
����������
�������

Citation: Hamed, A.; El-Kharashi,

M.W.; Salem, A.; Safar, M. Two-Layer

Bus-Independent Instruction Set

Architecture for Securing Long

Protocol Data Units in Automotive

Open System Architecture-Based

Automotive Electronic Control Units.

Electronics 2022, 11, 952.

https://doi.org/10.3390/

electronics11060952

Academic Editor: Juan M. Corchado

Received: 7 February 2022

Accepted: 15 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Two-Layer Bus-Independent Instruction Set Architecture for
Securing Long Protocol Data Units in Automotive Open System
Architecture-Based Automotive Electronic Control Units

Ahmed Hamed 1,2 , M. Watheq El-Kharashi 1,3,* , Ashraf Salem 1,2 and Mona Safar 1

1 The Department of Computer and Systems Engineering, Faculty of Engineering, Ain Shams University,
Cairo 11517, Egypt; ahmed.moro1989@gmail.com or Ahmed_Hamed@Mentor.com (A.H.);
ashraf.salem@eng.asu.edu.eg or Ashraf_Salem@Mentor.com (A.S.); mona.safar@eng.asu.edu.eg (M.S.)

2 Siemens Digital Industries Software, Integrated Electrical Systems Segment, Cairo 11835, Egypt
3 Department Electrical and Computer Engineering, Faculty of Engineering & Computer Science,

University of Victoria, Victoria, BC V8P 5C2, Canada
* Correspondence: watheq@engr.uvic.ca or watheq.elkharashi@eng.asu.edu.eg

Abstract: In this paper, we propose a bus-independent hardware (HW)-based approach to secure long
protocol data units (PDUs) in Automotive Open System Architecture (AUTOSAR)-based automotive
electronic control units (ECUs). Our approach is based on extending previous works that implemented
two AUTOSAR communication (COM) application-specific instruction set processors (ASIPs). COM
ASIP V1 introduced two instructions to handle the transmission and reception of PDUs no larger
than 8 bytes and signals no larger than 32 bits individually through send signal and receive signal
instructions. COM ASIP V2 introduced two extra instructions to handle long signals and PDUs
of arbitrary lengths. We extended the instruction set architecture (ISA) of our previous ASIPs by
introducing six new instructions, in COM ASIP V3, to hash PDUs that contain these signals to
authenticate transmission and reception of such PDUs. The experimental results show that COM
ASIP V3 can handle (i.e., transmit, receive, calculate hash, or verify hash) a 64-byte controller area
network flexible data-rate (CAN FD) frame in 1.575 µs and a 254-byte FlexRay frame in 6.301 µs.
These measurements indicate that the throughput of our new COM ASIP is much higher, 42× to 75×,
than the throughput required by these communication buses.

Keywords: automotive security; secure communication buses; authentic frame transmission in ECUs;
AUTOSAR communication ASIP; hardware security module; GCM authentication encryption

1. Introduction

New communication buses (CAN FD [1,2], FlexRay [3–5], Ethernet, etc.) can transmit
frames of longer lengths compared to traditional communication buses (CAN [6] and Local
Interconnect Network (LIN)). These traditional communication buses are able to handle
frames no larger than 8 bytes, whereas CAN FD can transmit frames of up to 64 bytes,
FlexRay can transmit frames of up to 254 bytes, and Ethernet can transmit frames of up to
1518 bytes. These long frames contain many pieces of information. In some scenarios, it is
needed to ensure the authenticity of these frames and make sure they will not be altered by
attackers. In the context of AUTOSAR layered architecture [7], these frames are represented
by PDUs in the Com module [8], and pieces of information inside PDUs are represented by
signals in the Com module.

Our approach is based on extending previous works that implemented two AUTOSAR
COM ASIPs. The first COM ASIP (i.e., COM ASIP V1) [9–11], as shown in Figure 1,
introduced two instructions to handle transmission and reception of PDUs up to 8 bytes
in length. This is done by handling signals no larger than 32 bits individually, inside
these PDUs either by packing them during PDU transmission (i.e., through send signal
instructions) or by unpacking them during PDU reception (i.e., through receive signal
instructions). The second COM ASIP (i.e., COM ASIP V2) [12] introduced two extra

Electronics 2022, 11, 952. https://doi.org/10.3390/electronics11060952 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11060952
https://doi.org/10.3390/electronics11060952
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-7953-136X
https://orcid.org/0000-0002-6033-733X
https://orcid.org/0000-0002-7971-1707
https://orcid.org/0000-0002-1696-1792
https://doi.org/10.3390/electronics11060952
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11060952?type=check_update&version=2

Electronics 2022, 11, 952 2 of 28

instructions (i.e., the send long signal instruction and the receive long signal instruction)
to handle long signals and PDUs of arbitrary lengths. The additions to COM ASIP V1 to
support the long signal instructions are shown in Figure 2.

Figure 1. COM ASIP V1.

In this study, we further extended COM ASIP V2. We introduced six additional
instructions, in COM ASIP V3, that perform different hashing operations. These hashing
operations secure transmitted PDUs by hashing signals that correspond to these PDUs
to ensure the authenticity of such PDUs during transmission. These hashing operations
are performed using a two-layer process. This two-layer process modifies the original
Galois/counter mode of operation (GCM) algorithm [13,14] to make it faster and increase
security of it.

Our paper focuses on two aspects. The first aspect is an automotive cybersecurity
feature. This feature involves securing long PDUs in AUTOSAR-based automotive ECUs
using a bus-independent HW-based approach. This is done by designing an ISA that
contains six hashing instructions that are responsible for ensuring authenticity for such
PDUs during transmission and reception to prevent attackers from altering such PDUs.
After that, this ISA is realized on an ASIP. The automotive cybersecurity aspect has been
addressed by other recent papers [15–17] as well, in different ways.

The work in [15,16] aimed to secure communication between ECUs—without the need
to authenticate transmitted data—from vulnerabilities of unencrypted communication
channels, such as CAN buses. This is done with an intrusion detection system capable of
analyzing traffic over the CAN bus and of understanding whether the messages transmitted
over the communication channel are malicious or not. This is achieved using a two-step
algorithm. The first step is a pre-processing step that is used to filter and verify incoming
messages through spatial and temporal analysis to decide whether they may or may not be
a possible attack. The second step uses a machine learning technique through a Bayesian
network that is trained through a pre-established dataset during the simulation phase. The
outcome of the second step is whether we are in the presence or not of an attack.

Electronics 2022, 11, 952 3 of 28

Figure 2. The additions to AUTOSAR COM ASIP to support the long signal instructions.

The second feature of our paper is an optimization aspect, as our paper also focuses on
optimizing generic signal-based communication for AUTOSAR-based ECUs. Optimizing
performance of AUTOSAR-based ECUs using HW-based approaches is a new field that
has been addressed by other papers as well (e.g., optimizing serialization of application
data before transmitting them [18]). Our work, in addition to these other ideas, from other
papers, can be combined together to provide much greater enhancements for AUTOSAR-
based ECUs to cope with the increased speedup of today’s SW applications.

The rest of the paper is organized as follows. Section 2 gives a brief introduction about
our previous COM ASIP ISA (i.e., COM ASIP ISA V2). After that, it describes details of
a highly secure hashing algorithm, named GCM [13,14]. This algorithm is used by COM
ASIP V3. After that, it describes details of a new concept, named two-layer security, that
is used by our ASIP to increase the security of the original GCM [13,14]. After that, it
describes the changes needed in our ASIP components to support the hashing instructions.
After that, it describes the additions that we made in the ISA of our ASIP to support these
hashing instructions. Section 3 shows the experimental results. Finally, conclusions are
presented in Section 4.

2. Materials and Methods

This section is organized as follows. Section 2.1 gives a brief introduction to our
previous COM ASIP ISA (i.e., COM ASIP ISA V2). Section 2.2 describes the details of a
highly secure hashing algorithm, named GCM [13,14]. This algorithm is used by COM
ASIP V3. Section 2.3 describes details of a new concept, named two-layer security, that
is used by our ASIP to increase the security of the original GCM [13,14]. Section 2.4
describes the changes needed in our ASIP components to support the hashing instructions.
Section 2.5 describes the additions that we made in the ISA of our ASIP to support these
hashing instructions.

Electronics 2022, 11, 952 4 of 28

2.1. A Brief Introduction to COM ASIP ISA V2

Our previous ISA consists of four phases. These phases are fetching, decoding, exe-
cution, and delivery. The execution phase consists of two sub phases (i.e., extraction and
packing/unpacking). Our previous ISA supports four instructions (i.e., send signal, receive
signal, send long signal, and receive long signal). Each instruction requires 12 cycles (i.e.,
cycle 0 to cycle 11) to complete its execution.

