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Abstract: Biomarkers have already been proposed as powerful classification features for use in
the training of neural network-based and other machine learning and artificial intelligence-based
prognostic models in the scientific field of personalized nutrition. In this paper, we construct and
study cascaded SVM-based classifiers for automated metabolic syndrome diagnosis. Specifically,
using blood exams, we achieve an average accuracy of about 84% in correctly classifying body mass
index. Similarly, cascaded SVM-based classifiers achieve a 74% accuracy in correctly classifying
systolic blood pressure. Next, we propose and implement a system that achieves an 84% accuracy in
metabolic syndrome prediction. The proposed system relies not only on prediction of the body mass
index but also on prediction from blood exams of total cholesterol, triglycerides and glucose. For
the aim of self-completeness of the paper, the key concepts with regard to metabolic syndrome are
summarized, and a review of previous related work is included. Finally, conclusions are drawn and
indications for related future research are outlined.

Keywords: biomarkers; metabolic syndrome (MetS); body mass index (BMI); systolic blood pressure
(SBP); personalized medicine; support vector machine (SVM); support vector classifier (SVC); neural
network; data analytics

1. Introduction

In the recent years, there is a growing interest in the incorporation of artificial in-
telligence technologies—including machine learning and deep learning—in healthcare
and medicine. These technologies are expected to have a transformative role in patient
treatment and disease management via automating tasks, streamlining processes, keeping
manual intervention at a minimum and simplifying mundane operations for all parties
involved [1].

On the other hand, biomarkers are objective measurements drawn from blood and
other bodily fluids or tissue that form medical signs or indicators of a disease or, more
generally, the health state of a person. Biomarkers can comprise either a sole metric or a
combination of metrics and observations [2]. In Table 1, some commonly used biomarkers
are presented, including waist-to-hip ratio, total cholesterol, systolic blood pressure (SBP)
and fasting glucose. Currently, biomarkers are seen as key drivers of the personalization of
patient management and treatment and drug development.

In this paper, we report on recent findings from our research on investigating the link
between a person’s standard biochemistry profile (based on blood exams), his/her body
mass index (BMI), metabolism as health state and SBP. Our current findings expand upon
our previous related research, which was based on the use of deep neural networks and
other machine learning paradigms in relation to BMI and nutrition [3–6].

The motivation for this research was to compress tasks and improve outcomes by
using more common variables to predict health states and, in a sense, simplify the patient’s
journey via minimizing response time between test, result and recommended action. At the
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same time, another motivation was to find methods to optimize operational issues via
applying machine learning methodologies that can be easily transcribed into telemedicine
applications. For example, Big Data and artificial intelligence can be used to improve
decision making, support interventions [7] and add more pathways in healthcare analyt-
ics [8]. Mathematical tools and Big Data, as part of advanced machine learning pipelines
and artificial intelligence, will eventually become the basis for analysis in diagnostics and
pathology [9].

Table 1. Examples of biomarkers.

Name Description Health Results

Waist to hip ratio Abdominal obesity index Hypertension, CHD, insulin-
dependent diabetes and stroke

Total cholesterol Helps in the synthesis of bile
acids and steroid hormones

At middle age: Coronary heart
disease (CHD) and mortality
of all causes at an older age: u-
shaped relation to death

Systolic blood pressure (SBP)

Cardiovascular activity index:
maximum pressure in an
artery when the heart supplies
the body with blood

Cardiovascular death (CVD),
stroke, coronary heart disease
(CHD)

Fasting glucose Measures the amount of sugar
in the diabetes index

Diabetes, CHD, mortality,
poor cognitive function

Childhood obesity is a very important issue and is connected to genetic predispositions
and behavior. According to the CDC and based on recent studies, obesity prevalence rises
to approximately 13% in the age group of 2 to 5 years, 20% in the age group 6 to 11 years
and 21.2% among 12 to 19 year olds [10]. Furthermore, childhood obesity is commonly
associated with certain communities and specific populations [10]. The age ranges of our
dataset can be seen in Figure 1. Clearly, mostly young adults and people above the age
of 18 are included, with only a small number of them belonging to the 7–14 age group.
Thus, additional datasets need to be collected to draw reliable conclusions with regard to
childhood obesity. Demographics and lifestyle determinants could also prove to be useful
tools if used as inputs, alongside other nutritional factors and laboratory data, for machine
learning classifiers and should be investigated further. Machine learning tools could be
used as predictors of child obesity or deployed for automating targeted interventions. This
research avenue is, in fact, being followed, and its results will be announced in other fora.

