the dense subarray is located at Ld = {21, 22, 25, 26, 27, 30, 31}, and
satisfies the remainder constraintR[Ld]7 = [0, 6]. The corresponding cross-difference set
Ld −Ls and cross-sum set Ld +Ls contain all the consecutive virtual elements in the range
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[4, 48]. Based on this observation, we summarize the properties of (Ld −Ls) ∪ (Ld +Ls)
as follows.

210 22 307 312514 26

0 5 10 15 20

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25

(a)

(b)

(c)

(d)

physical sensor virtual sensor hole

27

25

45 50

30 35 40 45 50

𝕃d𝕃s

30

Figure 2. An example of transformed nested array that satisfies the remainder constraint, where
N1 = 4, N2 = 6. (a) Physical array. (b) Cross-difference set Ld − Ls. (c) Cross-sum set Ld + Ls.
(d) (Ld −Ls) ∪ (Ld +Ls).

Theorem 1. Consider a nested-like array configuration whose sparse subarray is an N1-element
ULA located at Ls = {n1(N2 + 1) | 0 ≤ n1 ≤ N1 − 1}, dense subarray Ld has N2 + 1 elements
and satisfies the remainder constraintR[Ld]N2+1 = [0, N2], Ls is on the left side of Ld. Without loss
of generality, we assume that quotient ai of element li ∈ Ld satisfying ai ∈ [N1− 1, N1− 1+ amax]
for i = 1, 2, ..., N2 + 1, where amax is the maximum value of ai − N1 + 1. Then, the cross-difference
set Ld −Ls and the cross-sum set Ld +Ls have the following properties:

(a) (Ld − Ls) ∪ (Ld + Ls) contains all the virtual elements in the range [amax(N2 + 1),
(2N1 − 1)(N2 + 1)− 1].

(b) In the range [c(N2 + 1), (c + 1)(N2 + 1)− 1], 0 ≤ c ≤ amax − 1, the position li − (ai − c)
(N2 + 1) is a hole if N1 ≤ ai − c ≤ N1 − 1 + amax.

(c) In the range [c(N2 + 1), (c + 1)(N2 + 1)− 1], 2N1− 1 ≤ c ≤ 2N1− 2+ amax, the position
li + (c− ai)(N2 + 1) is a hole if N1 ≤ c− ai ≤ N1 − 1 + amax.

Proof. First, we divide the range [0, (2N1 − 1 + amax)(N2 + 1)− 1] into several small ranges
[c(N2 + 1), (c + 1)(N2 + 1)− 1], where 0 ≤ c ≤ 2N1− 2+ amax. The range [c(N2 + 1), (c + 1)
(N2 − 1)− 1] can be rewritten as c(N2 + 1) + {b1, b2, ..., bN2+1} since Ld satisfies the remainder
constraintR[Ld]N2+1 = {b1, b2, ..., bN2+1} = [0, N2]. Therefore, any element c(N2 + 1) + bi in
the range [c(N2 + 1), (c + 1)(N2 + 1)− 1] can be expressed as li − (ai − c)(N2 + 1) since

li − (ai − c)(N2 + 1) = ai(N2 + 1) + bi − (ai − c)(N2 + 1) = c(N2 + 1) + bi. (19)

Based on the value of c, we can divide the virtual element li − (ai − c)(N2 + 1) into
three cases:

(a) c ∈ [amax, 2N1− 2], ai− c ∈ [−N1 + 1, N1− 1]. If ai− c ∈ [0, N1− 1], then (ai− c)(N2 +
1) ∈ Ls, this virtual element can be generated by the cross-difference set Ld −Ls. If
ai− c ∈ [−N1 + 1, 0], then (c− ai)(N2 + 1) ∈ Ls, this virtual element can be generated
by the cross-sum set Ld +Ls. Therefore, (Ld −Ls) ∪ (Ld +Ls) is continuous in the
range [amax(N2 + 1), (2N1 − 1)(N2 + 1)− 1].

(b) c ∈ [0, amax − 1], ai − c ∈ [N1 − amax, N1 − 1 + amax]. If ai − c ∈ [N1 − amax, N1 − 1],
then (ai − c)(N2 + 1) ∈ Ls, this virtual element can be generated by Ld − Ls. If
ai − c ∈ [N1, N1 − 1 + amax], then (ai − c)(N2 + 1) /∈ Ls, this virtual element can not
be generated by (Ld −Ls) ∪ (Ld +Ls). As a result, the position li − (ai − c)(N2 + 1)
with ai − c ∈ [N1, N1 − 1 + amax] is a hole.

