
����������
�������

Citation: Ivan, C.; Arva, M.C.

Nonlinear Time Series Analysis in

Unstable Periodic Orbits

Identification-Control Methods of

Nonlinear Systems. Electronics 2022,

11, 947. https://doi.org/10.3390/

electronics11060947

Academic Editors: Hassan

Haes Alhelou, Amer Al-Hinai and

Pierluigi Siano

Received: 24 November 2021

Accepted: 14 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Nonlinear Time Series Analysis in Unstable Periodic Orbits
Identification-Control Methods of Nonlinear Systems
Cosmin Ivan 1,2,* and Mihai Catalin Arva 1

1 Institute for Nuclear Research Pitesti, POB 78, Campului Street, No. 1, 115400 Mioveni, Romania;
arvamihai@gmail.com

2 Faculty of Electronics, Communication and Computers, University of Pitesti, 110040 Pitesti, Romania
* Correspondence: cosmin.mihail.ivan@gmail.com

Abstract: The main purpose of this paper is to present a solution to the well-known problems
generated by classical control methods through the analysis of nonlinear time series. Among the
problems analyzed, for which an explanation has been sought for a long time, we list the significant
reduction in control power and the identification of unstable periodic orbits (UPOs) in chaotic time
series. To accurately identify the type of behavior of complex systems, a new solution is presented
that involves a method of two-dimensional representation specific to the graphical point of view, and
in particular the recurrence plot (RP). An example of the issue studied is presented by applying the
recurrence graph to identify the UPO in a chaotic attractor. To identify a certain type of behavior
in the numerical data of chaotic systems, nonlinear time series will be used, as a novelty element,
to locate unstable periodic orbits. Another area of use for the theories presented above, following
the application of these methods, is related to the control of chaotic dynamical systems by using RP
in control techniques. Thus, the authors’ contributions are outlined by using the recurrence graph,
which is used to identify the UPO from a chaotic attractor, in the control techniques that modify
a system variable. These control techniques are part of the closed loop or feedback strategies that
describe control as a function of the current state of the UPO stabilization system. To exemplify
the advantages of the methods presented above, the use of the recurrence graph in the control of
a buck converter through the application of a phase difference signal was analyzed. The study
on the command of a direct current motor using a buck converter shows, through a final concrete
application, the advantages of using these analysis methods in controlling dynamic systems.

Keywords: nonlinear time series; unstable periodic orbits; nonlinear systems; control methods

1. Introduction

Chaos, often encountered in reality, is the type of behavior considered to cause a
malfunction or, not infrequently, the destruction of applications. Chaos [1,2] can also be
advantageous, as it allows the generation of an infinite number of periodic or non-periodic
behaviors using the same chaotic system [3,4] by applying small perturbations to a control
parameter or system variable.

Many systems in reality exhibit chaotic behavior for certain values of the parameters
that characterize them. In these dynamic regimes, systems have a wide variety of different
behaviors [5,6]. In principle, a chaotic system can take an unlimited number of states,
which are unstable, and which are adopted by the system in an unpredictable manner. In
most cases, the performance of the system can be improved by controlling the dynamics
so that it remains in one of these states, easily accessible in the form of unstable periodic
orbits [7,8].

The task of any control system is to transform a given initial state into a desired
state that meets certain performance criteria. This is achieved through control signals,
which change either control parameters [9,10] or a system variable according to a control
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strategy [11,12]. In open-loop or non-feedback control, strategies are independent of the
state of the system, while closed-loop or feedback strategies describe control as a function
of the current state of the system. The problem of maintaining control can be described as
the problem of identifying the control strategy that optimizes a measure of performance.

The delay method is the most used method for the reconstruction of the phase space,
providing a constant level of noise for each component delayed [13–15]. However, the qual-
ity of reconstruction depends on the choice of reconstruction parameters, size and delay.

Now, with the reconstructed phase space [16–18], it is possible to analyze the dynamics
of nonlinear systems using the recurrence plot method, which is a two-dimensional repre-
sentation of the recurrences of the states of a system [19–21]. This method can highlight
hidden correlations in the system through the presence of textures that are related to typical
behaviors in terms of system dynamics [22,23].

It should also be noted that these textures depend on the reconstruction parameters.
A special influence has the choice of the size of the neighborhood ε of each point on the
trajectory. Several methods of determination have been identified for choosing the size of
the neighborhood, but this depends on the application [24,25].