In this study, we are looking into the spectrum of metabolic syndrome (MetS) as
seen in Figure 2. We follow a more holistic method by looking into engineering shortcuts
using linked automation. Via building on related literature [11] and expanding on related
conclusions [12], we propose a more complete approach via linking factors to states and
via using said states to extract actions. MetS being a specific health state and weight
being a factor related to MetS and triglyceride combined with glucose and cholesterol are
accompanied by defining factors; we utilize all three to finalize a conclusion and calculate
related risk factors and recommendations. In this paper, we implement and test various
classifiers towards linking a person’s standard biochemistry profile (based on blood exams),
his/her BMI, metabolism as health state and SBP. We show that support vector machine-
based classifiers are very promising. We also provide a brief comparison with results on
previous works of ours that were based on deep neural networks [3–6]. Moreover, a more
extensive look into related literature is provided in Section 3.
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Figure 1. Characteristics of sample.

More specifically, the paper is organized as follows: In Section 2, the key concepts
with regard to MetS are summarized, laying the theoretical ground work on which our
research is based. In Section 3, previous related work is highlighted. In Section 4, we
discuss the datasets used in our research, as well as important statistical measures to
characterize them. In Section 5, we develop and comparatively evaluate various classifiers
for BMI prediction based on blood exams, including neural network-based and SVM-based
classifiers. Furthermore, we show that a cascaded SVM-based classifier is most promising,
achieving an average correct classification rate of about 84%. In Section 6, we propose and
implement a system for MetS prediction, which relies not only on BMI prediction but also
on the prediction from blood exams of all MetS defining factors, i.e., total cholesterol,
triglycerides and blood pressure (Figure 2). In Section 7, we itemize the key findings of our
research and discuss their significance. Finally, in Section 8, we draw conclusions and point
to future research avenues in this area.

Figure 2. MetS Predictors.

2. Metabolic Syndrome

Noncommunicable diseases (NCDs) are considered a major cause of morbidity and
mortality in the developed world but more significantly so in underdeveloped countries.
MetS has been prominent among the NCDs. Specifically, MetS, also known as syndrome
X or dysmetabolic syndrome, refers to a cluster of metabolic conditions that can lead,
among other things, to heart disease. The main features of MetS include insulin resistance,
hypertension (i.e., high blood pressure), abnormal cholesterol and an increased risk for
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clotting. The results of most studies have documented overweight and obesity as the
strongest predictors of MetS. On the other hand, thyroid dysfunction is also one of the most
common endocrine disorders in MetS patients [13].

2.1. Metabolic Syndrome Markers

MetS is one of the many risk factors for atherosclerotic cardiovascular disease (ASCVD)
and, thus, represents a combination of determinants of risk that compares to that of cigarette
smoking, hypertension, hypercholesterolemia and diabetes [14]. Atherogenic dyslipidemia,
high blood pressure, high glucose, prothrombotic condition and pro-inflammatory condi-
tion are components frequently found in MetS. Clinical hyperglycemia (Type 2 diabetes) is
also observed in more advanced stages of MetS. MetS is labeled as a strong cardiovascular
risk feature and, even without diabetes being present, it doubles the relative risk for car-
diovascular disease. MetS is also considered a worldwide problem and, as urbanisation
leads to obesity expansion among the population due to lifestyle shifts, MetS becomes
proportionally more frequent. In the latest studies, the presence of MetS has also been
associated with higher risk of acute respiratory distress syndrome (ARDS) and increase
in deaths for patients with COVID-19 [15]. Currently, a medical rule of thumb associates
metabolic disorders (MetS) with at least three of the conditions (biomarkers) mentioned in
Figure 2, upon which we further elaborate in the following.

2.1.1. A Large Waist

BMI is more commonly used than waist circumference as a measure of adiposity in
clinical and research settings [16]. Multiple factors have been proven to have some relativity
or to contribute to MetS. However, it is rather uncommon to detect MetS when excess body
fat is absent. Thus, MetS is more ubiquitous where obesity increases. In obese individuals,
excess adipose tissue releases a variety of factors that may be contributing to metabolic
risk factors. Specifically, excessive release of non-esterified fatty acids predisposes the
individual to accumulation of ectopic fat in the liver, muscles and visceral adipose tissue
stores [17].