(c) c ∈ [2N1 − 1, 2N1 − 2 + amax], c− ai ∈ [N1 − amax, N1 − 1 + amax]. If c− ai ∈ [N1 −
amax, N1 − 1], then (c− ai)(N2 + 1) ∈ Ls, this virtual element can be generated by
Ld + Ls. If c − ai ∈ [N1, N1 − 1 + amax], then (c − ai)(N2 + 1) /∈ Ls, this virtual
element can not be generated by (Ld − Ls) ∪ (Ld + Ls). Therefore, the position
li + (c− ai)(N2 + 1) with c− ai ∈ [N1, N1 − 1 + amax] is a hole.
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In Theorem 1, we only focus on the cross-difference set Ld − Ls and the cross-sum
set Ld + Ls. However, (Ld − Ls) ∪ (Ld + Ls) no longer has the hole-free property when
only the remainder constraint is satisfied. There will be some holes on both sides of the
consecutive segment. In order to ensure the continuity of the diff-sum coarray, the dense
subarray Ld also requires to meet the following conditions.

Theorem 2. If Ld not only satisfies the remainder constraintR[Ld]N2+1 = [0, N2], but also meets
the following continuity conditions, then the diff-sum coarray is continuous in [−lu, lu].

(a) The self-difference set Ld − Ld can fill the holes of (Ld − Ls) ∪ (Ld + Ls) in the range
[0, amax(N2 + 1)− 1];

(b) The self-sum set Ld +Ld can fill the holes of (Ld −Ls) ∪ (Ld +Ls) in the range [(2N1 − 1)
(N2 + 1), (2N1 − 1 + amax)(N2 + 1)− 1];

(c) The self-sum set Ld +Ld contains the consecutive elements in the range [(2N1 − 1 + amax)
(N2 + 1), lu], where lu > (2N1 − 1 + amax)(N2 + 1).

Proof. According to Theorem 1, (Ld−Ls)∪ (Ld +Ls) is continuous in the range [amax(N2 + 1),
(2N1 − 1)(N2 + 1)− 1], and the holes exist in the range [0, amax(N2 + 1)− 1] and [(2N1 − 1)
(N2 + 1), (2N1 − 1 + amax)(N2 + 1) − 1]. If the holes can be filled by the self-difference set
Ld − Ld and the self-sum set Ld + Ld, and Ld + Ld contains all the elements in [(2N1 − 1 +
amax)(N2 + 1), lu], then the diff-sum coarray must be continuous in the range [0, lu]. Due to
symmetry, we can conclude that the diff-sum coarray is continuous in the range [−lu, lu].

It can be seen from Theorem 2 that if the designed dense subarray Ld satisfies the re-
mainder constraint and these three continuity conditions, the resulting array configuration
can achieve more DOFs than TNA. At the same time, Ld should be as sparse as possible to
reduce the mutual coupling effect.

3.2. Array Configuration

Based on the aforementioned design strategy, we propose a new nested array con-
figuration, named the coprime transformed nested array (CTNA); its dense subarray is
a coprime structure that satisfies the remainder constraint and the continuity conditions.
Therefore, CTNA can effectively enhance the number of DOFs and reduce the mutual
coupling effect. The sensor positions of CTNA can be given by

LCTNA = L1 ∪L2 ∪L3, (20)

where
L1 = {l(M + N) | 0 ≤ l ≤ L− 1},
L2 = {(L− 1)(M + N) + nM | 0 ≤ n ≤ N},
L3 = {(L− 1)(M + N) + mN | 0 ≤ m ≤ M}.

M and N are coprime integers and we assume 2 ≤ M < N without loss of generality.
CTNA consists of three ULAs, where L1 is the sparse subarray and L2 ∪ L3 is the dense
subarray. As L1, L2 and L3 share the sensor located at (L− 1)(M + N), the total number of
sensors in CTNA is M + N + L− 1. It is obvious that L2 ∪L3 is a coprime structure with
M + N sensors, which has the following property.

Property 1. The dense subarrayL2∪L3 satisfies the remainder constraint, i.e.,R[L2∪L3]M+N =
[0, M + N − 1].