2.1.1. Actions in Cycle 0

The instruction memory component, named IM1, is activated by the control unit
component to fetch a new instruction. The address of this instruction is specified by the
IM1_addr control signal.

2.1.2. Actions in Cycle 1

The control unit component decodes an instruction fetched in the previous cycle (i.e.,
cycle 0) to get three pieces of information, as shown in Figure 3. The first piece, named
OpCode, is an instruction type that defines whether this instruction is a send signal, a
receive signal, a send long signal, or a receive long signal instruction. The second piece,
named SigId/Virtual Signal Id, is an identifier for a virtual signal that is currently processed
by this instruction. The third piece, named SigValue/Virtual Signal Value, is a new value
for a virtual signal that is currently processed by this instruction.

Figure 3. Proposed instruction format in the ISA of COM ASIP V2.

For each virtual signal, there are eight words related to this virtual signal that are
saved in a read only memory (ROM) component, named rom_n. These words contain
properties that represent which PDUs contain these virtual signals and how these virtual
signals are placed inside their corresponding PDUs. The structure of the rom_n component
is shown in Figure 4.

Figure 4. Encoding of properties for virtual signals inside the rom_n component.

Send Signal and Receive Signal Instructions

We are interested in two words, which are the third and the fourth words. The third
word contains the virtual IPDU signal start position that represents the start position of an
8-byte window inside the PDU. This 8-byte window contains a currently processed virtual
signal. The fourth word contains four properties that represent how a virtual signal is
placed inside its corresponding 8-byte window inside the PDU. These properties are bPos
(corresponds to ComBitPosition in the context of AUTOSAR Com [8]), UbPos (corresponds
to ComUpdateBitPosition in the context of AUTOSAR Com [8]), bSize (corresponds to
ComBitSize in the context of AUTOSAR Com [8]), and E (i.e., Endianness).

Electronics 2022, 11, 952 5 of 28

Send Long Signal and Receive Long Signal Instructions

We are interested in three additional words, which are the sixth, seventh, and eighth
words. The sixth word contains the real IPDU Id, which represents an identifier for a
PDU that contains a currently processed virtual signal and its corresponding real signal
as well. The seventh word contains either real IPDU start position or real signal start
position. Real IPDU start position will be used in a send long signal instruction to give a
position, inside the IPDU component, to lower SW layers to access PDUs after adding (i.e.,
packing) new values for virtual signals to them. Real signal start position will be used in
a receive long signal instruction to give the application layer a position, inside the IPDU
component, to access real signals that correspond to virtual signals that are being processed
by currently executed instructions. The eighth word contains either real IPDU length or
real signal length. Real IPDU length will be used in a send long signal instruction along
with real IPDU start position to transfer data, as some of PDUs transmitted from the IPDU
component to lower SW layers. Real signal length along with real signal start position will
be used in a receive long signal instruction to transfer data from the IPDU component to
the application layer.

In cycle 1, the control unit component multiplies SigId by 8 and adds a constant
value (i.e., 2) to it to get address of the third word related to this virtual signal in the
rom_n component.

2.1.3. Actions in Cycle 2

The control unit component multiplies SigId by 8 and adds a constant value (i.e., 3) to
it to get address of the fourth word related to this virtual signal in the rom_n component.

In addition, the control unit component saves the processed SigId (i.e., (SigId * 8) + 2)
from the previous cycle (i.e., cycle 1) in the low address register component, named LReg.

2.1.4. Actions in Cycle 3

The control unit component saves the processed SigId (i.e., (SigId * 8) + 3) from the
previous cycle (i.e., cycle 2) in the high address register component named HReg.

The control unit component also activates a multiplexer, named Mux, to make its
output come from the LReg component.

Only for Send Long Signal and Receive Long Signal Instructions

The control unit component multiplies SigId by 8 and adds a constant value (i.e., 5) to it to
get address of the sixth word that corresponds to this virtual signal in the rom_n component.

2.1.5. Actions in Cycle 4

The control unit component activates the rom_n component to read a word from
it. The address of this word comes from the LReg component. Data inside the rom_n
component at this address contain a virtual IPDU signal start position for a PDU that
corresponds to a currently processed virtual signal.

The control unit component also activates the Mux component to make its output
come from the HReg component.

Only for Send Long Signal and Receive Long Signal Instructions

The processed SigId (i.e., (SigId * 8) + 5) from the previous cycle (i.e., cycle 3) is saved
in the VirtualP1Reg register. In addition, the control unit component multiplies SigId
by 8 and adds a constant value (i.e., 6) to it to get the address of the seventh word that
corresponds to this virtual signal in the rom_n component.

2.1.6. Actions in Cycle 5

The virtual IPDU signal start position is saved in the IPDU Id Reg component.
The control unit component also activates the rom_n component to read another word

from it. The address of this word comes from the HReg component. Data inside the rom_n

Electronics 2022, 11, 952 6 of 28

component at this address contain those four properties that we mentioned above (i.e.,
bPos, UbPos, bSize, and E). Those properties represent how a virtual signal is placed inside
its corresponding 8-byte window inside PDU.

Only for Send Long Signal and Receive Long Signal Instructions

The processed SigId (i.e., (SigId * 8) + 6) from the previous cycle (i.e., cycle 4) is saved
in the VirtualP2Reg register. In addition, the control unit component multiplies SigId by 8
and adds a constant value (i.e., 7) to it to get the address of the eighth word that corresponds
to this virtual signal in the rom_n component. In addition, the control unit component
activates the Mux component to make its output come from the VirtualP1Reg register.

2.1.7. Actions in Cycle 6

The word that is read from the rom_n component in the previous cycle (i.e., cycle 5) is
saved in the OtherInfo Reg component.

The control unit component also activates the IPDU component. The IPDU component
contains current runtime values for PDUs, to read the current runtime value for an 8-byte
window inside the PDU, named the original IPDU value, which corresponds to a currently
processed virtual signal. The address used to access the IPDU component comes from the
IPDU Id Reg component.

Only for Send Long Signal and Receive Long Signal Instructions

The processed SigId (i.e., (SigId * 8) + 7) from the previous cycle (i.e., cycle 5) is saved
in the VirtualP3Reg register. In addition, the control unit component activates the Mux
component to make its output come from the VirtualP3Reg register. It also reads a word
from the rom_n component; the address of this word comes from the VirtualP1Reg register.
This word represents Real IPDU Id. It will be saved in the real IPDU Id Reg component in
the next cycle (i.e., cycle 7).

2.1.8. Actions in Cycle 7

The operations unit unpack component uses two inputs, which are bPos, of a currently
processed virtual signal, and the original IPDU value. These inputs are used to extract a
32-bit shadow, named original shadow. In case of a send signal/send long signal instruction,
this original shadow will be used to place a new value for this currently processed virtual
signal in its corresponding 8-byte window inside PDU. In case of a receive signal/ receive
long signal instruction, this original shadow will be used to extract current runtime value for
this currently processed virtual signal from its corresponding 8-byte window inside PDU.

Only for Send Long Signal and Receive Long Signal Instructions

The control unit component activates the Mux component to make its output come
from the VirtualP3Reg register. It also reads a word from the rom_n component, and
address of this word comes from the VirtualP2Reg register. This word represents either
the real IPDU start position, in case of a send long signal instruction, or real signal start
position, in the case of a receive long signal instruction. This word will be saved in the real
IPDU/signal start position Reg component in the next cycle (i.e., cycle 8).

2.1.9. Actions in Cycle 8

The operations unit pack component uses three inputs, which are bSize, of a currently
processed virtual signal, original shadow, and SigValue. In case of a send signal/send
long signal instruction, the operations unit pack component places SigValue—the SigValue
extracted in cycle 1—in original shadow based on bSize to construct modified shadow A. In
case of a receive signal/receive long signal instruction, the operations unit pack component
constructs, based on bSize, modified shadow B that represents the current runtime value
for this currently processed virtual signal.

Electronics 2022, 11, 952 7 of 28

Only for Send Long Signal and Receive Long Signal Instructions

The control unit component reads a word from the rom_n component, and address
of this word comes from the VirtualP3Reg register. This word represents either real IPDU
length, in case of a send long signal instruction, or real signal length, in case of a receive long
signal instruction. This word will be saved in the real IPDU/signal length Reg component
in the next cycle (i.e., cycle 9).

2.1.10. Actions in Cycle 9

The operations unit final component uses four inputs, which are modified shadow (i.e.,
modified shadow A in cases of send signal/send long signal instructions, and modified
shadow B in cases of receive signal/receive long signal instructions), bPos, IPDU Id, and
original IPDU value. In case of a send signal/send long signal instruction, modified shadow
A is added, based on bPos, to the original IPDU value to construct a new value (i.e., final
IPDU value). This final IPDU value represents the final value, after adding a new value for
this currently processed virtual signal, for the 8-byte window inside PDU that corresponds
to this currently processed virtual signal. In case of a receive signal/receive long signal
instruction, modified shadow B is passed to the next cycle as it is.