2.1.2. A High Triglyceride Level

This is determined by blood tests that are used to gauge the amount of triglycerides,
which constitute a type of fat in the blood. Levels are high when more fat is consumed than
the amount necessary for body functions.

2.1.3. Reduced HDL (“Good” Cholesterol)

In our body, we accumulate both good (HDL) and bad (LDL) cholesterol. Bad choles-
terol accumulates in arteries, whereas good cholesterol scavenges and removes it, keeping
bad cholesterol from building up in the arteries. Ranges of acceptable values of both HDL
and LDL differ between men and women.

On the other hand, the total cholesterol score is calculated using the following equa-
tion: HDL level + LDL level + 20% of the triglyceride level. Total cholesterol equals the
overall amount of cholesterol in the blood, including both high density lipoprotein (HDL
cholesterol) and low density lipoprotein (LDL cholesterol). High total cholesterol levels rep-
resent increased ischemic stroke probability [18]. HDL decreases the likelihood of heart
problems and, invertedly, LDL increases the risk of stroke.

2.1.4. Elevated Fasting Blood Sugar (Fasting Glucose)

Carbohydrates are received from the consumption of foods and, through them, glucose
(“blood sugar”) is produced. Glucose is required by the body as an energy provider. Insulin
is necessary for glucose to travel to cells and for energy to be released. In the absence of
insulin, glucose levels rise; thus, diabetes occurs because of the disability of the pancreas to
produce sufficient the levels of insulin required for metabolic processes to occur [19].
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2.1.5. Increased Blood Pressure

High blood pressure or hypertension is the condition where the force of blood against
the artery walls is so strong that, in the mid- to long-term, it can be a main cause of major
health problems and, more likely, heart disease. The peak (systolic) number is the pressure
when the heart beats. The lowest (diastolic) number is the pressure when the heart is resting
between pulses. Normal blood pressure is below 120/80 mm Hg. High blood pressure is
a systolic pressure of 140 mm Hg or greater and/or a diastolic pressure of 90 mm Hg or
greater, which remains at high levels over time [20]. Blood pressure ranges are defined in
more detail in Figure 3.

Figure 3. Blood pressure estimator.

2.2. Genetics—Cardiac Effects of Obesity and MetS

The genome contains numerous markers associated with MetS. In fact, there are
hundreds of markers in the genome that are associated with the biological traits of MetS.
Each genetic component can exist at many levels, e.g., within adipose tissue, in insulin
signaling pathways and as regulatory functions of the individual components of the
syndrome. Each level exhibits its own genetic background. As such, no common genetic
trait has been identified for MetS [21].

The observed association of obesity with hypertension prompted a body of work
exploring causes and effects of obesity on the heart [22]. Chronic increases in body weight
and adiposity can result in significant neurohormonal changes and adaptations in the
cardiovascular system [23]. The ratio of total cholesterol over high-density lipoprotein
cholesterol (HDL-C) and the ratio of low-density lipoprotein cholesterol (LDL-C) over
high-density lipoprotein cholesterol (HDL-C) are commonly used to predict ischemic heart
disease risk [24].

3. Related Work and Methodology Comparison

In our previous study [3], we tested and evaluated the ability of neural networks to
classify people in classes based on their BMI and using a basic biochemical profile extracted
via routine blood exams (Figure 4). The classification process was firstly realized in four
classes, then in three and finally in two (2) and a general understanding of the relation was
established. Specifically, four BMI classes are defined in the relevant literature, namely
“obese”, “overweight”, “normal” and “underweight”. At each stage, accuracy increased
while classes were thinned into smaller groups, as in Figure 5. Thus, the idea of a cascaded
classifying method was conceived in accordance with similar previous approaches with
regard to the recommendation problem [25,26]. At the same time, it became apparent that
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blood exams held sufficient information for a system to be tested in a greater variety of
health states. Going forward, the data used would be thoroughly analyzed to ensure that
no bias was intended in the classification system. The results of each classifier would be
cross-examined by using comparison matrices. In the current paper, we report on our study
of binary and one-class support vector machine (SVM)-based classifiers, which we also
compare with several other classifiers.

Figure 4. Full biochemistry profile—blood exams.

Figure 5. Four-class classifier.