The objective of the present paper is to identify a solution to the problems generated
by classical methods of chaos control, such as the identification of unstable periodic orbits
(UPO) in chaotic time series. The proposed solution is represented by the use of nonlinear
time series analysis. Additionally, another problem solved by the proposed solution is the
identification of stable behaviors that have led to a significant reduction in control power.

The resonant parametric perturbation method uses the analysis of the bifurcation
diagram of the system, which must be controlled as a function of the control parame-
ters [26]. A proposed way that is more accurate is to use an analysis with the RP that can
be identified in the periodic states chaotic systems, i.e., an adaptive control method based
on the disturbance of a system variable [27,28]. To identify unstable periodic orbits in the
time series obtained at the output of the chaotic system, we proposed using the RP analysis
method [29]. Optimization methods are used to determine the optimal control parameters
in the adaptive control method.

The authors’ contribution is to propose using the RP analysis method in controlling
the behavior of dynamic systems. Using the RP method of analysis when controlling the
behavior of dynamic systems obtained a more flexible and more precise instrument for
identifying the type of dynamic behavior of the system.

The buck converter used to control a direct current (D.C.) motor is the application
through which the authors show the advantages of using RP for controlling the behavior of
dynamic systems compared to the chaos control methods.

This study is an extension of our paper from the 13th International Conference on
Electronics, Computers and Artificial Intelligence—ECAI 2021. This work is structured as
follows. Section 2 describes the nonlinear methods for analyzing chaotic dynamic signals,
and Section 3 continues with the analysis of the implementation of the RP method in
controlling the behavior of dynamic systems. Moreover, the section analyzes the issue of
identifying UPOs for a chaotic system and chaos control in power converters. Finally, the
main conclusions are presented in Section 5

2. Nonlinear Time Series

The state of natural or technical systems varies in time, sometimes according to
complex rules. In the last two decades, nonlinear analysis methods have emerged that are
based on the analysis of topology or on measurements of the phase space (which lies at the
heart of real process dynamics) or a reconstruction of it [30].

A matrix of recurrence is a bidimensional representation of a single trajectory. Each
point in the plane (i,j) is assigned a value equal to the distance between two points on the
trajectory yi and yj. If we take the unfiltered graph of recurrences (the matrix of distances),
each point in this bidimensional graph is colored depending on the value of its encoded
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distance, while, in the case of the filtered graph of recurrences, point (i,j) is black if the
distance is smaller than a given reference point.

Additionally, only a continuous time signal has perfect recurrences. A sampled signal
will have imperfect recurrences, as maybe samples that give the recurrences will be omitted.

The purpose of RP is to visualize trajectories in the phase space, which is especially
advantageous in the case of high-dimensional systems. They are also useful for finding
hidden correlations in highly complicated data. Moreover, because they make no demands
on the stationarity of a data set, RPs are particularly useful in the analysis of systems whose
dynamics may be changing or in high-dimensional systems. Typical patterns are linked
to a specific behavior of the system. Therefore, we can distinguish a set of qualitative
characteristics that provide two topological approaches: large-scale topologies and small-
scale textures.

The large-scale topologies can be classified in homogeneous, periodic, drift and dis-
rupted.

• Homogeneous RPs are typical for stationary systems, as can be seen in Figure 1a.
• Check board-lookalike RPs are periodic and quasi periodic systems, as illustrated in

Figure 1b.
• Drift is caused by parameters with slowly varying parameters, and so the RP slowly

pales from the LOI (Line of Identity). If the paling is uniformly progressive, this may
reflect non-stationarity in the form of a gradual trend.

• Disruptions are caused by abrupt changes in the dynamics.
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Figure 1. Topological characteristics of the recurrence graph: (a) uniformly distributed white noise; 

(b) a sinusoidal signal; (c) the Lorenz system. 
Figure 1. Topological characteristics of the recurrence graph: (a) uniformly distributed white noise;
(b) a sinusoidal signal; (c) the Lorenz system.

The small-scale textures can be: single, isolated points; diagonal lines, parallel with
the LOI; diagonal lines, perpendicular with the LOI; vertical and horizontal lines; clusters
(Figure 1c).

RPs are largely influenced by reconstruction parameters. Therefore, the value of the
reconstruction dimension m must be carefully chosen to avoid the occurrence of both false
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recurrences and false correlations. The purpose is not to determine exactly how many
dimensions the system has, but to use an adequate dimension so that the dynamics of the
system can be observed without distortion. According to Takens, the topological structure
of the original trajectory is guaranteed if m ≥ 2d + 1, where d is the size of the attractor [13].