Only for Send Long Signal and Receive Long Signal Instructions

The word read from the rom_n component will be saved in the real IPDU/signal
length Reg component, as mentioned above.

2.1.11. Actions in Cycle 10

The output from the previous cycle (i.e., final IPDU value for a send signal/send
long signal instruction and modified shadow B for a receive signal/receive long signal
instruction) is passed to the output buffer component to be saved. In addition, the final
IPDU value for a send signal/send long signal instruction is passed to the IPDU component
to save a new value for an 8-byte window inside PDU that corresponds to a currently
processed virtual signal.

Only for Send Long Signal and Receive Long Signal Instructions

The output buffer component is activated to save outputs from the real IPDU Id Reg, the
real IPDU/signal start position Reg, and the real IPDU/signal length Reg components.

2.1.12. Actions in Cycle 11

In cycle 11, a SW part of Com module can access the output buffer component. In
case of a send signal/send long signal instruction, this SW part of the Com module can
get, through the output buffer component, a final value for a PDU that corresponds to a
currently processed virtual signal. In case of a receive signal/receive long signal instruction,
this SW part can get, through the output buffer component, a current runtime value for a
currently processed virtual signal from its corresponding PDU.

2.2. The GCM Hashing Algorithm

GCM [13] is a highly secure algorithm that was published by the National Institute
of Standards and Technology (NIST) in 2007 [14]. It is currently implemented in many
hardware security modules (HSMs) that are parts of many automotive micro-controller
units (MCUs). Many papers have optimized implementations of GCM, increasing its
throughput and the speed of its internal operations in application-specific integrated circuit
(ASIC)-based architectures [19–23] or field programmable gate array (FPGA)-based architec-
tures [24–31]. GCM is also used in network-based systems to secure communication [32–37].
GCM has been used in automotive [38] and IOT domains [39,40] as well.

GCM is used for authentication encryption with associated data. GCM provides three
main features. The first feature is assurance of confidentiality of input data. This is achieved
by encrypting input data using a variation of the counter mode operation of encryption [41],

Electronics 2022, 11, 952 8 of 28

which is a recommended block cipher mode of operation for an Advanced Encryption
Standard (AES) [42]. The second feature is assurance of authenticity of confidential data
from the previous feature. This is achieved by using a universal hashing function that is
defined over a binary Galois (i.e., finite) field. The third feature is assurance of authenticity
of additional data that are not encrypted. The GCM authentication encryption process is
shown in Figures 5 and 6. The symbols and processes shown in these figures are described
in Table 1.

Figure 5. GCM authentication encryption.

Figure 6. The GCTRK process.

Electronics 2022, 11, 952 9 of 28

Table 1. The symbols and processes used in the GCM authentication encryption.

Symbol Description

IV

The initialization vector (IV) is a bit string that should be unique within the specified
context. Length of IV, in bits, shall be from 1 to 264-1 and shall be multiple of 8 so
IV constructs a byte string. It is recommended to strict length of IV to 96 bits to
simplify designs that use GCM and increase their efficiency and operability.

Y0

The pre-counter block (Y0) is a 128-bit block constructed from IV. After incrementing
Y0, it is used as an initial counter block (ICB). ICB is used along with the plaintext
(P) to construct the ciphertext (C). Details of converting IV to Y0 are described
in [14].

inc32 Incrementing the right-most 32 bits of input by 1 modulo 232.

P

This is the plaintext, which authentication encryption, using GCM, will be applied
to it. Length of P, in bits, shall be ≤239− 256 and shall be multiple of 8 so P
constructs a byte string. P is divided into 128-bit blocks. Blocks generated by this
dividing process are P1 to Pn, where n refers to number of blocks generated by this
dividing process.

GCTRK

GCTRK is the function used by GCM to generate ciphertext from a given ICB and a
given plaintext using a given block cipher key (K). It divides plaintext into 128-bit
blocks. It mainly performs, as shown in Figure 6, exclusive-OR (XOR) operations
between plaintext blocks generated by this dividing process mentioned above and
ICB after incrementing it per processed block then applying the forward cipher
function (CIPHK) to it. Details of GCTRK function, used in GCM, are described
in [14].

C
This is the ciphertext that is generated by applying GCTRK function to ICB and
plaintext. It is used to assure confidentiality of plaintext. Each block of plaintext
will result in a block of ciphertext. Generated ciphertext blocks are C1 to Cn.

A

The Additional Authenticated Data (AAD), abbreviated as A, help to identify
how to interpret plaintext. For example, within a network protocol, AAD might
include sequence numbers, ports, addresses, protocol version numbers, etc. GCM
assures authenticity but not confidentiality of AAD. Length of AAD in bits, shall
be ≤264− 1 and shall be multiple of 8 so AAD construct a byte string.

0v 0v are zero bits, of length v, that are appended to AAD to make bit length of
generated string multiple of block length (i.e., multiple of 128 bits).

0u 0u are zero bits, of length u, that are appended to ciphertext to make bit length of
generated string multiple of block length (i.e., multiple of 128 bits).

[len(A)]64 The 64-bit representation of length, in bits, of AAD.

[len(C)]64 The 64-bit representation of length, in bits, of ciphertext.

0128 The zero block (0128) is a 128-bit block. All of its bits are zeros.

H The hash subkey (H) is the output from applying CIPHK to the zero block (i.e., 0128)
under a block cipher key K.

CIPHK

CIPHK is the forward cipher function of cipher block under a block cipher key K.
In GCM, CIPHK is used to generate H from the zero block. It is used by ICB during
GCTRK function as well.

E(K,Yi)
The cipher counter i (E(K,Yi)) is the output from applying CIPHK to the counter Yi.
H is generated by applying CIPHK to the zero block so H is equivalent to E(K,0128).

GHASHH

GHASHH is the hash function under the hash subkey H. This function is used to
generate a single 128-bit block. It performs multiplication operation, for the binary
Galois (i.e., finite) field of 2128 elements, between the input data (A || 0v || C || 0u ||
[len(A)]64 || [len(C)]64) and H. Details of GHASHH function are described in [14].

MSBt MSBt represents the most significant t bits of a provided input block.

T T is the tag that represents a hash value, generated by GCM, that should be ap-
pended to transmitted data. It is used to assure authenticity of plaintext and AAD.

Electronics 2022, 11, 952 10 of 28

In Figure 5, there are 7 processes that are highlighted in yellow. The first process is the
inc32 function that is used to increment the pre-counter block (Y0) each time to generate a
new counter block to be used with the GCTRK function.

The second process is the GCTRK function near the top of the table. This process
receives two inputs and produces one output. The two inputs are the plaintext P blocks
and the counter blocks. The outputs are the ciphertext C blocks.

The third process is the CIPHK function that is used to generate the hash subkey (H)
from the zero block (0128).

The fourth process is the yellow diamond in the middle of the table. This diamond
is an aggregation function that aggregates six inputs. These inputs are the Additional
Authenticated Data A; 0v, which are 0 bits in length and appended to A; the ciphertext
C blocks; 0u, which are 0 bits in length u appended to C; [len(A)]64, which represents the
length of A in bits; and [len(C)]64, which represents the length of C in bits.

The fifth process is the GHASHH function that performs a multiplication operation
between two inputs and produces one output. The first input is the aggregated data
resulting from the fourth process (A || 0v || C || 0u || [len(A)]64 || [len(C)]64), and the second
input is the hash subkey (H) resulting from the third process. The output from the fifth
process is one of the inputs to the sixth process.

The sixth process is the GCTRK function, shown near the bottom of the table. This
process receives two inputs and produces one output. The first input is the output from the
fifth process and the second input is the pre-counter block (Y0). The output from the sixth
process is the input to the seventh process.

The seventh process is MSBt, which takes the most significant t bits of the provided
input to produce the final tag T.

Figure 6 describes, in detail, the second process (i.e., GCTRK function on the top of
Figure 5). As described before, the GCTRK function receives two inputs and produces one
output. The two inputs are the plaintext P blocks P1 to Pn and the counter blocks Y1 to
Yn. The GCTRK function applies the forward cipher function (CIPHK) to the second input
(i.e., the counter blocks Y1 to Yn) to produce the cipher counters E(K,Y1) to E(K,Yn). After
that, the GCTRK function does exclusive-OR (XOR) operations between the cipher counters
E(K,Y1) to E(K,Yn) and the plaintext P blocks P1 to Pn to produce the ciphertext C blocks C1
to Cn.

