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Abstract: Malicious domains are increasingly common and pose a severe cybersecurity threat. Specif-
ically, many types of current cyber attacks use URLs for attack communications (e.g., C&C, phishing,
and spear-phishing). Despite the continuous progress in detecting cyber attacks, there are still critical
weak spots in the structure of defense mechanisms. Since machine learning has become one of the
most prominent malware detection methods, a robust feature selection mechanism is proposed that
results in malicious domain detection models that are resistant to evasion attacks. This mechanism
exhibits a high performance based on empirical data. This paper makes two main contributions: First,
it provides an analysis of robust feature selection based on widely used features in the literature. Note
that even though the feature set dimensional space is cut by half, the performance of the classifier
is still improved (an increase in the model’s F1-score from 92.92% to 95.81%). Second, it introduces
novel features that are robust with regard to the adversary’s manipulation. Based on an extensive
evaluation of the different feature sets and commonly used classification models, this paper shows
that models based on robust features are resistant to malicious perturbations and concurrently are
helpful in classifying non-manipulated data.

Keywords: malware detection; robust features; domain

1. Introduction

Cybersecurity attacks have become a significant issue for governments and civilians [1].
Many of these attacks are based on malicious web domains or URLs (see Figure 1 for an
example of a URL structure). These domains are used for phishing [2–6] (e.g., spear
phishing), Command and Control (C&C) [7] and a vast set of virus and malware [8]
attacks. Therefore, the ability to identify a malicious domain in advance is a massive
game-changer [9–26].

Figure 1. The URL structure.

A common way of identifying malicious/compromised domains is to collect informa-
tion about the domain names (alphanumeric characters) and network information (such
as DNS and passive DNS data). This information is then used to extract a set of features,
according to which machine learning (ML) algorithms are trained based on a massive
amount of data [11–15,17–22,24,26–28]. A mathematical approach can also be used in
various ways [16,26], such as measuring the distance between a known malicious domain
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name and the analyzed domain (benign or malicious) [26]. Nonetheless, while ML-based
solutions are widely used, many of them are not robust; an attacker can easily bypass
these models with minimal feature perturbations (e.g., changing the domain’s length or
modifying network parameters such as Time To Live (TTL)) [29,30]. In this context, one
of the main problems is how to train a robust malicious domain classifier, one that is
immune to the presence of an intelligent adversary that can manipulate domain properties,
to classify malicious domains as benign.

For this purpose, a feature selection process is executed to differentiate between robust
and non-robust features. Given the robust feature set, the defender is still guaranteed to
provide an efficient classifier, which is harder to manipulate. Even if the attacker has black-
box access to the model, tampering with the domain properties or network parameters will
have a negligible effect on the classifier’s accuracy. In order to achieve this goal, we collected
a broad set of both malicious and benign URLs. In addition, we reviewed related work
and identified a set of features commonly used for the classification task. These features
were then artificially manipulated to show that some, although widely used, are not robust
in the face of adversarial perturbations. In a complementary manner, we engineered an
original set of novel and robust features. Therefore, we created a hybrid set of features,
combining the robust well-known features with our novel features. Finally, the different
feature sets (e.g., common, robust common, and novel) were evaluated using common
machine learning algorithms, with emphasis on the importance of feature selection and
feature engineering processes.

The rest of the paper is organized as follows: Section 2 summarizes related work.
Section 3 describes the methodology and the novel features. Section 4 presents the empirical
analysis and evaluation. Finally, Section 5 concludes and summarizes this work.

2. Related Work

The issue of identifying malicious domains is a fundamental problem in cybersecurity.
This section discusses recent results in identifying malicious domains, focusing on two
significant methodologies, mathematical theory (MT) approaches and machine learning
(ML)-based techniques.

The use of graph theory to identify malicious domains was more pervasive in the
past [16,26,31–33]. Yadav et al. [26] presented a method for recognizing malicious domain
names based on fast flux. Fast flux is a DNS technique used by botnets to hide phishing
and malware delivery sites behind an ever-changing network of compromised hosts acting
as proxies. They analyzed the DNS queries and responses to detect if and when domain
names were being generated by a Domain Generation Algorithm (DGA). Their solution
was based on computing the distribution of alphanumeric characters for groups of domains
and by statistical metrics with the KL (Kullback Leibler) distance, Edit distance and Jaccard
measure to identify these domains. For a fast-flux attack using the Jaccard Index, they
achieved impressive results, with 100% detection and 0% false positives. However, for
smaller numbers of generated domains for each TLD, their false-positive results were much
higher, at 15% when 50 domains were generated for the TLD using the KL-divergence over
unigrams, and 8% when 200 domains were generated for each TLD using the Edit distance.