Although the importance of the delay in analysis using RP was acknowledged, its
influence was little debated. When the delay is too long (irrelevant), diagonal lines appear
perpendicularly to the LOI whose length is proportional to the delay. Although this
phenomenon can be interpreted when using too small of a dimension, increasing it does
not always lead to better results.

A crucial parameter of RP is the threshold ε. Several methods for choosing the
threshold are described in the literature, the most common being ε = 10% of the average
size of the attractor. However, in general, its size depends on the studied system. In any
case, one should keep in mind that if ε is too small, no recurrence point may be identified
and no pattern in RP can be determined. If ε is too wide, almost anything will be a neighbor
to any other point. Additionally, too high of an ε can include in the vicinity points that are
just simple consecutive points on the trajectory. Therefore, a compromise must be made
when choosing the value of the threshold ε. In addition, the presence of noise can impose
restrictions on the choice of the threshold because noise will distort any existing structure
in the RP. By increasing ε, these structures can be preserved [25].

False neighbors can appear in the vicinity of a point on the path in the state space
of consecutive points on the same path. These points correspond to the same orbit as the
reference point and not to a parallel orbit. This effect is called tangential motion [31] or
Thieler autocorrelation and leads to thicker and longer diagonals in RP than they should be
in reality.

One of the methods for removing the structures introduced by the tangential motion
in RP was proposed by Gao in [32,33], and it is based on considering the difference between
the true recurrences and those introduced by the tangential motion.

It is obvious that the number of false recurrence points depends on the choice of
neighborhood size, sampling frequency, delay time and reconstruction size. The higher the
sampling frequency, the higher the probability of false recurrences occurring in the vicinity.

To eliminate false recurrences, the points belonging to the orbit of the reference point
will be identified and removed. The algorithm will continue for all points on the path so
that the recurrence matrix from which the false recurrences were removed will be the True
Recurrence Matrix (TRM), and its graphical representation is called the True Recurrence
Plot (TrRP).

In this article, we outline the nonlinear analysis methods of chaotic dynamic signals.
One area of application for the analysis methods using nonlinear time series is that of
controlling chaotic dynamical systems by identifying unstable periodic orbits in chaotic time
series. Additionally, as a solution, we present a method of two-dimensional representation
specific, from the graphical point of view, to the recurrence diagram [34]. A solution to the
established problems generated by the classical control methods is represented through the
analysis of the nonlinear time series.

3. Control Methods

The theory of dynamic systems deals with the evolution of a system, that is, with the
change in its state over time.

A deterministic dynamic system is entirely characterized by its initial phase and its
dynamic nature [35]. Such a system can have a continuous or a discrete phase space and a
dynamic defined in direct/continuous or discrete time.

A dynamic system in direct time is modeled by a system of differential equations, and
the evolution of a dynamic system in discrete time is defined by a system of equations with
finite differences [36,37].

The methods of chaos control can be divided into feedback and non-feedback methods.
Non-feedback methods use perturbations independently of the stage of the system (control
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in open loop), while feedback methods use perturbations on the basis of knowing the stage
of the system (control in closed loop). Methods can be differentiated also by the type of
perturbations, i.e., whether they are in continuous time or discrete [38,39].

The simplest way of curtailing chaotic oscillations is to change the parameters of the
system in such a way as to determine the desired type of behavior. Using the bifurcation
diagram, we can choose the necessary values of the system parameters for any predefined
type of behavior: fixed points, or orbits with one, two or more periods.

This method, known as the resonant parametric perturbation method, is based on the
analysis of the bifurcations of the system that needs to be controlled as a function of the
control parameters.

Chaos regulation refers to the chaos control through independent phase perturbations
or through noise.

The problem of control, in the case of ideal systems in which there is no noise, is
reduced to small disturbances to stabilize the chaotic systems of the UPO, which cease after
reaching the desired state.

3.1. Identifying the UPO for a Chaotic System
3.1.1. The Adaptive Control of Chaotic Systems

Next, the authors present one of the possible approaches with closed loops to stabilize
the unstable periodic orbits [28]. This method relies on perturbing a system variable instead
of a control parameter. This feature is preferred in all the cases where the control parameters
are strongly influenced by external conditions and their alteration is harder to achieve. To
illustrate, we consider the control diagram described in Figure 2.
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In the studied adaptive control method, we used a chaotic system characterized by
the equations of the Lorentz system, with the output of the system y(t) being described
by the state x2 of a system based on differential equations that describe the evolution of
the system. As can be seen in Figure 2, the output of the system y(t) is passed through a
bandpass filter and, at the same time, is inverted. After summing the two processed signals
and amplifying them with a constant K, the resulting disturbing signal is described by the
following equation,

∆p(t) = K
(

y f (t)− y(t)
)

(1)

Following the previous processing, a sinusoidal signal results at the output of the
adaptive control system [40,41].