2.3. The Two-Layer Security Process Using GCM and COM ASIP

We introduced a two-layer process to increase the security of the GCM hashing
algorithm. In order to use GCM with our COM ASIP, we analyzed three designs to
construct plaintext. The first option is to consider each PDU as the plaintext that is an input
to GCM. The second is to consider each signal as the plaintext that is an input to GCM. The
third is the two-layer security process that is described in Sections 2.3.3 and 2.3.4.

2.3.1. The First Design

For the first design, we need to divide each PDU into blocks of fixed length. The length
of each block is 128 bits.

The First Difficulty

The first difficulty in this design comes from the fact that instructions supported by
our COM ASIP work with signals but not with PDUs. Supporting this new design will
require changing structure of our ASIP, introducing many new components and data paths,
and changing the ISA of our ASIP completely, which will affect both the flexibility and
performance of our ASIP.

The Second Difficulty

Another difficulty comes from the fact that signals differ from each other in their sizes
and positions within PDUs. By dividing PDUs into 128-bit blocks, we might find that one
signal, based on the position and size of this signal within its corresponding PDU, spans

Electronics 2022, 11, 952 11 of 28

over two consecutive blocks, as shown in Figure 7, where signal 3 spans over block 0 and
block 1. This will also complicate our ASIP and affect its flexibility and performance. Based
on the previous points, we discarded that design choice.

Figure 7. Signal spans over two consecutive blocks.

2.3.2. The Second Design

For the second design, we need to divide each signal into blocks of fixed length, where
length of each block is 128 bits. A signal can fit into one block if its length is ≤128 bits. If
the length of the signal is >128 bits, it is divided into more than one block. In both cases,
padding is used, if it is necessary, to have complete blocks (i.e., length of input data is
multiple of block length).

A Better Design

This design is better than the first design. The reason is that instructions supported by
our COM ASIP already work with signals, so we do not need to introduce many changes
in the structure of our ASIP. Although this design seems better than the first design, it has
two main difficulties.

The First Difficulty

The first difficulty is that this design requires reserved bytes for each signal to contain
its hash value, which will require transmitting much more data from sender ECUs to deliver
hashes of such signals to receiver ECUs so receiver ECUs can verify such signals correctly.
This will consume the bandwidth of communication buses that connect ECUs and will
decrease the throughput of such communication buses to transmit actual data. Table 2
shows the utilization percentage, to transmit actual data, of communication buses when
we use different tag lengths. The original tag length is 128 bits, and truncated tag lengths
can be smaller (16 bits, 32 bits, 64 bits, etc.). The red color indicates that the utilization
percentage is less than 50%, the green color indicates utilization percentage is more than
50%, and the yellow color indicates utilization percentage is 50%. As we can see, the
utilization percentage is less than 50% in most of cases, which impacts the throughput of
the communication buses and affects the performance and usability of our design.

Table 2. Utilization percentages of communication buses using different tag lengths and signal sizes.

Tag Length in Bits
16 32 64 128

Si
gn

al
Si

ze
in

bi
ts

1 6% 3% 2% 1%
2 11% 6% 3% 2%
4 20% 11% 6% 3%
8 33% 20% 11% 6%

16 50% 33% 20% 11%
32 67% 50% 33% 20%
64 80% 67% 50% 33%
128 89% 80% 67% 50%
...

The Second Difficulty

The second difficulty is that we need to change the structure of the PDUs to have room
to hold hash values for signals contained in these PDUs. We have two approaches. The first

Electronics 2022, 11, 952 12 of 28

approach is to add these hash values to the ends of PDUs. The second approach is to allow
each signal to have its own hash directly after its end, which requires shifting positions of
the following signals in this PDU and changing the structure of this PDU completely. Both
problems, as we can see, affect the performance and flexibility of this design choice, so we
discarded this design choice as well.

2.3.3. The Third Design

The third designis similar to the first design. We consider each PDU as the plaintext
that as an input to the GCM, and there is only one hash value for each PDU. The difference
is that we do not divide each PDU into blocks of fixed length. Instead, we consider each
virtual signal in these PDUs as one block, and padding is used to complete the block. The
next signal in this PDU is considered as the next block in this plaintext, the third signal is
considered as the third block in this plaintext, etc.

The First Layer of Security

The first layer of security in this design comes from GCM itself, as any attacker needs
to know IV and K to bypass the authenticity of the transmitted data and alter them if
needed.

The Second Layer of Security

The second layer of security comes from the fact that even if any attacker breaks the
first layer of security by knowing IV and K, he will not be able to use them to alter a
transmitted PDU. This is because he also needs to know how signals are placed inside these
PDUs, which differs based on positions and sizes of signals inside these PDUs, from one
PDU to another.

Two Identical PDUs with Different Tags

Figure 8 shows two PDUs, where data transmitted by these PDUs are identical. Even
if data transmitted by these PDUs are identical, tag values T1 and T2 are different, which
are tags that are generated for these PDUs by GCM that are appended to these PDUs.
The reason comes from the fact that the internal structures of these PDUs are different,
as positions and sizes of signals contained in these PDUs are different. This will lead to
different values inside blocks that will construct the plaintext. P1 and P2 are plaintext
blocks constructed from these PDUs that are inputs to GCM.

Figure 8. Two identical PDUs with different tags.

Electronics 2022, 11, 952 13 of 28

More Security

Based on the previous points, attackers also need to know positions and sizes of all
signals inside ECUs to be able to break the second layer of security, which is much more
complex than using only one layer of security.

2.3.4. The Modified GCM Algorithm

In order to integrate GCM within our COM ASIP, we have made some modifications
to the original GCM to make it faster. The modified GCM algorithm is shown in Figure 9.
The modifications that we have been made are based on identifying possible processes, in
the original GCM algorithm, which can be done offline.

Figure 9. The modified GCM algorithm.

The First Offline Process (Generating Y0 from IV)

The first process is generating Y0 from IV. This process has to be done online in case IV
can be changed. In the context of our COM ASIP, IV is static and has a fixed length, 96 bits,
so converting IV to Y0 can be done offline, and Y0 is saved in a secure memory component
that is part of our ASIP.

The Second Offline Process (Generating E(K,Y0))

The second process applies CIPHK to Y0. This process (i.e., E(K,Y0)) is part of the
GCTRK process that is applied to the output from the GHASHH process. In the context of
our COM ASIP, Y0 is static because IV is static, so E(K,Y0) is static as well and can be done
offline. E(K,Y0) is saved in a secure memory component that is part of our ASIP. Based on
the previous points, the GCTRK process that is applied to output from GHASHH process
will turn out to be an XOR operation between E(K,Y0) and output from the GHASHH
process. This is shown in Figure 9.

Electronics 2022, 11, 952 14 of 28

The Third Offline Process (Incrementing Y0 and Generating Y1 to Yn)

The third process is incrementing Y0 to generate counters, Y1 to Yn, which is used as
inputs to the GCTRK process that is applied to plaintext blocks. This process can be done
offline, and these counters, Y1 to Yn, is saved in a secure memory component that is part of
our COM ASIP.

The Fourth Offline Process (Generating E(K,Y1) to E(K,Yn))

The fourth process is applying CIPHK to counters Y1 to Yn. This process (i.e., E(K,Y1)
to E(K,Yn)) is part of the GCTRK process that is applied to plaintext blocks. In the context
of our COM ASIP, Y1 to Yn are static because Y0 is static, so E(K,Y1) to E(K,Yn) are static
and can be performed offline. E(K,Y1) to E(K,Yn) is saved in a secure memory component
that is part of our ASIP. Based on the previous points, the GCTRK process that is applied
to plaintext blocks will involve XOR operations between plaintext blocks (i.e., P1 to Pn)
and E(K,Y1) to E(K,Yn). This is shown in Figure 9. To simplify the design of our ASIP and
increase its efficiency and operability, counters are limited to 64 counters, from Y1 to Y64, to
reduce the size of secure memories that is used to save these counters (i.e., Y1 to Y64) and
their corresponding cipher values (i.e., E(K,Y1) to E(K,Y64)).

The Fifth Offline Process (Calculating the Length of AAD)

The fifth process is calculating the length of AAD. In the context of our COM ASIP,
AAD is only one block (i.e., its length is 128 bits), so it has a fixed length, and [len(A)64] can
be replaced, as shown in Figure 9, by a static value (i.e., 0x0000000000000080).

The Sixth Offline Process (Appending vs. Bits to AAD)

The sixth process is appending vs. bits to AAD. This process (i.e., 0v) was eliminated,
as the length of AAD is ma ultiple of block length (i.e., length of AAD is 128 bits, which
corresponds to one block).

The Seventh Offline Process (Appending u Bits to C)

The seventh process is appending u bits to C. This process (i.e., 0u) was eliminated, as
the length of C is a multiple of block length. We ensured this because, based on the third
design in Section 2.3.3 that we selected, each virtual signal is considered as one plaintext
block, and each PDU contains a number of virtual signals, so we have a number of complete
blocks that represents this PDU.