Proof. For li ∈ L2 ∪L3, it can be rewritten as li = ai(M + N) + bi, where ai and bi denote
the quotient and remainder of li/(M + N), ai ∈ [L− 1, L− 1 + amax], bi ∈ [0, M + N − 1],
amax = bMN/(M + N)c. First, we need to prove that for any two elements li, lj ∈ L2 ∪L3,
if li 6= lj, then remainders bi 6= bj. The proof is provided by contradiction.
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When li, lj ∈ L2, their remainders are bi = (L − 1)(M + N) + ni M − ai(M + N),
bj = (L− 1)(M + N) + nj M− aj(M + N). If bi = bj, one can obtain

M
N

=
ai − aj

ni − nj − ai + aj
. (21)

As ai − aj ∈ [−amax, amax] and amax < bMN/Nc = M, M and N are coprime integers,
and the solution of (21) is ai = aj, ni = nj, which contradicts the assumption li 6= lj.

When li, lj ∈ L3, their remainders are bi = (L − 1)(M + N) + mi N − ai(M + N),
bj = (L− 1)(M + N) + mjN − aj(M + N). If bi = bj, one can obtain

M
N

=
mi −mj − ai + aj

ai − aj
. (22)

Since ai − aj ∈ [−amax, amax] and amax < bMN/2Mc ≤ N/2, the solution of (22) is
ai = aj, mi = mj, which contradicts li 6= lj.

When li ∈ L2, lj ∈ L3, their remainders are bi = (L− 1)(M + N) + ni M− ai(M + N),
bj = (L− 1)(M + N) + mjN − aj(M + N). If bi = bj, then we have

M
N

=
mj + ai − aj

ni − ai + aj
. (23)

If ai > aj and ai − aj ∈ [1, amax], then mj + ai − aj ∈ [1, 2M) and ni − ai + aj ∈
(−N/2, N − 1], and (23) has no solution due to the coprime property of M and N. If ai < aj,
ai − aj ∈ [−amax,−1], then mj + ai − aj ∈ (−M, M− 1], ni − ai + aj ∈ [1, 3N/2), and (23)
has no solution. If ai = aj, it has two solutions ni = 0, mj = 0 and ni = N, mj = M, which
contradict the assumption li 6= lj.

Therefore, the remainders of the M+ N elements in L2 ∪L3 are different from each other.
As remainder bi ∈ [0, M + N − 1], it is clear that R[L2 ∪ L3]M+N = {b1, b2, ..., bM+N} =
[0, M + N − 1].

Since L2 ∪ L3 satisfies the remainder constraint, the cross-difference set L2 ∪ L3 − L1
and the cross-sum set L2 ∪ L3 + L1 can generate a long consecutive segment. In Figure 3a,
we given an example of CTNA with parameters L = 4, M = 3, N = 4. It is clearly seen
that the dense subarray L2 ∪ L3 = {21, 24, 25, 27, 29, 30, 33} satisfies R[L2 ∪ L3]7 = [0, 6].
Therefore, the cross sets (L2 ∪L3−L1)∪ (L2 ∪L3 +L1), as shown in Figure 3b, contain all
virtual elements in the range [6, 48]. The holes on the left and right sides of this consecutive
segment are located at {1, 2, 5} and {49, 52, 53, 55}, respectively, which is consistent with
the conclusion of Theorem 1. Based on Theorem 2, the following property holds for CTNA.

210 24 307 332514 29

0 5 10 15 20

0 5 10 15 20 25 30 35 40

0 5 10 15 20 25

(a)

(b)

(c)

(d)

physical sensor virtual sensor hole

27

25

45 50

30 35 40 45 50

𝕃2 ∪ 𝕃3𝕃1

30 35 40 45 50

55 60 65

55 60 65

55

Figure 3. An example of the coprime transformed nested array and its coarrays, where L = 4,
M = 3, N = 4. (a) Physical array. (b) Cross sets (L2 ∪ L3 − L1) ∪ (L2 ∪ L3 + L1). (c) Self sets
(L2 ∪L3 −L2 ∪L3) ∪ (L2 ∪L3 +L2 ∪L3). (d) Diff-sum coarray.

Property 2. The diff-sum coarray of CTNA is continuous in the range [−lu, lu], where lu = 2(L− 1)
(M + N) + MN + M + N− 1.