The evolution of the Lorentz system, described by the state x2 of the differential
equation system (t, x2), is shown in Figure 3b, and the chaotic attractor (x2, x1) is shown in
Figure 3a.
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The following figure shows the recurrence plot for the trajectory in the phase space
(x2, x1) of the Lorentz system. The representation algorithm consists of allocating a blue
dot for each point in the two-dimensional graph if the distance is less than a set threshold
value, and white for the rest.

The identification of unstable periodic orbits through a more precise method was the
purpose for which the concept of recurrence plots applicable to chaotic time series were
introduced [29,42]. The principle of UPO identification is that when the trajectory of the
chaotic system is near an UPO, the trajectory will remain in the vicinity of the UPO for a
period of time that depends on its instability.

Correspondence in the recurrence plot of the principle, described above through
shapes in accordance with the periodic movements, is an uninterrupted distribution,
equally, of diagonal lines. Additionally, additional information that we obtain relatively
easily about the moment and the time interval when the chaotic system has close behaviors
are provided in the recurrence plot by the position of the lines and their length. Thus,
information regarding the state of the chaotic system at a given time is provided in the
recurrence plot by the short lines and the isolated points tell us that it will not return to that
state. In contrast, if the system tends to a stable state, it will have a corresponding long line
in the recurrence plot. The information in the recurrence plot regarding the length of the
lines and their position is the necessary data for the identification of the periodic behaviors.
In other words, by selecting lines larger than a specified value, parallel to the LOI, the UPO
is identified from the evolution of the system.

In Figure 4, we can easily notice periodic forms. This observation can lead us to the
idea of using a recurrence plot for identifying unstable periodic orbits in chaotic time series.

In Figure 3a, we can notice parallel evolutions of the orbits in the phase space, which, in
the recurrence plot in Figure 4, form lines of different lengths parallel to the main diagonal.

If in the recurrence plot in Figure 4 we apply a filtration using a high threshold, we
obtain the Figure 5.

The recurrence plot representation in Figure 5 for the filtered chaotic signal corresponds
to a quasi-sinusoidal signal obtained from the Lorentz chaotic system by using the control
method described in Figure 2.

To determines the parameters of the control system so that the recurrence plot for the
filtered chaotic signal is made to correspond to a recurrence plot for the controlled signal,
we used an optimization algorithm based on evolutive strategies.
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3.1.2. The Optimization of the Adaptive Control Algorithm Using Evolutionary Strategies

For the optimization of the coefficients of the adaptive control through evolutive
strategies (ES), we chose the principle (2 + 2), where there are two parents with two
descendants after evaluating the first generation.

In adaptive control, obtaining the evaluation function for the individuals in a genera-
tion involves stabilizing the system on an unstable periodic orbit by using a perturbing
signal by minimizing the amplitude variations of the controlled signal.

ERR(a1, a2) = ∑
i
(ai − ai−1)

2 (2)

where ai = (x1, x2, . . .) and x is a sinusoidal entrance signal with various amplitudes.
Thus, we have the initial solution

(
a(0)1 , a(0)2

)
= (a1, a2), for which a1 and a2 are calculated.

We evaluate (for the initial solution):

ERR
(

a(0)1 , a(0)2

)
= ERR(0) (3)

1. We modify
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2. We evaluate ERR
(

a(1)1 , a(1)2

)
;

3. If ERR(1) < ERR(0), then the new population will be
(

a(1)1 , a(1)2

)
; however, if

ERR(1) ≥ ERR(0), then the new population stays
(

a(0)1 , a(0)2

)
.

We repeat steps 1, 2 and 3 until we obtain the desired result. We have to mention that
this optimization process does not involve finding the ideal solution.

For implementing adaptive control, we have to consider an example with a
concrete calculation.

The values of the coefficient where we start the optimization are a1 = 0.5 and a2 = 2.5.
Within this optimization process, the error evaluation function was achieved to obtain
a signal with a constant amplitude. The values of the coefficients after optimization are
a1 = 0.6772 and a2 = 2.4367.