The Eighth Offline Process (Generating H)

The eighth process is generating H from the zero block. The zero block (i.e., 0128) is
static, so H (i.e., E(K,0128)) is static as well. Thus, generating H from the zero block can be
done offline, and H is saved in a secure memory component that is part of our COM ASIP.

The Modified GCM Algorithm

Based on the previous offline processes, we modified the original GCM algorithm,
and our modified design, as shown in Figure 9, is integrated within our COM ASIP. This
modification is described in Section 2.4. In Figure 9, the components and processes that
are done offline are highlighted in green, and those that are done online are highlighted
in yellow.

Secure Memory Components Are Needed

Based on those offline processes, we concluded that we need secure memory com-
ponents. These memory components are used to save Y0, E(K, Y0), and Y1 to Yn; and
E(K,Y1) to E(K,Yn) and H. Y0 and Y1 to Yn can be removed from these secure memory
components because they will not be used directly, as shown in Figure 9, in our modified
GCM algorithm. The only secure memory components that are needed are those that are
used to save E(K, Y0) and E(K,Y1) to E(K,Yn) and H.

Electronics 2022, 11, 952 15 of 28

2.4. The Changes and Additions in COM ASIP Components to Support the Hashing Instructions

The format of instructions, in the IM1 component, in COM ASIP V3, is kept same as
the format of instructions in COM ASIP V2. The only difference is that six new hashing
instructions are supported, as shown in Table 3, so our COM ASIP V3 supports 10 instruc-
tions. These new hashing instructions work in a similar way to the receive signal and
the receive long signal instructions. These hashing instructions will get values for signals
specified by these instructions, and then the modified GCM algorithm is used to calculate
and update tag values for PDUs, based on values for signals specified by these hashing
instructions, which contain these signals.

Table 3. The instructions supported by different versions of COM ASIP.

Instruction OpCode COM ASIP Version

Send Signal 0xFF COM ASIP V1 & V2 & V3Receive Signal 0x11

Send Long Signal 0xEE COM ASIP V2 & V3Receive Long Signal 0x22

Start Hashing 0x33

COM ASIP V3

Start Hashing Without AAD 0x66
Update Hashing 0x44
Finish Hashing 0x55

Hash Once 0x77
Hash Once Without AAD 0x88

2.4.1. The Start Hashing Instruction

This instruction is used to start the hashing process, using the modified GCM algo-
rithm, for the first signal (i.e., P1) in a given PDU to generate the first ciphertext block (i.e.,
C1). It is used as well to prepare AAD and apply the GHASHH process to merged input
A || C1. The components and processes from the modified GCM algorithm used by this
instruction are shown in Figure 10.

2.4.2. The Start Hashing without AAD Instruction

This instruction is similar to the start hashing instruction. The only differences, as
shown in Figure 11, are that no AAD is used and that the GHASHH process is applied
directly to C1.

2.4.3. The Update Hashing Instruction

This instruction is used to continue the hashing process, using the modified GCM
algorithm, for the next consecutive signals (i.e., P2 to Pn−1) in a given PDU to generate the
next consecutive ciphertext blocks (i.e., C2 to Cn−1). It is also used to apply the GHASHH
process to these ciphertext blocks (i.e., C2 to Cn−1). This instruction increments the length
of the ciphertext by 0x80, which is the length of a 128-bit block in bits, per invocation of
this instruction. Figures 12 and 13 show how this instruction is performed for P2 and
Pn−1 consecutively, where each invocation of this instruction is responsible for only one
plaintext block.

Electronics 2022, 11, 952 16 of 28

Figure 10. Start hashing instruction flow.

Figure 11. Start hashing without AAD.

Electronics 2022, 11, 952 17 of 28

Figure 12. Update hashing for P2.

2.4.4. The Finish Hashing Instruction

This instruction is used to finish the hashing process, using the modified GCM al-
gorithm, for the last signal (i.e., Pn) in a given PDU. It applies the GHASHH process to
the last ciphertext block (i.e., Cn). It increments the length of the ciphertext by 0x80 to
reflect length of the last ciphertext block. It produces a final value for AAD, where value
for AAD is either 0x80 or 0x00. 0x80 is used in cases where the first signal in this PDU
is processed using a start hashing instruction. 0x00 is used in cases where the first signal
in this PDU is processed using a start hashing without AAD instruction. After that, it
applies the GHASHH process to the counter block ([len(A)]64 || [len(C)]64). After applying
GHASHH process, an XOR operation is performed between the block generated by the
GHASHH process and E(K,Y0) to generate a tag that should be appended to this PDU upon
transmitting it. This tag is used to ensure authenticity of this PDU and make sure it will
not be altered by attackers. Figure 14 shows how this instruction is performed.

2.4.5. The Hash Once Instruction

This instruction is used if there is only one signal inside a given PDU. This instruction
performs the hashing process, using the modified GCM algorithm, for this signal along
with AAD and merged input [len(A)]64 || [len(C)]64. [len(A)]64 is 0x80 because there is
only one AAD block. [len(C)]64 is 0x80 because there is only one block in plaintext that is
represented by the signal specified by the hash once instruction. Figure 15 shows how this
instruction is performed.

Electronics 2022, 11, 952 18 of 28

Figure 13. Update hashing for Pn−1.

2.4.6. The Hash Once without AAD Instruction

This instruction is similar to the hash once instruction. The only differences, as shown
in Figure 16, are that no AAD is used and that [len(A)]64 is 0x00 in this case.

2.4.7. The Modified rom_n Component

The structure of the rom_n component is same as the one that we used in COM ASIP
V2, as shown in Figure 4, and there is no need to add any extra words to it.

2.4.8. The Modified Output Buffer Component

The output buffer component has been extended, as shown in Figure 17, to contain
two extra words that will be reserved for a tag value that should be appended to each PDU
upon performing a finish hashing, a hash once, or a hash once without AAD instruction.

2.4.9. Extra ROM Components

As described previously, we need secure memory components to save E(K,Y0) and
E(K,Y1) to E(K,Y64) and H. We extended our COM ASIP to contain three additional secure
memory components (i.e., they can be only read by our COM ASIP during its internal
operation). The first one, named the cipher pre-counter register, is a 128-bit register that
will be used to save E(K,Y0). The second one, named cipher counters memory, is a group of
64 registers, where width of each register is 128 bits. The cipher counters memory will be
used to save E(K,Y1) to E(K,Y64). The third one, named the cipher zero vector register, is a
128-bit register. The cipher zero vector register contains H that is equivalent to E(K,0128).
We added an additional fourth memory component, named the AAD register, that is used

Electronics 2022, 11, 952 19 of 28

to save AAD. The AAD register is a 128-bit register because the length of AAD in our
current COM ASIP design is restricted to one block (i.e., 128 bits). It is not mandatory to
make this fourth component secure. These components are shown in Figure 18.

Figure 14. Finish hashing instruction flow.

2.5. The Additions to COM ASIP ISA to Support the Hashing Instructions

The additions to COM ASIP V2 to support the hashing instructions are shown in
Figure 18. For the previous send long signal and receive long signal instructions, no changes
in instruction flow during the twelve execution cycles are needed. These instructions (i.e.,
the send long signal and the receive long signal instructions) work without any extra logic
to handle them in COM ASIP V3. For the hashing instructions, the changes in instruction
flow are illustrated below.

2.5.1. Changes in Cycles 0, 1, 2, 3, 4, and 5

In cycles 0, 1, 2, 3, 4, and 5, no changes are expected.

Electronics 2022, 11, 952 20 of 28

Figure 15. Hash once instruction flow.

Figure 16. Hash once without AAD.

Electronics 2022, 11, 952 21 of 28

Figure 17. The modified output buffer component.

Figure 18. The additions to AUTOSAR COM ASIP to support the hashing instructions.

2.5.2. Changes in Cycle 6

In cycle 6, the control unit component checks which hashing instruction is currently
being executed. It activates, based on the hashing instruction, the needed memory compo-
nents to read a word from each of them. Table 4 shows which memory components that
will be activated.

Electronics 2022, 11, 952 22 of 28

Table 4. The actions performed by the control unit component to support the hashing instructions.

Instruction Action

Start
Hashing

• Activates the Cipher Counters Memory to read the first word (i.e., E(K,Y1))
from it.

• Activates the Cipher Zero Vector Register to read it.
• Activates the AAD Register to read it and sets length of AAD to 0x80, which

is length of a 128-bit block in bits.
• Sets length of ciphertext to 0x80, which is length of a 128-bit block in bits.

Start
Hashing
Without
AAD

• Activates the Cipher Counters Memory to read the first word (i.e., E(K,Y1))
from it.