In other related works, a relation between electrocardiogram (ECG) and MetS has been
suggested via deploying neural network-based classifiers [22]. A link between MetS and
a variety of demographic data and specific blood tests has also been established with the
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deployment of neural networks, while other statistical methods were also compared [27].
The prediction of MetS, using artificial neural networks and clinical data, has also been
explored, where BMI, age, HDL and LDL were identified as defining factors [28]. In other
studies, an extreme learning machine approach was explored to identify the overweight
class by using blood exams [12] using a sample of 500 data points of men and women. In a
recent paper, a general diagnosis of MetS was pursued using clinical symptoms integrated
with physio-chemical indexes in a smaller study of 586 cases where 450 participants had
MetS and 136 others did not [29]. What is worth noting is also a recent paper with an
extensive literature review related to MetS statistics and machine learning paradigms [11].

More precise comparisons of machine learning methodologies for predicting MetS and
BMI can be seen in Tables 2 and 3, respectively. The main difference between our proposed
methodologies and methodologies previously followed by other authors is that the latter,
even though technically sound, lack a solid medical corroboration. The comparison is
limited to papers that follow a similar pattern to ours, as per feature selection. Important
differences between this work and previous related works include the size of samples and
the fact that samples were in most cases imbalanced and could, thus, result in biased results,
as outlined in Section 4. Another important factor that can add usability to a system is a
feature selection methodology. We have ensured that our classification method explores
methods that can assist medical prognosis in a novel manner by not using major defining
factors that are already explored (e.g., triglycerides, cholesterol, BMI and glucose), as is the
case in previous related works described in Tables 2 and 3.

Table 2. Comparison of methodologies— MetS.

Metrics Cascaded SVC QPHR1 [30] ANN [28]

Accuracy (%) 84 >95 >95

Size of sample 5000 15,000 410

Balanced sample yes no no

Features

Standard
Biochemistry profile.
Mets defining factors
not included

Uses defining factors
to predict MetS
(triglycerides, Bmi)

Uses defining factors to
predict MetS (BMI,
diastolic blood pressure,
HDL-cholesterol,
LDL-cholesterol)

Table 3. Comparison of methodologies— BMI.

Metrics 4 Class Neural
Network [5] 4 Class SVC 3 Class Neural

Network [6] 3 Class SVC Cascaded SVM Extreme
LM [12]

Accuracy (%) 56 55 58 62 85 90.54

Size of sample 75,000 15,000 33,000 15,000 10,000 500

Balanced
sample no no yes yes yes no

All Classes? yes yes no no yes no (Overweight
class)

Features
Full
Biochemistry
Profile

Full
Biochemistry
Profile

Full
Biochemistry
Profile

Full
Biochemistry
Profile

Without
defining factors
of MetS
(15 features)

Blood Indexes
(39 features) +
age

Our aim is to create a streamlined machine learning pipeline that can cover as big a
part of the patient’s journey, minimize manual interventions and improve outcomes via
minimizing required data to be fed in the process. We should also mention that for our
experiments, a very broad dataset has being utilized of about 70,000 data points in both
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balanced and imbalanced states. Clearly, this is a great increase over previous related
studies that have incorporated small samples of an average of 500 imbalanced data points.

4. Exploratory Data Analysis and Bias Evaluation

Initially, the data were analyzed as per the BMI via deploying frequency histograms
and probability density distributions to define how the sample used is represented. Data
were also analyzed via deploying the same techniques as per each variable (blood exams—
standard biochemistry profile) to determine average values, correlation between each vari-
able and other statistical metrics, as in Figure 6. Variables were tested in both a generic way
(complete data-set) and a more precise way as per weight category.

Key observations were drawn via examining important statistical metrics (e.g., mean,
median, mode or standard deviation) to better understand the sample set under examina-
tion, to create the basis of available tools for future research endeavors and to develop a
tool for missing value prediction through entity alignment. The results of this analysis can
be seen in Figure 1. Clearly, the sample is well-balanced among the two genders and the
age classes appear normally distributed. Thus, we can safely conclude that the network fed
with this particular data is less likely to be biased, since gender is equally represented and
a representative group is used for all age classes.

When examining the biochemistry profile, we observe mostly normally distributed
values among all variables, as can be seen in Figure 7. The long tails observed in some
variables suggest that more investigation could lead to the retrieval of valuable information.

Figure 6. Key observations BMI.