The resulting quasi-sinusoidal signal and its representation in the phase space are
shown in Figure 6a,b. Figure 6c shows the Fourier transformation of the quasi-sinusoidal
signal obtained from the chaotic system. We notice that the signal specter is focused on the
7.8 Hz frequency, which is the crossing frequency of the filter cross band from the control
diagram in Figure 2.
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Some of the control methods (non-feedback methods) exploit certain properties of the
system or information about the system and modify it by changing a control parameter so
that the system moves from a chaotic attractor to a periodic phase. This method, known as
the method of parameter variation, relies on the analysis of the bifurcations of the system
that needs to be controlled as a function of the control parameters.
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The paper covers another method for the analysis of chaotic systems, the recurrence
plot method (RP), with the help of which we can identify the periodic stages in a time series.
This time series is the output of the chaotic system.

Therefore, we obtained a method of analysis for adaptive control systems, by using
RP, which helps to identify the periodic stages in chaotic systems by keeping from the RP
only those lines parallel to the main diagonal and whose length is greater than a certain
threshold value.

We proposed a method for optimizing the performance of control methods for chaotic
systems that is optimization through evolutive strategies relating to adaptive control, which
leads to the discovery of the coefficients that are part of the control methods.

3.2. Chaos Control in the Buck Converter

The analyzed buck converter is a low-voltage converter, direct current–direct current,
with a width modulation of control pulses characterized, depending on the values of the
circuit parameters, by a diversity of behaviors [43].

Next, the evolution in the state space of the buck converter (Figure 7), controlled
in PWM (Pulse Width Modulation) voltage, is studied with its operation in continuous
conduction mode.
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Figure 7. The buck electronic power converter.

The operation of the converter is characterized by the following system of differential equations:

di(t)
dt = − 1

L v(t) + u(t)
L E

dv(t)
dt = 1

C i(t)− 1
RC v(t)

(4)

where E is the supply voltage, i is the current through the coil, v is the voltage across
the capacitor and u(t) is the Pulse Width Modulation (PWM) control signal, which for
vco(t) ≤ vr(t) closes the switch S and for vco(t) > vr(t) open switch S [44–46].

Switch S receives a closing or opening signal when vco is equal to a sawtooth signal vr
(Figure 8):

vr(t) = α + β(tmodT) (5)
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The control signal vco is given by:

vco(t) = a
(

v(t)−Vre f

)
(6)

where a is amplification [47,48].
A way to visualize the dynamic behavior of the buck converter (the parameters of

the buck converter are given in Appendix A) is the bifurcation diagram, exemplified in
Figure 9, where the evolution towards chaos is achieved by changing the supply voltage
between 22 and 33 V.
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Figure 9. Bifurcation diagram of the buck converter i(E).

According to the previous graph, the buck converter exhibits chaotic behavior for
supply voltage values over 32.27 V. Figure 10a,b illustrate, for a supply voltage of 33 V, the
evolution in the state space and the control voltages of the buck converter.
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Figure 10. Chaotic attractor of the buck converter when E = 33 V (a); control voltages of the buck
converter for E = 33 V (b).

By applying the recurrence plot to the output signal for a chaotic regime of the buck
converter at a supply voltage of 33 V, the plot in Figure 11 is obtained.
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Figure 11. Recurrence plot of the chaotic signal.

Until it reaches its chaotic state, the system crossed periodic states, of various lengths,
corresponding to a certain charging voltage. Thus, for a charging voltage E = 24 V, the
converter exhibits a periodic behavior from period one, as shown in Figure 12.
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By applying the recurrence plot to the output signal for a periodic regime of the buck
converter at a supply voltage of 24 V, the plot in Figure 13 is obtained.
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3.2.1. Control of the Buck Converter via the Method of Disturbing Parameters

The control of the buck converter that works in chaotic mode, for a supply voltage of
33 V, is achieved via the method of disturbing the parameters. To exemplify this method,
the disturbed parameter was applied as follows,

Vre f → Vre f (1 + α sin 2π f t) (7)

noting the amplitude of the control signal with α and the frequency of the control signal
with f. Next, to exemplify the efficiency of the control method, the amplitude of the
disturbing signal is modified in the range 0 ÷ 0.25, thus leading to a study on the dynamics
of state terms by drawing in Figure 14 the bifurcation diagram, a graphical representation
of the induction current i versus the amplitude of the control signal α.
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Figure 14. Bifurcation diagram i(α).