• Activates the Cipher Zero Vector Register to read it.
• Sets length of AAD to 0x00.
• Sets length of ciphertext to 0x80, which is length of a 128-bit block in bits.

Update
Hashing

• Activates the Cipher Counters Memory to read the next word, starting from
E(K,Y2), from it.

• Increments index used to access the Cipher Counters Memory for upcoming
instructions.

• Increments length of ciphertext by 0x80, which is length of a 128-bit block
in bits, per invocation of this instruction.

Finish
Hashing

• Activates the Cipher Counters Memory to read the next word from it.
• Activates the Cipher Pre-Counter Register to read it.
• Increments length of ciphertext by 0x80 and constructs the counter block

(i.e., [len(A)]64 || [len(C)]64).

Hash
Once

• Activates the Cipher Counters Memory to read the first word (i.e., E(K,Y1))
from it.

• Activates the Cipher Zero Vector Register to read it.
• Activates the Cipher Pre-Counter Register to read it.
• Activates the AAD Register to read it and sets length of AAD to 0x80, which

is length of a 128-bit block in bits.
• Sets length of ciphertext to 0x80, which is length of a 128-bit block in bits.
• Constructs the counter block (i.e., [len(A)]64 || [len(C)]64). Value of [len(A)]64

|| [len(C)]64 will be 0x00000000000000800000000000000080 in this case.

Hash
Once
Without
AAD

• Activates the Cipher Counters Memory to read the first word (i.e., E(K,Y1))
from it.

• Activates the Cipher Zero Vector Register to read it.
• Activates the Cipher Pre-Counter Register to read it.
• Sets length of AAD to 0x00.
• Sets length of ciphertext to 0x80, which is length of a 128-bit block in bits.
• Constructs the counter block (i.e., [len(A)]64 || [len(C)]64). Value of [len(A)]64

|| [len(C)]64 will be 0x00000000000000000000000000000080 in this case.

2.5.3. Changes in Cycle 7, 8, and 9

In cycle 7, 8, and 9, no changes are expected.

2.5.4. Changes in Cycle 10

In cycle 10, the output buffer component is activated to apply the GHASHH process,
using the inputs received from cycle 6, to update a tag value that should be appended
to a given PDU. Upon executing a finish hashing, hash once, or hash once without AAD
instruction, a final tag value for a PDU that is currently processed is placed in the output
buffer component.

2.5.5. Changes in Cycle 11

In cycle 11, no changes are expected.

Electronics 2022, 11, 952 23 of 28

3. Experimental Results

This section is divided into two sections. Section 3.1 contains synthesis results of
our new COM ASIP (i.e., COM ASIP V3) and a comparison between them and those of
our previous COM ASIP (i.e., COM ASIP V2). Section 3.2 lists results of a throughput
comparison between our new COM ASIP and different communication buses.

3.1. Synthesis Results of COM ASIP V3

Our new COM ASIP (i.e., COM ASIP V3) has been synthesized on ArtixTM-7 FPGA.
The target device used for synthesizing COM ASIP V3 was an xc7a100t-3-csg324. Logic
utilization from synthesizing COM ASIP V3 is shown in Table 5. These synthesis results
were generated by synthesizing a COM ASIP instance working on 2000 virtual signals.
Each signal needs 8 bytes in the rom_n component to save its related information, so the
rom_n component has a size of 16 kB, whereas the IPDU component has a size of 1.6 kB.
The size of the IPDU component depends on the number of PDUs contained in COM
ASIP and the lengths of these PDUs. Each PDU contains one or more signals out of these
2000 virtual signals mentioned before. Each signal has a different length. The maximum
length of each signal is 32 bits.

Table 5. Logic utilization from synthesis results for COM ASIP V3.

Logic Utilization COM ASIP V3

Number of Slice Registers (Out of 126,800) 1001 (0.8%)
Number of Slice LUTs (Out of 63,400) 43,701 (68.9%)

Number of fully used LUT-FF pairs (Out of 44,178) 524 (1.2%)
Number of Block RAM/FIFO (Out of 135) 15 (11.1%)

Number of BUFG/BUFGCTRLs (Out of 32) 1 (3%)
Minimum period (ns) 8.205

Maximum clock frequency (MHz) 121.879

The above number of signals and their lengths were selected for compatibility with
our previous COM ASIP (i.e., COM ASIP V2). We used 2000 virtual signals [12]. Sizes of the
IPDU component and the rom_n component for our previous COM ASIP were the same as
the sizes of the IPDU component and the rom_n component in our new COM ASIP (i.e.,
COM ASIP V3). A comparison between the logic utilization of our previous COM ASIP
and COM ASIP V3 is shown in Table 6. The Diff. column represents an increase in logic
utilization by COM ASIP V3 compared to COM ASIP V2, with respect to FPGA resources.

Table 6. Comparison between logic utilization of COM ASIP V2 and COM ASIP V3.

Logic Utilization COM ASIP V2 COM ASIP V3 Diff. (±%)

Number of Slice Registers 629 1001 +59.1%
Number of Slice LUTs 3689 43,701 +1084.6%

Number of fully used LUT-FF pairs 282 524 +85.8%
Number of Block RAM/FIFO 12 15 +25%

Number of BUFG/BUFGCTRLs 1 1 Same
Minimum period (ns) 6.230 8.205 +31.7%

Maximum clock frequency (MHz) 160.516 121.879 −24.1%

The experimental results show that there is an increase in logic utilization in COM
ASIP V3 compared to COM ASIP V2. The highest percentage of increase, as shown in
Table 6, is in slice LUTs. This is due to adding GHASHH function in the output buffer
component. This function performs multiplication operations for the binary Galois (i.e.,
finite) field of 2128 elements, so it requires many slice LUTs to perform these operations.
There is an increase in block RAM/FIFO, as shown in Table 6. This increase is due to
adding secure memory components to save E(K, Y0) and E(K,Y1) to E(K,Yn) and H.

Electronics 2022, 11, 952 24 of 28

There is an increase in the minimum clock period. This is because of the GHASHH
function that is part of the critical path, because of its multiplication operations, in the ISA
of COM ASIP V3. However, this increase is not significant (i.e., +31.7%). This means that
COM ASIP V3 can still handle (i.e., send and receive) long signals and secure PDUs with
the same performance.

We performed the same tests (i.e., transmitting/receiving a 64-byte CAN FD frame
and a 254-byte FlexRay frame) [12] using COM ASIP V3. COM ASIP V3 was able to handle
a 64-byte CAN FD frame in 1.575 µs. It was able to handle a 254-byte FlexRay frame in
6.301 µs. These measurements can be verified using the same approach that has been used
with COM ASIP V2. The only changes were using the maximum clock frequency and the
minimum clock period, as shown in Table 5, for COM ASIP V3 calculations.

3.2. Throughput Comparison between Our New COM ASIP and Different Communication Buses

The throughput achieved by our new COM ASIP (i.e., COM ASIP V3) has been com-
pared, as shown in Table 7, against the throughput of CAN FD and FlexRay communication
buses. The throughput achieved by our new COM ASIP is much more, 42× to 75×, than
the throughput needed by these high-speed communication buses.

Table 7. Throughput comparison between COM ASIP V3 and different communication buses.

Time Needed to Handle Frame

Frame Length CAN FD (1 Mbit/s) FlexRay (10 Mbit/s) COM ASIP V3 Gain

64-byte CAN FD 118 µs N/A 1.575 µs 75×
254-byte FlexRay N/A 262.4 µs 6.301 µs 42×

For example, transmitting a 64-byte CAN FD frame on CAN bus running on 1 Mbit/s
baud rate (i.e., the highest baud rate for CAN bus) takes 118 µs [12], and transmitting a
254-byte FlexRay frame on FlexRay bus running on 10 Mbit/s baud rate (i.e., the highest
baud rate for FlexRay bus) takes 262.4 µs [12]. However, COM ASIP V3 can handle (i.e.,
transmit, receive, calculate hash, or hash verify) a 64-byte CAN FD frame and a 254-byte
FlexRay frame in 1.575 µs or 6.301 µs, respectively.

4. Conclusions

Our paper introduced a bus-independent HW-based approach to secure long PDUs in
AUTOSAR-based automotive ECUs by designing an ISA and realizing it on an ASIP. This
approach is a new approach that has not been reported before for AUTOSAR-based ECUs.

We extended the ISA of our previous ASIP by introducing six new instructions to
COM ASIP V3, to hash PDUs that contain long signals to authenticate transmission and
reception of such PDUs. Our new ISA, similarly to the previous ISA, consists of four phases.
These phases are fetching, decoding, execution, and delivery. With this new extension, our
new ISA can secure these PDUs by hashing signals that correspond to these PDUs to ensure
the authenticity of such PDUs during transmission. The hashing process is performed
using a two-layer process. This two-layer process modifies the original GCM algorithm to
make it faster and increase the security of it.