Dolberg et al. [16] described a system called Multi-dimensional Aggregation Monitoring
(MAM) that detects anomalies in DNS data by measuring and comparing a “steadiness”
metric over time for domain names and IP addresses using a tree-based mechanism. The
steadiness metric is based on a domain similar to IP resolution patterns when comparing
DNS data over a sequence of consecutive time frames. The domain name to IP mappings
were based on an aggregation scheme and measured steadiness. In terms of detecting
malicious domains, the results showed that an average steadiness value of 0.45 could be
used as a reasonable threshold value, with a 73% true positive rate and only a 0.3% false
positive one. The steadiness values might not be considered a good indicator when fewer
malicious activities are present (e.g., <10%).
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However, the most common approach to identifying malicious domains is by means of
machine learning (ML) and Deep Learning (DL) [11,14,20,23,24,27,28,34–42]. Researchers
can train ML algorithms to label URLs as malicious or benign using a set of extracted
features. Shi et al. [23] proposed a machine learning methodology to detect malicious
domain names using the Extreme Learning Machine (ELM) [19], which is closest to the
one employed here. ELM is a new neural network with a high accuracy and fast learning
speed. The authors divided their features into four categories: construction-based, IP-based,
TTL-based, and WHOIS-based categories. Their evaluation resulted in a high detection rate
with an accuracy exceeding 95% and a fast learning speed. However, as shown below, a
significant fraction of the features used in this work emerged as non-robust and ineffective
in the presence of an intelligent adversary.

Sun et al. [24] presented a system called HinDom, which generates a heterogeneous
graph (in contrast to homogeneous graphs created by Rahbarinia et al. [22] and Yadav
et al. [26]) in order to robustly identify malicious attacks (e.g., spam, phishing, malware,
and botnets). Even though HinDom collected DNS and pDNS data, it also has the ability
to collect information from various clients inside networks (e.g., CERNET2 and TUNET);
thus, its perspective is different from the perspective of this study (i.e., client perspective).
Nevertheless, HinDom has achieved remarkable results using a transductive classifier and
achieved a high accuracy and F1-scores of 99% and 97.5%, respectively.

Bilge et al. [13] created a system called Exposure, which is designed to detect mali-
cious domain names. Their system uses passive DNS data collected over some time to
extract features related to known malicious and benign domains. Passive DNS Replica-
tion [11,13,20,22,25,27,28] refers to the reconstruction of DNS zone data by recording and
aggregating live DNS queries and responses. Passive DNS data can be collected without
requiring the cooperation of zone administrators. The Exposure system is designed to
detect malware- and spam-related domains. It can also detect malicious fast-flux and
DGA-related domains based on their unique features. The system computes the following
four sets of features from anonymized DNS records: (a) time-based features related to the
periods and frequencies that a specific domain name was queried in; (b) DNS-answer-based
features calculated according to the number of distinctive resolved IP addresses and do-
main names, the countries in which the IP addresses reside, and the ratio of the resolved IP
addresses that can be matched with valid domain names and other services; (c) TTL-based
features that are calculated based on a statistical analysis of the TTL over a given time
series; and (d) domain name-based features that are extracted by computing the ratio of
the numerical characters to the domain name string, and the ratio of the size of the longest
meaningful substring in the domain name. Using a Decision Tree model, Exposure reported
a total of 100,261 distinct domains as being malicious, which resulted in 19,742 unique
IP addresses. The combination of features used to identify malicious domains led to the
successful identification of several domains related to botnets, flux networks, and DGAs,
with low false-positive and high detection rates. It may not be possible to generalize the
detection rate results reported by the authors (98%) since they were highly dependent
on comparisons with biased datasets. Despite the positive results, once an identification
scheme is published, it is always possible for an attacker to evade detection by mimicking
the behaviors of benign domains.

Rahbarinia et al. [22] presented a system called Segugio, which is an anomaly detection
system based on passive DNS traffic to identify malware-controlled domain names based
on their relationship to known malicious domains. The system detects malware-controlled
domains by creating a machine domain bipartite graph representing the underlying rela-
tions between new domains and known benign/malicious domains. The system operates
by calculating the following features: (a) machine behavior, based on the ratio of “known
malicious” and “unknown” domains that query a given domain d over the total number of
machines that query d. The larger the total number of queries and the fraction of malicious
related queries, the higher the probability that d is a malware-controlled domain; (b) Do-
main activity, where given a time period, domain activity is computed by counting the total
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number of days in which a domain was actively queried; (c) IP abuse, where, given a set
of IP addresses that the domain resolves to, this feature represents the fraction of those IP
addresses that were previously targeted by known malware-controlled domains. Using a
Random Forest model, Segugio was shown to produce high true positive and meager false
positive rates (94% and 0.1%, respectively). It was also able to detect malicious domains
earlier than commercial blacklisting websites. However, Segugio is a system that can only
detect malware-related domains based on their relationship to previously known domains
and therefore cannot detect new (unrelated to previous malicious domains) malicious
domains. Additional information concerning malicious domain filtering and malicious
URL detection can be found in [34,42].