Analyzing the previous bifurcation diagram reveals the efficiency of the buck converter
control method when applying the disturbing signal. Figure 15a illustrates the chaotic
attractor of the buck converter controlled by the method shown above for a disruptive
signal amplitude of 0.2. The output signal of the buck converter controlled by a disturbing
signal is illustrated in Figure 15b.
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Figure 15. Attractor of the controlled chaotic system (a); the output signal of the controlled chaotic
system (b).

By applying the recurrence plot to the output signal of the controlled buck converter
at a supply voltage of 33 V, the plot in Figure 16 is obtained.
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When studying the behavior of the buck converter by analyzing the recurrence graphs,
it is observed that the RP related to the output signal of the system controlled by the
parameter disturbance method, at a supply voltage of 33 V, shown in Figure 16, is similar to
the RP related to the output signal for a periodic regime of the system at a supply voltage
of 24 V.

In other words, the RP of a UPO, the component of the evolution in the state space
of the output signal of the buck converter controlled by the method of disturbing the
parameters, at a supply voltage of 33 V, shown in Figure 16, is similar to the RP of a UPO
for a periodic mode of the converter at a supply voltage of 24 V.

Since the UPO is a component of the evolution in the state space of the output signal of
the buck converter, at a supply voltage of 33 V, i.e., in an RP related to the chaotic behavior
of the buck converter, we recognize the lines parallel with the LOI corresponding to the
periodic behavior of period one.

In other words, the authors found that the RP related to the output signal of the system
at a supply voltage of 33 V, for which only the lines parallel with the LOI greater than a
specified value are kept, similar to the behavior for a supply voltage of 24 V, is the same as
the RP representation in Figure 16.

The recurrence plot of the unfiltered output signal of the buck converter for E = 24 V
is shown in Figure 13 and the recurrence plot for the filtered output signal is given in
Figure 17.
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Under these conditions, when analyzing the behavior of the buck converter controlled
by the method of disturbing the parameters, we see that, at small amplitudes of the control
signal (the lowest effective value of the amplitude of the disturbing signal), the stabilization
is not satisfactory.

3.2.2. Control of the Buck Converter with a Phase Difference Signal

Furthermore, for the optimization of the previous control method applied to the buck
converter, a control signal with phase difference θ between the disturbing signal and the
sawtooth signal is used:

Vre f → Vre f [1 + α sin(2π fst + θ)] (8)

where the switching frequency of the buck converter has been noted with fs. For a clearer
description of the previous control relationship, we can say that the sawtooth signal is
directed by the disruptive signal with a phase shift θ. Next, to visualize the behavior of the
buck converter controlled with a phase difference signal, with an amplitude value much
lower than the lowest effective value of the disturbance signal amplitude, the bifurcation
diagram is used that has the phase shift as a bifurcation parameter.

The graphical representation from Figure 18 is made for a value of the amplitude
of the disturbing signal of 0.0035. Analyzing the behavior of the controlled buck con-
verter according to the previous bifurcation diagram, it is observed that the system can
be stabilized on the stable region of period one for α = 0.0035, at a phase difference of
between 2 and 2.6. It can also be stated that for α = 0.0035, the stable region of period one is
equidistant from θ = 2.3 and, thus, the chosen phase shift is an optimal phase difference for
this particular case.
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Figure 18. Bifurcation diagram i(θ), where α = 0.0035.

Further, when examining the optimal phase difference by plotting the bifurcation
diagram of the controlled buck converter i(α) (Figure 19), it is observed that the system
can be stabilized in the stable region of period one for a 0.0034 minimum value of the
disturbance amplitude, a value much less than the in case of not using a control signal with
a phase difference.



Electronics 2022, 11, 947 15 of 22

Electronics 2022, 11, x FOR PEER REVIEW 15 of 22 
 

 

 

Figure 18. Bifurcation diagram i(θ), where α = 0.0035. 

Further, when examining the optimal phase difference by plotting the bifurcation 

diagram of the controlled buck converter i(α) (Figure 19), it is observed that the system 

can be stabilized in the stable region of period one for a 0.0034 minimum value of the 

disturbance amplitude, a value much less than the in case of not using a control signal 

with a phase difference. 

 

Figure 19. Bifurcation diagram i(α) when θ = 2.3. 

In these conditions, according to the bifurcation diagram of the buck converter, we 

still use, for the stabilization of the stable region of period one, a control signal with the 

amplitude of the disturbance α = 0.0035 and the phase difference θ = 2.3. The chaotic at-

tractor of the buck converter controlled by a phase difference control signal θ between the 

disturbing signal and the sawtooth signal is illustrated in Figure 20a. The output signal of 

the buck converter controlled by a disturbing signal with a phase difference is illustrated 

in Figure 20b. 