The experimental results show that the throughput of our new COM ASIP is much
higher, by 42× to 75×, than the throughput required by CAN FD and FlexRay communi-
cation buses. The great throughput achieved by our new COM ASIP will allow original
equipment manufacturers (OEMs) and Tier 1 suppliers to use it to cope with communica-
tion throughput required by today’s AUTOSAR-based automotive SW applications. Our
ASIP is bus-independent, so it can work with all types of ECUs that are connected through
different communication buses.

Author Contributions: Conceptualization, A.H., M.W.E.-K., A.S. and M.S.; methodology, A.H.; soft-
ware, A.H.; validation, A.H.; formal analysis, A.H.; investigation, A.H.; resources, A.H.; data curation,

Electronics 2022, 11, 952 25 of 28

A.H.; writing—original draft preparation, A.H.; writing—review and editing, A.H., M.W.E.-K., A.S.
and M.S.; visualization, A.H.; supervision, M.W.E.-K., A.S. and M.S.; project administration, A.H. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

HW Hardware
PDU Protocol Data Unit
AUTOSAR Automotive Open System Architecture
ECU Electronic Control Unit
COM Communication
ASIP Application-Specific Instruction Set Processor
COM ASIP V1 The First Version of COM ASIP
COM ASIP V2 The Second Version of COM ASIP
ISA Instruction Set Architecture
COM ASIP V3 The Third Version of COM ASIP
CAN Controller Area Network
CAN FD Controller Area Network Flexible Data-Rate
µs Microsecond
LIN Local Interconnect Network
GCM Galois/Counter Mode of Operation
SW Software
IM1 Instruction Memory in COM ASIP
IM1_addr Address Lines of Instruction Memory in COM ASIP
OpCode Operation Code for Instructions in COM ASIP
SigId Identifier for a Signal in COM ASIP
Id Identifier
SigValue Value for a Signal in COM ASIP
ROM Read Only Memory
rom_n ROM component in COM ASIP
IPDU Interaction Protocol Data Unit
bPos Bit Position for a Signal in COM ASIP
UbPos Update Bit Position for a Signal in COM ASIP
bSize Bit Size for a Signal in COM ASIP
E Endianness for a Signal in COM ASIP
LReg Low Address Register in COM ASIP
HReg High Address Register in COM ASIP
Mux Multiplexer in COM ASIP
Reg Register
OtherInfo Other Information Register in COM ASIP
NIST National Institute of Standards and Technology
HSM Hardware Security Module
MCU Micro-Controller Unit
ASIC application-specific integrated circuit
FPGA Field Programmable Gate Array
IOT Internet of Things
AES Advanced Encryption Standard
IV Initialization Vector
ICB Initial Counter Block
inc Increment
P Plaintext
C Ciphertext

Electronics 2022, 11, 952 26 of 28

K Block Cipher Key
XOR Exclusive-OR
CIPHK Forward Cipher Function
AAD Additional Authenticated Data
len Length
H Hash Subkey
MSB Most Significant Bit
T Tag
TM Trademark
kB Kilobyte
LUT Lookup Table
FF Flip-Flop
RAM Random Access Memory
FIFO First In, First Out
BUFG Global Clock Buffer
BUFGCTRL Global Clock Buffer Controller
ns Nanosecond
MHz Megahertz
Diff. Difference
OEM Original Equipment Manufacturer

References
1. Hartwich, F. CAN with Flexible Data-Rate; Specification, Version 1.0; Robert Bosch GmbH: Gerlingen, Germany, 2012.
2. Hartwich, F. CAN with Flexible Data-Rate. In Proceedings of the 13th international CAN Conference, Hambach Castle, Germany,

5–6 March 2012.
3. ISO 17458-1; Road Vehicles—FlexRay Communications System, Part 1: General Information and Use Case Definition. ISO: Geneva,

Switzerland, 2013.
4. ISO 17458-2; Road Vehicles—FlexRay Communications System, Part 2: Data Link Layer Specification. ISO: Geneva, Switzerland, 2013.
5. FlexRayTM. FlexRay Protocol Specification; Specification, Version 3.0.1; FlexRay Consortium: Munich, Germany, 2010.
6. ISO 11898-1; Road Vehicles—Controller Area Network (CAN), Part 1: Data Link Layer and Physical Signaling. ISO: Geneva,

Switzerland, 2013.
7. AUTOSAR. Layered Software Architecture; Specification, Version 4.3.1; AUTOSAR: Munich, Germany, 2017. Available on-

line: https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.
pdf (accessed on 6 March 2022).

8. AUTOSAR. Specification of Communication; Specification, Version 4.3.1; AUTOSAR: Munich, Germany, 2017. Available online: https:
//www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_COM.pdf (accessed on 6 March 2022).

9. Hamed, A.; Safar, M.; El-Kharashi, M.W.; Salem, A. AUTOSAR-based communication coprocessor for automotive ECUs. In Pro-
ceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 14–18 March 2016;
pp. 1026–1027.

10. Hamed, A.; Safar, M.; El-Kharashi, M.W.; Salem, A. An application-specific instruction set processor for AUTOSAR COM module.
In Proceedings of the FISITA 2016 World Automotive Congress, Busan, Korea, 26–30 September 2016.

11. Hamed, A.; Safar, M.; El-Kharashi, M.W.; Salem, A. Communication-aware pipelined instruction set architecture for AUTOSAR-
based automotive ECUs. In Proceedings of the A Work-in-Progress (WIP) Poster at the 2017 54th ACM/EDAC/IEEE Design
Automation Conference (DAC), Austin, TX, USA, 18–22 June 2017.

12. Hamed, A.; Safar, M.; El-Kharashi, M.W.; Salem, A. Bus-independent Instruction Set Architecture for Handling Long Protocol
Data Units in AUTOSAR-based Automotive ECUs. In Proceedings of the FISITA 2021 World Congress, Prague, Czech Republic,
13–17 September 2021.

13. McGrew, D.A.; Viega, J. The security and performance of the galois/counter mode (GCM) of operation. Int. Conf. Cryptol. Prog.
Cryptol.-INDOCRYPT 2004, 3348, 343–355.

14. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC; Tech. Rep. SP 800-38D; NIST:
Gaithersburg, MD, USA, 2007.

15. Lombardi, M.; Pascale, F.; Santaniello, D. EIDS: Embedded Intrusion Detection System using Machine Learning to Detect Attack
over the CAN-BUS. In Proceedings of the 30th European Safety and Reliability Conference and the 15th Probabilistic Safety
Assessment and Management Conference, Venice, Italy, 21–26 June 2020.

16. Pascale, F.; Adinolfi, E.A.; Coppola, S.; Santonicola, E. Cybersecurity in Automotive: An Intrusion Detection System in Connected
Vehicles. Electronics 2021, 10, 1765. [CrossRef]

17. Awaad, T.A.; El-Kharashi, M.W.; Taher, M. Lightweight Diagnostic-based Secure Framework for Electronic Control Units in
Vehicles. In Proceedings of the 2021 International Symposium on Networks, Computers and Communications (ISNCC), Dubai,
United Arab Emirates, 31 October–2 November 2021; pp. 1–5. [CrossRef]

https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_COM.pdf
https://www.autosar.org/fileadmin/user_upload/standards/classic/4-3/AUTOSAR_SWS_COM.pdf
http://doi.org/10.3390/electronics10151765
http://dx.doi.org/10.1109/ISNCC52172.2021.9615864

Electronics 2022, 11, 952 27 of 28

18. Elbahnihy, A.; Safar, M.; El-Kharashi, M.W. Hardware-accelerated SOME/IP-based Serialization for AUTOSAR Platforms.
In Proceedings of the 2020 15th Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Marrakech, Morocco,
1–3 April 2020; pp. 1–2. [CrossRef]

19. Satoh, A. High-speed hardware architectures for authenticated encryption mode GCM. In Proceedings of the 2006 IEEE Interna-
tional Symposium on Circuits and Systems, Island of Kos, Greece, 21–24 May 2006; p. 4. [CrossRef]

20. Jankowski, K.; Laurent, P. Packed AES-GCM Algorithm Suitable for AES/PCLMULQDQ Instructions. IEEE Trans. Comput. 2011,
60, 135–138. [CrossRef]

21. Mozaffari-Kermani, M.; Reyhani-Masoleh, A. Efficient and High-Performance Parallel Hardware Architectures for the AES-GCM.
IEEE Trans. Comput. 2012, 61, 1165–1178. [CrossRef]

22. Hoang, V.; Nguyen, V.; Nguyen, A.; Pham, C. A low power AES-GCM authenticated encryption core in 65 nm SOTB CMOS
process. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston,
MA, USA, 6–9 August 2017; pp. 112–115. [CrossRef]