Adversarial machine learning is a subfield of machine learning in which instances
used to train the model and instances in the wild may be characterized by different distri-
butions. For example, given perturbations on a malicious instance so that it will be falsely
classified as benign. These manipulated instances are commonly called adversarial examples
(AE) [43]. AE are samples that an attacker changes based on some model classification func-
tion knowledge. These examples are slightly different from correctly classified examples.
Therefore, the model fails to classify them correctly. AE are widely used in the fields of
spam filtering [44], network intrusion detection systems (IDS) [45], anti-virus signature
tests [46] and biometric recognition [47].

Attackers commonly follow one of two models to generate adversarial examples:
(1) white-box attacker [48–51], which has full knowledge of the classifier and the train/test
data and (2) black-box attacker [48,52,53], which has access to the model’s output for each
given input. Various methods have emerged to tackle AE-based attacks and make ML
models robust. The most promising are those based on game-theoretic approaches [54–56],
robust optimization [48,49,57], and adversarial retraining [30,58,59]. These approaches
mainly concern feature-space models of attacks where feature space models assume that
the attacker changes the values of features directly. Note that these attacks may be an
abstraction of reality as random modifications to feature values may not be realizable or
avoid the manipulated instance functionality.

Note that the topic of robust feature selection has attracted an increasing number of
researchers in recent years [30,60,61]. In the domain of PDF malware, Tong et al. [30] ex-
tracted a set of features termed “conserved features” that the adversary cannot unilaterally
modify without compromising malicious functionality. In the domain of APK malware,
Chen et al. [60] demonstrated the need for robust feature selection in their tool, Android
HIV. This tool takes advantage of non-robust features to easily bypass state-of-the-art
android malware classifiers.

3. Methodology

The structure of this section is as follows: Section 3.1 outlines the characteristics
and methods of collection of the dataset. Section 3.2 presents our evaluation metrics.
Section 3.3 defines each of the well-known features from the literature. Section 3.4 covers
the evaluation of their robustness, and Section 3.5 presents novel features and evaluates
their robustness.

3.1. Data Collection

The main ingredient of ML models is the data on which the models are trained. Data
collection should be as heterogeneous as possible to model reality. The data collected for
this work include both malicious and benign URLs: the benign URLs are based on the Alexa
top 1 million [62], and the malicious domains were crawled from multiple sources [63,64]
to allow diversity and due to the fact they are fairly rare.

According to [65], 25% of all URLs in 2020 were malicious, suspicious, or moderately
risky. Therefore, to make a realistic dataset, all the evaluations include all 1356 malicious
active unique URLs, and consequently, 5345 benign active unique URLs as well. For each
instance, the URL and domain information properties were crawled from Whois and their
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DNS records. Whois is a widely used Internet record listing that identifies who owns a
domain, how to get in contact with them, the creation date, update dates, and expiration
date of the domain. Whois records have been proven to be extremely useful and have
developed into an essential resource for maintaining the integrity of the domain name
registration and website ownership. Note that according to a study by ICANN (Internet
Corporation for Assigned Names and Numbers) [66], many malicious attackers abuse the
Whois system. Hence, only the information that could not be manipulated was used. A
graphical representation of the data collection framework is illustrated in Figure 2.

Finally, based on these resources (Whois and DNS records), the following features
were generated: the length of the domain, the number of consecutive characters, and the
entropy of the domain from the URLs’ datasets. Next, the lifetime of the domain and the
active time of domain were calculated from the Whois data. Based on the DNS response
dataset (a total of 263,223 DNS records), the number of IP addresses, distinct geo-locations
of the IP addresses, average Time to Live (TTL) value, and the Standard deviation of the
TTL were extracted. For extracting the novel features (Section 3.5), Virus Total (VT) [67]
and Urlscan [68] were used, where Urlscan was used to extract parameters such as the IP
address of the page element of the URL.

Figure 2. Data collection framework.

3.2. Evaluation Metrics

Machine Learning (ML) is a subfield of computer science aimed at causing computers
to act and improve over time autonomously by feeding them data in the form of observa-
tions and real-world interactions. In contrast to traditional programming, where input and
algorithms are provided to receive an output, with ML, a list of inputs and their associated
outputs are provided to extract the algorithm that maps the two.

ML algorithms are often categorized as either supervised or unsupervised. In su-
pervised learning, each example is a pair consisting of an input vector (also called data
point) and the desired output value (class/label). Unsupervised learning learns from data
that have not been labeled, classified, or categorized. Instead of responding to feedback,
unsupervised learning identifies commonalities in the data and reacts based on the presence
or absence of such commonalities in each new piece of data.