Proof. The proof is provided in Appendix A.
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An illustrative example of the above property is given in Figure 3. It is clear that the
self-difference set L2 ∪L3 −L2 ∪L3 and the self-sum set L2 ∪L3 +L2 ∪L3, as shown in
Figure 3c, can fill all the holes in cross sets (L2 ∪L3−L1)∪ (L2 ∪L3 +L1), which indicates
that the virtual elements in the range [0, 55] can be generated. In addition, the self-sum
set L2 ∪ L3 + L2 ∪ L3 provides the consecutive elements in the range [56, 60]. The dense
subarray L2 ∪L3 satisfies the three continuity conditions. Therefore, the diff-sum coarray
of CTNA is continuous in [−60, 60], as shown in Figure 3d.

4. Properties of Coprime Transformed Nested Array
4.1. Degree of Freedom

In this paper, we utilize the VCAM algorithm to perform the DOA estimation, and
only the data received by the consecutive elements in the diff-sum coarray can be used.
Therefore, we define the number of DOFs as the aperture of the consecutive diff-sum
coarray. It can be seen from Property 2 that for a CTNA with R = M + N + L− 1 sensors,
the number of DOFs is 4(L− 1)(M + N) + 2MN + 2M + 2N− 1. To maximize the number
of DOFs provided by CTNA, we want to find the optimal choice of parameters M, N and L.
This problem can be formulated mathematically as

max
M,N,L

4(L− 1)(M + N) + 2MN + 2M + 2N − 1,

subject to R = M + N + L− 1.
(24)

By exploiting the Lagrange multiplier method, this optimization problem can be
solved, and the optimal values of M, N and L are provided in Table 1. However, the
optimal values of M, N and L are not integers for most given number of sensors R, thus M
and N do not satisfy the coprime assumption. In practice, we first consider the integers
adjacent to the optimal values that ensure the coprimality of M and N. After that, we can
determine the desired parameters by comparing the number of DOFs for each candidate.

Table 1. The optimal choice of M, N, and L and maximum number of DOFs.

M N L Maximum Number of DOFs

Optimal values 2
7 R + 1

7
2
7 R + 1

7
3
7 R + 5

7
8
7 R2 + 8

7 R− 5
7

In order to show the advantages of the proposed CTNA, we compare the maximum
number of DOFs for seven sparse arrays in Table 2, all of which consist of R sensors. It
is observed that CCA [23] and PCA [27] can only obtain up to O( R2

2 ) DOFs due to the
existence of holes in the diff-sum coarray. By constructing a supplementary subarray to fill
the holes, SCA [31] can enhance the number of DOFs to O( 25

36 R2). TNA-1, TNA-2 [29] and
TwETNA [31], enjoy O(R2) DOFs, thanks to the low redundancy nested array structure.
Finally, the proposed CTNA can provide O( 8

7 R2) DOFs, which is much larger than other
sparse arrays.

Table 2. DOF comparison of different sparse arrays.

Number of Sensors Number of DOFs Maximum Number of DOFs

CCA 2M + N − 1 4MN + 2M− 1 O( R2

2 + 3
2 R)

PCA M + N − 1 2MN + 2M + 2N − 1 O( R2

2 + 3R)

SCA 2M + N − 1 4MN + 2M + 2dM/2e(M + N)− 1 O( 25
36 R2 + 8

3 R)

TNA-1 N1 + N2 4N1 N2 + 4N1 − 3 O(R2 + 2R)

TNA-2 N1 + N2 4N1 N2 + 4N1 + 2N2 − 3 O(R2 + 3R)

TwETNA N1 + N2 4N1 N2 + 4N1 + 2N2 + 2dN2/2e − 3 O(R2 + 7
2 R)

CTNA M + N + L− 1 4(L− 1)(M + N) + 2MN + 2M + 2N − 1 O( 8
7 R2 + 8

7 R)
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4.2. Weight Function

Different from the existing nested arrays that suffer from severe mutual coupling, the
proposed CTNA achieves more DOFs while the mutual coupling effect is at the same level
as the coprime arrays. Since the mutual coupling is mainly affected by the sensor pairs
with small spacing, we analyze the first M− 1 weight function values of CTNA as follows.

Property 3. For CTNA, the weight function ω(m) is given by

ω(m) = 2, m ∈ [1, M− 1] (25)

Proof. The proof is provided in Appendix B.