23. Seo, H.; Lee, G.; Park, T.; Kim, H. Compact GCM implementations on 32-bit ARMv7-A processors. In Proceedings of the 2017
International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Korea, 18–20 October 2017;
pp. 704–707. [CrossRef]

24. Zhou, G.; Michalik, H.; Hinsenkamp, L. Efficient and High-Throughput Implementations of AES-GCM on FPGAs. In Proceedings
of the 2007 International Conference on Field-Programmable Technology, Kitakyushu, Japan, 12–14 December 2007; pp. 185–192.
[CrossRef]

25. Chen, T.; Huo, W.; Liu, Z. Design and Efficient FPGA Implementation of Ghash Core for AES-GCM. In Proceedings of the 2010
International Conference on Computational Intelligence and Software Engineering, Wuhan, China, 10–12 December 2010; pp. 1–4.
[CrossRef]

26. de la Piedra, A.; Touhafi, A.; Braeken, A. Compact implementation of CCM and GCM modes of AES using DSP blocks.
In Proceedings of the 2013 23rd International Conference on Field programmable Logic and Applications, Porto, Portugal,
2–4 September 2013; pp. 1–4. [CrossRef]

27. Abdellatif, K.M.; Chotin-Avot, R.; Mehrez, H. Improved method for parallel AES-GCM cores using FPGAs. In Proceedings of the
2013 International Conference on Reconfigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 9–11 December 2013;
pp. 1–4. [CrossRef]

28. Vliegen, J.; Reparaz, O.; Mentens, N. Maximizing the throughput of threshold-protected AES-GCM implementations on FPGA.
In Proceedings of the 2017 IEEE 2nd International Verification and Security Workshop (IVSW), Thessaloniki, Greece, 3–5 July 2017;
pp. 140–145. [CrossRef]

29. Koteshwara, S.; Das, A.; Parhi, K.K. FPGA implementation and comparison of AES-GCM and Deoxys authenticated encryption
schemes. In Proceedings of the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA,
28–31 May 2017; pp. 1–4. [CrossRef]

30. Koteshwara, S.; Das, A.; Parhi, K.K. Performance comparison of AES-GCM-SIV and AES-GCM algorithms for authenticated
encryption on FPGA platforms. In Proceedings of the 2017 51st Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, USA, 29 October–1 November 2017; pp. 1331–1336. [CrossRef]

31. Kavun, E.B.; Mentens, N.; Vliegen, J.; Yalçın, T. Efficient Utilization of DSPs and BRAMs Revisited: New AES-GCM Recipes on
FPGAs. In Proceedings of the 2019 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Cancun,
Mexico, 9–11 December 2019; pp. 1–2. [CrossRef]

32. Henzen, L.; Carbognani, F.; Felber, N.; Fichtner, W. FPGA implementation of a 2G fibre channel link encryptor with authen-
ticated encryption mode GCM. In Proceedings of the 2008 International Symposium on System-on-Chip, Tampere, Finland,
6–7 October 2008; pp. 1–4. [CrossRef]

33. Zhang, C.; Li, L.; Xu, J.; Wang, Z. High-throughput GCM VLSI architecture for IEEE 802.1ae applications. In Proceedings of the
2009 IEEE International Symposium on Circuits and Systems, Taipei, Taiwan, 24–27 May 2009; pp. 900–903. [CrossRef]

34. Chen, X.; Shou, G.; Guo, Z.; Hu, Y. Encryption and Authentication Mechanism of 10G EPON Systems Based on GCM. In Proceed-
ings of the 2010 2nd International Conference on E-business and Information System Security, Wuhan, China, 23–24 May 2010;
pp. 1–4. [CrossRef]

35. Henzen, L.; Fichtner, W. FPGA parallel-pipelined AES-GCM core for 100G Ethernet applications. In Proceedings of the ESSCIRC,
Seville, Spain, 13–17 September 2010; pp. 202–205. [CrossRef]

36. Abdellatif, K.M.; Chotin-Avot, R.; Mehrez, H. Efficient AES-GCM for VPNs using FPGAs. In Proceedings of the 2013 IEEE 56th
International Midwest Symposium on Circuits and Systems (MWSCAS), Columbus, OH, USA, 4–7 August 2013; pp. 1411–1414.
[CrossRef]

37. Buhrow, B.; Fritz, B.; Gilbert, K.; Daniel, E. A highly parallel AES-GCM core for authenticated encryption of 400 Gb/s net-
work protocols. In Proceedings of the 2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig),
Mexico City, Mexico, 7–9 December 2015; pp. 1–7. [CrossRef]

38. Sharaf, S.; Mostafa, H. A study of Authentication Encryption Algorithms (POET, Deoxys, AEZ, MORUS, ACORN, AEGIS,
AES-GCM) For Automotive Security. In Proceedings of the 2018 30th International Conference on Microelectronics (ICM), Sousse,
Tunisia, 16–19 December 2018; pp. 303–306. [CrossRef]

http://dx.doi.org/10.1109/DTIS48698.2020.9081292
http://dx.doi.org/10.1109/ISCAS.2006.1693712
http://dx.doi.org/10.1109/TC.2010.147
http://dx.doi.org/10.1109/TC.2011.125
http://dx.doi.org/10.1109/MWSCAS.2017.8052873
http://dx.doi.org/10.1109/ICTC.2017.8190759
http://dx.doi.org/10.1109/FPT.2007.4439248
http://dx.doi.org/10.1109/CISE.2010.5676905
http://dx.doi.org/10.1109/FPL.2013.6645572
http://dx.doi.org/10.1109/ReConFig.2013.6732299
http://dx.doi.org/10.1109/IVSW.2017.8031559
http://dx.doi.org/10.1109/ISCAS.2017.8050315
http://dx.doi.org/10.1109/ACSSC.2017.8335570
http://dx.doi.org/10.1109/ReConFig48160.2019.8994730
http://dx.doi.org/10.1109/ISSOC.2008.4694859
http://dx.doi.org/10.1109/ISCAS.2009.5117902
http://dx.doi.org/10.1109/EBISS.2010.5473490
http://dx.doi.org/10.1109/ESSCIRC.2010.5619894
http://dx.doi.org/10.1109/MWSCAS.2013.6674921
http://dx.doi.org/10.1109/ReConFig.2015.7393321
http://dx.doi.org/10.1109/ICM.2018.8704025

Electronics 2022, 11, 952 28 of 28

39. Sung, B.; Kim, K.; Shin, K. An AES-GCM authenticated encryption crypto-core for IoT security. In Proceedings of the 2018
International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018;
pp. 1–3. [CrossRef]

40. Sovyn, Y.; Khoma, V.; Podpora, M. Comparison of Three CPU-Core Families for IoT Applications in Terms of Security and
Performance of AES-GCM. IEEE Internet Things J. 2020, 7, 339–348. [CrossRef]

41. Recommendation for Block Cipher Modes of Operation: Methods and Techniques; Tech. Rep. SP 800-38A; NIST: Gaithersburg, MD,
USA, 2007.

42. Advanced Encryption Standard (AES); Tech. Rep. FIPS 197; NIST: Gaithersburg, MD, USA, 2001.

http://dx.doi.org/10.23919/ELINFOCOM.2018.8330586
http://dx.doi.org/10.1109/JIOT.2019.2953230

	Introduction
	Materials and Methods
	A Brief Introduction to COM ASIP ISA V2
	Actions in Cycle 0
	Actions in Cycle 1
	Actions in Cycle 2
	Actions in Cycle 3
	Actions in Cycle 4
	Actions in Cycle 5
	Actions in Cycle 6
	Actions in Cycle 7
	Actions in Cycle 8
	Actions in Cycle 9
	Actions in Cycle 10
	Actions in Cycle 11

	The GCM Hashing Algorithm
	The Two-Layer Security Process Using GCM and COM ASIP
	The First Design
	The Second Design
	The Third Design
	The Modified GCM Algorithm

	The Changes and Additions in COM ASIP Components to Support the Hashing Instructions
	The Start Hashing Instruction
	The Start Hashing without AAD Instruction
	The Update Hashing Instruction
	The Finish Hashing Instruction
	The Hash Once Instruction
	The Hash Once without AAD Instruction
	The Modified rom_n Component
	The Modified Output Buffer Component
	Extra ROM Components

	The Additions to COM ASIP ISA to Support the Hashing Instructions
	Changes in Cycles 0, 1, 2, 3, 4, and 5
	Changes in Cycle 6
	Changes in Cycle 7, 8, and 9
	Changes in Cycle 10
	Changes in Cycle 11

	Experimental Results
	Synthesis Results of COM ASIP V3
	Throughput Comparison between Our New COM ASIP and Different Communication Buses

	Conclusions
	References