By applying the recurrence graph of the output signal of the buck converter con-

trolled by a disturbing signal with a phase difference, at a supply voltage of 33 V, the 

graph in Figure 21 is obtained. 

When studying the behavior of the buck converter by analyzing the recurrence 

graphs, it is observed that the RP related to a UPO, a component of the evolution in the 

0 1 2 3 4 5 6

x 10
-3

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

Perturbation amplitude

i

 

Figure 19. Bifurcation diagram i(α) when θ = 2.3.

In these conditions, according to the bifurcation diagram of the buck converter, we
still use, for the stabilization of the stable region of period one, a control signal with the
amplitude of the disturbance α = 0.0035 and the phase difference θ = 2.3. The chaotic
attractor of the buck converter controlled by a phase difference control signal θ between
the disturbing signal and the sawtooth signal is illustrated in Figure 20a. The output signal
of the buck converter controlled by a disturbing signal with a phase difference is illustrated
in Figure 20b.
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By applying the recurrence graph of the output signal of the buck converter controlled
by a disturbing signal with a phase difference, at a supply voltage of 33 V, the graph in
Figure 21 is obtained.
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Figure 21. Recurrence plot for the filtered chaotic signal, E = 33 V.

When studying the behavior of the buck converter by analyzing the recurrence graphs,
it is observed that the RP related to a UPO, a component of the evolution in the state space
of the output signal of the buck converter controlled by a perturbed signal with a phase
difference, at a supply voltage of 33 V, shown in Figure 21, is similar to the RP of a UPO for
a periodic regime of the converter at a supply voltage of 24 V.

In other words, the authors found that the RP related to the output signal of the
controlled system at a supply voltage of 33 V, for which only the lines parallel to the LOI
higher than a specified value are kept, similar to the behavior for a supply voltage of 24 V,
is the same as the RP represented in Figure 17.

3.2.3. Control of a DC Motor Using the Buck Converter

The final application showing the advantages of using these analysis methods in the
control of dynamic systems relates to the control of a DC motor with permanent magnets,
using the previously analyzed buck converter, a DC converter, through a filter to reject any
disturbances from the inductive effect of the DC motor, a piece of equipment usable in
nuclear research.

The issue of controlling the speed is one of the key issues in relation to designing
systems with electric command, with the type of command motor depending on the tool
and technological process used. Controlling the speed of a system with electric command
involves an external intervention in the system’s functional parameters, either with the
intent of moving the system from a stable speed to another one or to maintain a constant
working speed for the system.

The control of the rotation of the direct current motor is achieved by changing the
charging voltage of the motor’s inductor. The buck converter is used to vary the charging
voltage at the inductor in 0–Umot, where Umot is the nominal voltage of the motor.

The experimental model was designed to be used for the command of a direct current
motor similar to the system we analyzed and simulated previously. Thus, for a charging
voltage E = 33 V, the converter exhibits chaotic behavior, as shown through the chaotic
attractor in Figure 22.

Because the system exhibits chaotic behavior, we need to stabilize it by applying a
perturbing signal to the Vref parameter. The method we chose to stabilize the buck converter
at a charging voltage E = 33 V is the method of parameter perturbation.

The trajectory in the phase space of the chaotic system controlled through the parame-
ter perturbation method, with α = 0.2 and a frequency equal to that of the leading signal, is
shown in Figure 23a.
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Figure 23. Attractor of the chaotic system controlled through the parameter perturbation method
when α = 0.2 (a); the sawtooth signal and the perturbing signal used to control the chaotic system (b).

The sawtooth signal and the perturbing signal used to control the chaotic system
through the parameter perturbation method when α = 0.2 with a frequency equal to the
leading signal are shown in Figure 23b.

In this graph, we clearly notice the effect of the stabilization when we apply the
perturbing signal. To improve the results at small amplitudes of the perturbing signal,
we are using a signal with a phase difference θ between the perturbing signal and the
sawtooth signal.

The trajectory in the phase space of the controlled chaotic system when we apply a
perturbing signal with the perturbation amplitude α = 0.0044 and a phase offset θ = 2.3,
which puts us in the operating area of period one, is shown in Figure 24a.