Property 3 shows that the proposed CTNA can significantly reduce the mutual cou-
pling effect since the number of sensor pairs with small spacing is independent of the
array size. In Table 3, we list the first three weight function values ω(1), ω(2) and ω(3)
for seven sparse arrays. Since the closed-form expressions for the weight functions are
very complicated, here, we only consider the case of R ≥ 19. It is obvious that for TNA-1,
TNA-2 and TwETNA, the weight function ω(m) increases with the number of sensors,
which indicates that the nested configurations are sensitive to mutual coupling, especially
when the array size is large. On the other hand, the weight function ω(m) of CCA, PCA
and CTNA is a constant value 2, which is independent of the array size. SCA can further
reduce the number of sensor pairs with small spacing to ω(m) ≤ 2. Therefore, the mutual
coupling effect of CTNA is at the same level as CCA and PCA, which is slightly higher
than that of SCA. Thus, CTNA is a promising array configuration that combines the merits
of the coprime array and nested array.

Table 3. Weight function comparison of different sparse array.

Number of Sensors Weight Functions Values

CCA 2M + N − 1 ω(1) = ω(2) = ω(3) = 2

PCA M + N − 1 ω(1) = ω(2) = ω(3) = 2

SCA 2M + N − 1 ω(1) ≤ 2, ω(2) ≤ 2, ω(3) ≤ 2

TNA-1 N1 + N2 ω(1) = N2, ω(2) = N2 − 1, ω(3) = N2 − 2

TNA-2 N1 + N2 ω(1) = N2 − 2, ω(2) = N2 − 3, ω(3) = N2 − 4

TWETNA N1 + N2 ω(1) = N2 − 4, ω(2) = N2 − 6, ω(3) = N2 − 7

CTNA M + N + L− 1 ω(1) = ω(2) = ω(3) = 2

5. Numerical Simulations

In this section, we conduct extensive numerical simulations to investigate the DOA
estimation accuracy of the considered sparse arrays in the presence of mutual coupling.
The VCAM algorithm is used to detect the DOAs of a set of uniform distributed sources.

5.1. Degrees of Freedom Ratio

In the first experiment, we compare the maximum number of DOFs for the seven
sparse arrays using DOF ratio, which can be defined as

γ = R2/lu, (26)

where lu represents the maximum one-side aperture of the consecutive diff-sum coarray.
The smaller γ is, the larger the number of DOFs is. The DOF ratios with the number of
sensors R varying from 14 to 98 are drawn in Figure 4. It is obvious that, with the increase
in R, the DOF ratios of TNA-1, TNA-2 and TwETNA approach a constant 2, while that of
CTNA approaches a constant 1.7, which indicates that CTNA can achieve a larger number
of DOFs.
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Figure 4. DOF ratio γ(R) versus the number of sensors R.

5.2. Coupling Leakage

Then, we evaluate the mutual coupling effect of each sparse array via the coupling
leakage E defined in (17). The smaller E is, the lesser the mutual coupling. Figure 5 shows
the coupling leakage with the number of sensors R varying from 14 to 98, where the mutual
coupling coefficient is |c1| = 0.3. It is clearly seen that the coupling leakage of the proposed
CTNA is at the same level as CCA and PCA, much less than TNA-1, TNA-2 and TwETNA.
Therefore, CTNA is a kind of nested array that is insensitive to the mutual coupling effect.

10 20 30 40 50 60 70 80 90 100

R

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
(R

)

CCA

PCA

SCA

TNA-1

TNA-2

TwETNA

CTNA

Figure 5. Coupling leakage E(R) versus the number of sensors R.

5.3. DOA Estimation

In this experiment, we examine the DOA estimation performance of the 7 sparse arrays
consisting of 16 sensors. The number of available DOFs, the weight function values and
the coupling leakage E of these sparse arrays are provided in Table 4. K = 41 far-field
narrowband uncorrelated sources are considered, which are uniformly distributed between
−60◦ and 60◦. The signal-to-noise ratio (SNR) is set as 0 dB, the number of snapshots T
and the number of pseudo snapshots P satisfy T = P = 800, and the mutual coupling
coefficient is |c1| = 0.2.
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Table 4. Character comparison for sparse arrays with R = 16 sensors.