Electronics 2022, 11, 857 9 of 19

Figure 7. Histograms and densities of blood variables.

5. Predicting BMI Based on Blood Exams
5.1. Neural Networks vs. SVCs, Challenges and Objectives

We begin by comparing SVC and neural network-based classification accuracy in
predicting BMI using blood exams. The tests were conducted via splitting the dataset in
four and three weight classes. The accuracy of both systems is similar, and there is a slight
increase when the testing is restricted to three classes via removing the underweight outlier
for which fewer data-points are available. While on three classes, data were also balanced
(Figure 8). The fact that a class was much less defined due to lack of data led us to deploy a
one-class SVM to test the ability of the system to accurately define classes based on blood
exams for each case studied.
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The main challenges we faced in our previous studies was firstly the lack of data
for some classes, which we addressed by balancing the data equally during examination.
Another challenge was to find a way to limit classifications processes, in between classes
and by limiting the cost of resources (computing power and time) in order to reach a
conclusion and produce a classification result. This we achieved by using cascaded support
vector classifiers, as discussed in Section 5.4.

Figure 8. Three-class classifier.

5.2. One-Class SVM Identifiers

The dataset, the same as earlier on, was tested as per weight category. The corre-
sponding results are summarized as the number of correct and incorrect predictions both
in known (i.e., training) and unknown (i.e., testing) data. As seen in Figure 9, the classifier
can easily correctly identify the class examined when data are unknown (testing sample).
To evaluate identification accuracy, the tested sample included random data points from all
classes to ensure high quality results and to simulate real world circumstances. The test
and evaluation results presented in Figure 10 are an indicator of a well-defined sample of
blood exams that can easily identify patterns and classify as per the task set for the system.
In all cases, precision was estimated to about 92–95% with a nu parameter of 0.05.

Figure 9. One-class SVM.
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Figure 10. Confusion matrices.

5.3. One-vs.-One SVC

An ensemble machine learning model combines the predictions from multiple other
models. It is a technique that may be used to improve model performance, ideally achieving
better performance than any single model used in the ensemble.

A voting ensemble works by combining the predictions from multiple models. It can
be used for classification or regression. In the case of regression, this involves calculating
the average of the predictions from the models. In the case of classification, the predictions
for each label are summed and the label with the majority vote is returned as the final and
overall prediction [31].

As observed in Figure 11, there is a tremendous increase in classifying accuracy
with a total average of 82% (for all cases calculated) when testing data are examined.
The one-vs.-one SVC classes in Figure 12 can formulate the basis of a hard voting ensem-
ble for categorising inputs as per weight category. However, a cascaded classifier was
eventually preferred and selected as it is shown in the following Section 5.4 to perform
significantly better.
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Figure 11. Cascaded SVC system.

Figure 12. One-vs.-one classifier.

5.4. Cascaded SVC

Since the one-vs.-one SVC was found to be promising, we developed and tested
cascaded variations of it. Indeed, a one-vs.-one classifier cannot function as a standalone
classifier and must be considered as a testing substructure for a system to build upon. Since
a voting system could prove to be more costly and complicated, a cascaded methodology
using SVCs was developed, as in Figure 11.

Firstly, two larger data groups (super-classes) were considered. The first group con-
tains samples from both the underweight and normal classes, while the second group
contains samples from both the overweight and obese classes. In this grouping, the samples
in the extreme classes are combined with the samples of their corresponding neighboring
classes, forming now only two major (super-)classes as opposed to the previous four weight
classes. Next, when a binary classifier returns one of the two major classes, a second
classifier returns a finer classification into one of the two (super-)classes that constitute it.
That is, when the first classifier returns the combined underweight-normal class, the second
classifier returns either the underweight or the normal class. Similarly, when the first
classifier returns the combined overweight–obese class, the second classifier returns either
the overweight or the obese class. In this cascade (two-level) classification scheme, one
out of four classes is eventually returned, similarly to the original one-vs.-one four-class
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classifier described earlier in Figure 12. However, the cascade classifier is shown to perform
significantly better when tested and evaluated. Indeed, the total testing average of all
processes achieves an accuracy of 85%, as shown in Figure 11. In all scenarios, about
4000 data-points were used distributed equally between classes (i.e., 2000 overweight vs.
2000 normal weight) from which a 10% sample was retained for verification(testing sample).
Experiments were run on Python. All data were scaled within the 0 to 1 interval and a
radial basis function kernel was used. Using grid search for the regularization parameter(C)
and gamma(G), we concluded that accuracy was maximized when C is 1 and G is equal
to 0.05 or 1/n_features, where features are 17. The search was conducted in two stages.
In the first stage (line one of Figure 13), we incremented each run by one (step). When C
was closer to 1 and gamma closer to 0, the accuracy increased; thus, to limit the search loop,
we redesigned the grid search where C was in the range of 0.9 and 1 and gamma between
0.025 and 0.225, as can be seen in Figure 13. In Table 4, we show the kernels tested and their
respected accuracy.