The sawtooth signal and the perturbing signal used to control the chaotic system with
the perturbation amplitude of α = 0.0044 and the phase offset θ = 2.3, which put us in the
operating area of period one, are shown in Figure 24b.
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4. Results

Through the adaptive control method, we exemplified the possibility of identifying
an unstable periodic orbit within a chaotic system. We also used an optimization method
with evolutionary strategies to determine the parameters necessary to identify the unstable
periodic orbit. As a novelty, we used the recurrence plot to identify the unstable periodic
orbit, which is much easier and more accurate than the previous classical method.

Continuing the research, for the control of a system with chaotic behavior (buck
converter), we applied the recurrence graph method. Thus, we identified stable behaviors
that led to a significant reduction in control power, more easily and more accurately than in
the case of classical control methods.

We obtained an analysis method by using RP for buck D.C-D.C. converters, with
the help of which we can identify the periodic phases in the chaotic system through
the parameter perturbation control method when we apply a perturbing signal with a
phase difference.

The designed experimental circuit confirmed the good choice of the control method,
which uses a signal with a phase difference θ between the perturbing signal and the
sawtooth signal.

As we can see, the initial chaotic system can be stabilized in the operating area of
period one by applying a signal with a phase difference θ between the perturbing signal
and the sawtooth signal, with an amplitude of the perturbing signal that was much smaller
than in the case of the control by using the parameter perturbation method, which uses a
frequency equal to that of the leading signal.

The experimental results we achieved confirm the control method needed to stabilize
the system regarding charging an engine of direct current with permanent magnets.

Thus, we showed that the strength of the control could be significantly reduced by
applying a perturbation with a phase difference between the perturbing signal and the
sawtooth signal. Moreover, when we have phase changes in the perturbation, the system
exhibits chaotic behavior and can be stabilized by exercising greater control over it [49,50].

5. Discussion and Conclusions

The paper presents a way to solve the problems generated by the classical control
methods, for which it was tried for a long time to find a solution, by using nonlinear time
series analysis. Among the problems analyzed, we list the identification of stable behaviors
(unstable periodic orbits) in chaotic time series and the significant reduction of the control
power used.
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The initial chaotic system can be stabilized by applying a signal with a phase difference
between the perturbing signal and the sawtooth signal with an amplitude of the perturbing
signal much smaller than in the case of the control by using the parameter perturbation
method, which uses a frequency equal to that of the leading signal. As demonstrated, the
control power could be significantly reduced by applying a phase difference signal between
the disturbing signal and the sawtooth signal.

Moreover, we proposed a method of identifying the UPO in the time series at the
output of the chaotic system.

We can also mention the possibility of using the new methods based on evolutive
strategies (ES), aiming to optimize the function of the control methods for implementation
in electronic system for achieving good performance from the studies systems.

The authors’ contributions are highlighted by using the RP analysis method in con-
trolling the behavior of dynamic systems and in identifying the type of behavior of the
dynamic system.

The study on the command of a direct current motor by using a buck converter shows,
through a final concrete application, the advantages of using RP analysis methods in
controlling dynamic systems compared to chaos control methods.

As far as the applications are concerned, the control of chaotic behavior in electronic
power systems could be an applied field for the control and analysis methods using RP.

As the voltage control of the buck converter studied in this paper shows, for switching
converters, the control of chaos without reaction (non-feedback) can be easily applied in
electronic circuits.

From the point of view of the analysis, we consider that a study of the phenomena
happening at the transition to a chaotic state and the analysis based on the bifurcation
theory would be a natural continuation of the present study.

Thus, future research may focus on the use of the RP analysis method in controlling
the behavior of dynamic systems for identifying the UPOs in the time series.
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Nomenclature

Abbreviations
UPO Unstable Periodic Orbits
RP Recurrence Plot
LOI Line of Identity
TRM True Recurrence Matrix
TrRP True Recurrence Plot
ES Evolutive Strategies
PWM Pulse Width Modulation
BP Filter Band-Pass Filter
DC Direct Current
Symbols
ε Threshold
m Size of the reconstruction
d Size of the attractor
K Constant
y(t) Output of the system
x2 State of the Lorentz system
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x1 State of the Lorentz system
E Supply voltage
i Current through the coil
v Voltage across the capacitor
u(t) PWM control signal
vr Sawtooth signal
vco Control signal
S Switch
a Amplification
f Frequency of the control signal
fs Switching frequency
Vref Disturbed parameter
θ Phase difference
α Amplitude of the control signal
Umot Nominal voltage of the motor

Appendix A

Table A1. Buck converter parameters.

L 20 mH
C 47 µF
R 22 Ω

Vref 11 V
a 8.4
T 400 µs

VL 3.8 V
VU 8.2 V
E 22–33 V
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