Specified Parameters Number of DOFs Weight Functions E

CCA M = 4, N = 9 151 ω(1) = ω(2) = ω(3) = 2 0.1382

PCA M = 8, N = 9 177 ω(1) = ω(2) = ω(3) = 2 0.1299

SCA M = 5, N = 7 221 ω(1) = 1, ω(2) = 1, ω(3) = 2 0.1028

TNA-1 N1 = 8, N2 = 8 285 ω(1) = 8, ω(2) = 7, ω(3) = 6 0.2306

TNA-2 N1 = 8, N2 = 8 301 ω(1) = 6, ω(2) = 5, ω(3) = 4 0.2027

TWETNA N1 = 8, N2 = 8 309 ω(1) = 4, ω(2) = 2, ω(3) = 3 0.1669

CTNA M = 4, N = 5, L = 8 309 ω(1) = ω(2) = ω(3) = 2 0.1331

Figure 6 presents the normalized spatial spectra for the sparse arrays described above.
Note that only CTNA can correctly identify all 41 sources due to the larger number of DOFs
and lower mutual coupling. The nested array configurations TNA-1, TNA-2 and TwETNA
have sufficient DOFs to detect the sources, but the severe mutual coupling effect leads to
some missing sources and spurious peaks in the spatial spectra. On the other hand, the
coprime array configurations CCA, PCA and SCA have a degraded spatial spectrum with
missing sources due to the limitation of the number of DOFs.

(a) CCA (b) PCA (c) SCA (d) TNA-1

(e) TNA-2 (f) TwETNA (g) CTNA

Figure 6. The VCAM spatial spectra for the considered sparse arrays with R = 16 sensors, where
SNR = 0 dB, T = P = 800 and |c1| = 0.2. (a) CCA. (b) PCA. (c) SCA. (d) TNA-1. (e)TNA-2.
(f) TwETNA. (g) CTNA.

The computational time for the seven sparse arrays to perform 100 DOA estimates is
shown in Table 5. The results are obtained via a personal computer with a 2.9 GHz Intel
Core i7-10700 and 32 GB of RAM. It can be seen that the computational time is proportional
to the maximum one-side aperture lu, thus the proposed CTNA and TwETNA have relative
higher computational complexity. However, CTNA can achieve better DOA estimation
performance than TwETNA in the presence of mutual coupling.

Table 5. Computational time to perform 100 DOA estimates.

CCA PCA SCA TNA-1 TNA-2 TwETNA CTNA

Times (s) 29.357 34.034 43.440 51.326 53.466 55.496 55.345
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5.4. RMSE Results

In the last experiment, we perform 500 Monte Carlo simulations to further compare the
DOA estimation accuracy through the root mean square error (RMSE), which is defined as

RMSE =

√√√√ 1
500K

500

∑
i=1

K

∑
k=1

(θ̂k,i − θk)2, (27)

where θ̂k,i is the estimate of θk in the ith trial, i = 1, 2, ..., 500. K = 21 sources are distributed
uniformly between −60◦ and 60◦. The considered sparse array configurations are provided
in Table 4.

Figure 7 shows the RMSE results as a function of SNR. We set the number of snapshots as
T = P = 800 and mutual coupling coefficient as |c1| = 0.2. The SNR varies from −10 dB to
20 dB. It is clearly seen that all the RMSE values decrease with the increase of SNR, and the
proposed CTNA has the lowest RMSE among the seven sparse arrays due to the enhanced
DOFs and reduced mutual coupling. The performance of SCA is better than other sparse
arrays, but worse than CTNA, which is attributed to the sparsest array structure. Although
TwETNA can provide the same number of DOFs as CTNA in this case, the high mutual
coupling effect limits its performance.

0 5 10 15 20

SNR (dB)

10

10

10
0

R
M

S
E

 (
d

eg
)

CCA

PCA

SCA

TNA-1

TNA-2

TwETNA

CTNA

Figure 7. RMSE versus SNR, where T = P = 800, |c1| = 0.2.

The RMSE curves versus the number of snapshots varying from 200 to 2000 are
presented in Figure 8, where the fixed parameters are set to SNR = 0 dB, |c1| = 0.2. It can
be seen that the proposed CTNA performs better in DOA estimation than other sparse
arrays, regardless of the number of snapshots. Moreover, the RMSEs of CCA and PCA
suffer from deterioration until 1200 snapshots are used, while the remaining sparse arrays
only need 600 snapshots to achieve satisfactory estimation accuracy, which indicates that
CCA and PCA need to collect more snapshots to obtain sufficient information due to the
lowest number of available DOFs.