Figure 13. Grid search heatmap.

Table 4. Kernels in cascaded SVC and BMI super groups.

Set/Kernels rbf Linear Poly Sigmoid

training 0.83 0.804 0.8 0.7
testing 0.81 0.803 0.785 0.7

Even though the SVCs were the main approach used and thoroughly examined for the
purposes of this research, other classifiers were also examined and tested. More precisely,
Gaussian Naive Bayes, the Random Forest Classifier and Ada Boost were examined, as
shown in Table 5. It is important to note that random forest classifiers showed promise and
accuracy increased with increased test sample, but since they tend to over-fit we preferred
SVCs as they better define separability between the classes. Cascaded SVCs have been
proven to show great adaptability and accuracy in similar classification problems ([26]) and
usability as a the base of recommender systems ([25]).
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Table 5. Kernels in cascaded SVC and BMI super groups.

Set/Classifiers Gaussian Naive Bayes Random Forest Classifier AdaBooster

training 0.7511 0.83 0.805
testing 0.732 0.72 0.781

6. Implementing a More Precise System
6.1. MetS Prediction Model

Via application of the same methodology as previously described, a model was de-
ployed to classify the same population with regard to presence of MetS based on blood
exams. As seen in Figure 14, triglyceride, cholesterol and glucose levels simultaneously
being outside of normal/suggested ranges forms a defining factor of MetS. This is the,
so-called, “rule of three”. Ranges and criteria according to different methodologies and
guidelines can be seen in Figure 15 ([32]).

Figure 14. MetS classifier—total cholesterol.

Figure 15. MetS guidelines and criteria.
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To address this issue and implement a more precise and reliable system, we make the
following four basic assumptions:

• While classifying for BMI, blood exams did not include triglycerides, glucose or
cholesterol levels.

• Total cholesterol is computed using both LDL (bad cholesterol) and HDL (good
cholesterol) and 20% of triglycerides. The out-of-bounds values of total cholesterol
when, at the same time, triglycerides are out of range suggests that LDL is more
prominent than HDL and that HDL has a greater probability of being low. To test
this hypothesis, results need to be compared for total cholesterol or only HDL used
as features.

• Since it was previously shown that BMI can be predicted quite accurately by using
blood exams and BMI is a more common factor of MetS, there is good reason to believe
that the classifier can identify patterns related to metabolism and, as such, be used in
more refined calculations.

• The tests will not be gender specific. Any gender specificities will probably be iden-
tified by the model. Data will be balanced, but the road is always open for further
experiments to be carried out in the future.

6.1.1. Total Cholesterol as a Feature

The SVC system has returned an average 10-fold classification accuracy in a tested
sample of 84%. The hypothesis was also tested (Figure 16), and it verified that LDL is
more prominent than HDL and that HDL has a greater probability of being low when total
cholesterol and triglycerides are simultaneously out of bounds. This became evident as
the prediction of BMI as a feature is not affected by the use of either the total cholesterol or
only HDL, as seen in Figure 14.

Figure 16. MetS classifier— HDL.

6.1.2. HDL as a Feature

In Figure 16, it is shown that the use of only HDL as a predictor instead of the total
cholesterol returns almost identical results. This suggests that either variable could be
utilized for classification purposes. Since the value ranges of HDL are dependent on
gender [33], the hypothesis is tested separately for females and males and confirmed for
both. Indeed, we performed a 10-fold cross validation run on a 10% testing sample of the
about 3500 total samples used in both cases. The corresponding results of the classifier
return an average classification accuracy of 86% for the male sample and 82% for the female
sample and a total (over both males and females) average accuracy of 84%, as seen in
Figure 16.
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6.2. Blood Pressure Predictor

Finally, to complete our system, we enhanced it with a preliminary blood pressure
predictor, which we plan to expand and improve further in a future system version. In cor-
responding experiments, we implemented optimized methods for increasing accuracy.
The results can be seen in Figure 17. Specifically, systolic blood pressure (SBP) was pre-
dicted within and outside of normal ranges. Blood exams, triglycerides, total cholesterol
and BMI were used as features. The 10-fold cross validation accuracy in the testing sample
was 74%, which is very encouraging and will be improved further.