The RMSE results versus mutual coupling coefficient |c1| are illustrated in Figure 9,
where SNR=0 dB, T = P = 800, |c1| varies from 0 to 0.5. Similarly, CTNA achieves
the best DOA estimation performance and can tolerate high levels of mutual coupling
until |c1| = 0.4. In comparison, the operation range of other sparse arrays is limited to
0 ≤ |c1| ≤ 0.25.
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Figure 8. RMSE versus the number of snapshots, where SNR=0 dB, |c1| = 0.2.
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Figure 9. RMSE versus mutual coupling coefficient |c1|, where SNR = 0 dB, T = P = 800.

6. Conclusions

In order to expand the consecutive coarray range and reduce mutual coupling, an
improved transformed nested array design strategy was proposed in this paper, which
consists of the remainder constraint and three continuity conditions. Based on this strategy,
we developed a novel array configuration termed coprime transformed nested array, which
has the merits of both the coprime array and nested array. Specifically, CTNA can achieve a
larger number of DOFs than the existing nested arrays, and the mutual coupling can be
kept at a low level since its dense subarray is a coprime structure. In the end, numerical
simulations were given to verify the effectiveness of the proposed CTNA in terms of the
DOA estimation accuracy.
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Appendix A. Proof of Property 2

According to the property (b) of Theorem 1, the position li − (ai − c)(M + N) with
ai − c ∈ [L, L − 1 + amax] is a hole in the range [c(M + N), (c + 1)(M + N) − 1], where
li ∈ L2 ∪L3, c ∈ [0, amax − 1]. If li ∈ L2, the hole position can be rewritten as

(L− 1)(M + N) + ni M− (ai − c)(M + N)

=[(L− 1)(M + N) + (ni + L− 1− ai + c)M]− [(L− 1)(M + N) + (ai − c− L + 1)N],
(A1)

where ai− c− L+ 1 ∈ [1, amax], thus (L− 1)(M+ N)+ (ai− c− L+ 1)N ∈ L3. As ai− c ≥ L,
then ni + L− 1− ai + c ≤ N − 1. Meanwhile, since (L− 1)(M + N) + ni M ≥ ai(M + N),
then

(ni + L− 1− ai)M ≥ (ai − L + 1)N ≥ 0. (A2)

As c ≥ 0, one can obtain ni + L − 1− ai + c ≥ 0. Therefore, ni + L − 1− ai + c ∈
[0, N− 1], (L− 1)(M + N) + (ni + L− 1− ai + c)M ∈ L2, and the hole can be filled by the
self-difference set L2 ∪L3 −L2 ∪L3. On the other hand, if li ∈ L3, the hole position can be
rewritten as

(L− 1)(M + N) + mi N − (ai − c)(M + N)

=[(L− 1)(M + N) + (mi + L− 1− ai + c)N]− [(L− 1)(M + N) + (ai − c− L + 1)M].
(A3)

Similarly, one can find that ai − c − L + 1 ∈ [1, amax] and mi + L − 1 − ai + c ∈
[0, M− 1], thus (L− 1)(M + N) + (ai − c− L + 1)M ∈ L2, (L− 1)(M + N) + (mi + L−
1− ai + c)N ∈ L3, and the hole can be filled by the self-difference set L2 ∪L3 −L2 ∪L3.

According to the property (c) of Theorem 1, the position li + (c− ai)(M + N) with
c − ai ∈ [L, L − 1 + amax] is a hole in the range [c(M + N), (c + 1)(M + N) − 1], where
li ∈ L2 ∪L3, c ∈ [2L− 1, 2L− 2 + amax]. If li ∈ L2, the hole position can be rewritten as

(L− 1)(M + N) + ni M + (c− ai)(M + N)

=[(L− 1)(M + N) + (ni + c− ai − L + 1)M] + [(L− 1)(M + N) + (c− ai − L + 1)N],
(A4)

where c − ai − L + 1 ∈ [1, amax], thus (L − 1)(M + N) + (c − ai − L + 1)N ∈ L3. Since
c− ai ≥ L, then ni + c− ai − L + 1 ≥ 1. Moreover, as (L− 1)(M + N) + ni M < (ai + 1)
(M + N), then

(ni − ai − 1)M < (ai + 1)N − (L− 1)(M + N). (A5)

Adding (c− L + 1)M to both sides of (A5), one can obtain

(ni + c− ai − L)M < (ai + 1)N + (c− L + 1)M− (L− 1)(M + N) ≤ amax(M + N) < MN, (A6)

where the second inequality holds since ai + 1 ≤ L− 1+ amax and c− L + 1 ≤ L− 1+ amax.
As a result, ni + c− ai − L + 1 ≤ N, (L− 1)(M + N) + (ni + c− ai − L + 1)M ∈ L2, and
the hole can be filled by the self-sum set L2 ∪L3 +L2 ∪L3. On the other hand, if li ∈ L3,
the hole position can be rewritten as

(L− 1)(M + N) + mi N + (c− ai)(M + N)

=[(L− 1)(M + N) + (mi + c− ai − L + 1)N] + [(L− 1)(M + N) + (c− ai − L + 1)M].
(A7)

Similarly, c− ai − L + 1 ∈ [1, amax], mi + c− ai − L + 1 ∈ [0, M], thus (L− 1)(M + N)
+(c− ai − L + 1)M ∈ L2, (L− 1)(M + N) + (mi + c− ai − L + 1)N ∈ L3, and the hole can
be filled by the self-sum set L2 ∪L3 +L2 ∪L3.

As the dense subarray L2 ∪L3 is a coprime structure similar to the prototype CA, its
self-sum set L2 ∪L3 +L2 ∪L3 is continuous in the range [2(L− 1)(M + N) + MN −M−
N + 1, 2(L− 1)(M + N) + MN + M + N − 1]. The proof is similar to Proposition 2 of [27],
and is omitted here.
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We proved that L2 ∪ L3 − L2 ∪ L3 can fill the holes in [0, amax(M + N) − 1], L2 ∪
L3 + L2 ∪ L3 can fill the holes in [(2L − 1)(M + N), (2L − 1 + amax)(M + N) − 1], and
L2 ∪L3 +L2 ∪L3 contains all the consecutive elements in the range [2(L− 1)(M + N) +
MN −M− N + 1, 2(L− 1)(M + N) + MN + M + N − 1]. Based on Theorem 2, we can
conclude that CTNA is continuous in the range [−lu, lu], where lu = 2(L− 1)(M + N) +
MN + M + N − 1.

Appendix B. Proof of Property 3

As the subarrays L1, L2 and L3 are uniform linear arrays with inter-element spacing
M + N, M and N, respectively, the weight function ω(m) for m ∈ [1, M− 1] only depends
on the interaction between L2 and L3. Suppose that two different sensor pairs {l1, l2}
and {l3, l4} contribute to the weight function ω(m), i.e., l1 − l2 = l3 − l4 = m, where
m ∈ [1, M− 1]. We need to consider the following three cases.

(a) If l1, l3 ∈ L2, l2, l4 ∈ L3, then we have

n1M−m1N = n2M−m2N. (A8)

This equation can be rewritten as

(n1 − n2)M = (m1 −m2)N. (A9)

Since n1, n2 ∈ [0, N], m1, m2 ∈ [0, M], then n1 − n2 ∈ [−N, N], m1 − m2 ∈ [−M, M].
As M and N are coprime integers, (A9) has three solutions: n1 = n2, m1 = m2; n1 = N,
n2 = 0, m1 = M, m2 = 0; n1 = 0, n2 = N, m1 = 0, m2 = M. None of these three solutions
satisfy the assumption {l1, l2} 6= {l3, l4}.

(b) If l1, l3 ∈ L3, l2, l4 ∈ L2, then we have

m1N − n1M = m2N − n2M. (A10)

This equation can be rewritten as

(n2 − n1)M = (m2 −m1)N. (A11)

Since (A11) has a similar form to (A9), it is easy to find that the solutions of (A11) do
not satisfy the assumption {l1, l2} 6= {l3, l4}.

(c) If l1, l4 ∈ L2, l2, l3 ∈ L3, then we have

n1M−m1N = m2N − n2M. (A12)

This equation can be rewritten as

(n1 + n2)M = (m1 + m2)N, (A13)

where n1 + n2 ∈ [0, 2N], m1 + m2 ∈ [0, 2M]. Only when n1 + n2 = N and m1 + m2 = M,
(A13) holds and satisfies the assumption {l1, l2} 6= {l3, l4}.

From the above discussion, it is clear that only two sensor pairs, i.e., {(L− 1)(M + N)
+n1M, (L− 1)(M + N) + m1N} and {(L− 1)(M + N) + (M − m1)N, (L− 1)(M + N) +
(N − n1)M}, contribute the weight function ω(m). Therefore, we can conclude that
ω(m) = 2 for m ∈ [1, M].
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