It is important to note that when using the standard biochemistry profile, we tested
three different scenarios. For the first scenario, we used only blood exams, excluding the
defining factors of MetS used in this study, i.e., triglyceride, glucose and HDL or total
cholesterol measurements. In the second scenario, we used the full biochemistry profile,
while in the third scenario, we also included BMI. The third scenario prevails by about
7–8% in the 10-fold cross validation cycle when all other parameters are equal.

Since the third scenario is much better in predicting SBP, it is the one used and the one
proposed in the next section. By having MetS and BMI predicted per class as described
in the previous steps, the proposed methodology creates a valuable tool that can be used
when important values are missing.

Figure 17. Blood pressure classifier.

7. Summary, Discussion, Itemization of Key Findings and Contribution

In this paper, we proposed a system (of superior performance) to predict MetS from
blood exams as in Figure 18. Specifically, blood exams were used as input, but our efforts
focused on the use of as small a number of parameters as possible for the initiation of the
classification process. The classifier in the system predicts the BMI class (“underweight”,
“normal”, “overweight” and “obese”) and MetS state (“MetS present” and “MetS not
present”) without using related factors.

Depending on identified states and using blood exams, the system classifies blood
pressure state or some other health state that is related to MetS. The system returns related
risk factors and related recommendations (e.g., diet suggestions, lifestyle changes or medi-
cal interventions more commonly used). We deployed one-class SVMs to test the validity of
our hypothesis and, thus, the ability of the classifier to identify body weight factors in blood
exams. Using cascaded classifiers, an average accuracy of 85% was achieved, and BMI
classification as per weight class, for all weight classes, based on standard biochemistry
profile was optimized. By validating our initial hypothesis, other pathways were explored
via applying similar methodologies.
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Figure 18. Combination of methodologies.

Weight being associated with metabolism and weight class being identified via blood
exams, metabolic syndrome became the new classifying target. Using factors related to
MetS, a new system was engineered that can identify this particular health state with an
accuracy of 84%. Total cholesterol and HDL provided similar results when used alternately
as factors of MetS in the classifier, even though the medical literature suggests that HDL is
a key biomarker for MetS when combined with triglycerides and glucose.

High blood pressure, being both a factor and an outcome of MetS, was tested in a
similar fashion. At this stage, SBP was evaluated using a full biochemistry profile and
BMI. The final outcome was a 74% classification accuracy. Testing different scenarios,
as described in detail in previous sections, we concluded that by using all parameters, as
seen in Figure 18, a robust increase of about 8% in accuracy was achieved compared to
using only parts of the biochemistry profile. Having already expanded on methodologies
to identify the other parameters, this system as a whole can predict accurately systolic
blood pressure even when some values are missing(missing value prediction) by using the
available blood exams to classify BMI and MetS classes and, thus, enhancing the system
with increased accuracy. More research is being conducted on this and will be published
elsewhere in the near future. Finally, a basic system has been conceptualized (in Figure 18)
and will be deployed as an interface with the optimized classifier.

8. Conclusions and Future Research Avenues

We see this study as another stepping stone for more applied methodologies in the
area of artificial intelligence that could suggest novel methods for health care interventions
and optimization of outcomes in a variety of ways. Via streamlined processes in health
state prediction and general pathology, based on fewer variables and equally fewer exams,
this research could result in a decrease in both time and economic costs. Accumulated risks
via outcome prediction could be better evaluated. Basic diagnostic exams could be utilized
to define more complicated outcomes. The employment of streamlined pattern recognition
and machine learning technologies in population health metric analysis can lead to novel
biomarker discovery. Implementation of policies based on system recommendations as
per modeled outputs can be more easily achieved. Child obesity and age-specific analysis
form both important research avenues and it is our aim to pursue them further in the
future. A bigger spectrum of missing value identification by using pattern recognition
and regression analysis is also a point of interest and a current endeavor of ours. Other
research studies are currently underway, and their results will be presented elsewhere in
the near future.
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