In order to evaluate how a supervised model is adapted to a problem, the dataset
needs to be split into two, namely, a training set and testing set. The training set is used
to train the model, and the testing set is used to evaluate how well the model “learned”
(i.e., by comparing the model predictions with the known labels). Usually, the train/test
distribution is around 75%/25% (depending on the problem and the amount of data).
Standard evaluation criteria are as follows: recall, precision, accuracy, F1-score, and loss.
All of these criteria can easily be extracted from the evaluation’s confusion matrix.

A confusion matrix (Table 1) is commonly used to describe the performance of a
classification model. Recall (Equation (2)) is defined as the number of correctly classified
malicious examples out of all the malicious ones. Similarly, precision (Equation (3)) is the
number of correctly classified malicious examples from all examples classified as malicious
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(both correctly and wrongly classified). Accuracy (Equation (1)) is used as a statistical
measure of how well a classification test correctly identifies or excludes a condition. That
is, the accuracy is the proportion of true results (both true positives and true negatives)
among the total number of cases examined. Finally, the F1-score (Equation (4)) is a measure
of a test’s accuracy. It considers both the precision and the recall of the test to compute the
score. The F1-score is the harmonic average of the precision and recall, where an F1-score
reaches its best value at 1 (perfect precision and recall) and worst at 0. These criteria are
used as the main evaluation metric.

The problem of identifying malicious web domains is a supervised classification
problem, as the correct label (i.e., malicious or benign) can be extracted using a blacklist-
based method, as we describe in the next section.

Accuracy =
TP + TN

TP + FP + TN + FN
=

T
P + N

(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
=

TP
P

(3)

F1 − score = 2 · Precision · Recall
Precision + Recall

(4)

Table 1. Confusion matrix.

Prediction Outcome

Positive Negative Total

Actual Value
Positive True

Positive
False

Negative TP + FN

Negative False
Positive

True
Negative FP + TN

Total P N

3.3. Feature Engineering

Based on the previous works surveyed, a set of features that are commonly used for
malicious domain classification [11,13,22,23,27,28,35,69,70] were extracted. Specifically, the
following nine features were used as the baseline (note that the focus of this work is on the
potential use of robust features and not on the specific features; thus, WLOG, we evaluated
a set of nine commonly used features):

• Length of domain: The length of a domain is calculated by the domain name followed
by the TLD (gTLD or ccTLD). Hence, the minimum length of a domain is four since
the domain name needs to be at least one character (most domain names have at
least three characters), and the TLD (gTLD or ccTLD) is composed of at least three
characters (including the dot character) as well. For example, for the URL http:
//www.ariel-cyber.co.il; accessed on 20 March 2022, the length of the domain is 17
(the number of characters for the domain name—”ariel-cyber.co.il”).

• Number of consecutive characters: This is the maximum number of consecutive
repeated characters in the domain. This includes the domain name and the TLD
(gTLD or ccTLD). For example, for the domain “caabbbccccd.com” the maximum
number of consecutive repeated characters value is 4, due to the four consecutive
“c” characters.

• Entropy of the domain: The entropy of a domain is defined as: −∑ni
j=1

count(ci
j)

length(Domain(i))
·

log2
count(ci

j)

length(Domain(i))
, where each Domain(i) consists of ni distinct characters

http://www.ariel-cyber.co.il
http://www.ariel-cyber.co.il
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{ci
1, ci

2, . . . , ci
ni
}. For example, for the domain “google.com”, the entropy is −(5 ·

( 1
10 · log2

1
10 ) + 2 · ( 2

10 · log2
2

10 ) + 3(· 3
10 · log2

3
10 )) = 1.25 The domain has 5 characters

that appear once (“l”, “e”, ".", “c”, and “m”), one character that appears twice (“g”)
and one character that appears three times (“o”).

• Number of IP addresses: This is the number of distinct IP addresses in the domain’s
DNS record. For example, for the list [“1.1.1.1”, “1.1.1.1”, and ”2.2.2.2”], the number
of distinct IP addresses is 2.

• Distinct geo-locations of the IP addresses: For each IP address in the DNS record, the
countries for each IP were listed and the number of different countries was counted.
For example, for the list of IP addresses [“1.1.1.1”, “1.1.1.1”, and ”2.2.2.2”] the list
of countries is [“Australia”, “Australia”, and “France”] and the number of distinct
countries is 2. Note that this feature relates to the number of different countries and
not the country itself.

• Mean TTL value: For all the DNS records of the domain in the DNS dataset, the TTL
values were averaged. For example, if a domain’s DNS records were checked 30 times,
and in 20 of them the TTL value was “60” and in 10 the TTL value was “1200”, the
mean is 20·60+10·1200

30 = 440.
• Standard deviation of the TTL: The standard deviations of the TTL values for all the

DNS records of the domain in the DNS dataset were calculated. For the “Mean TTL
value” example above, the standard deviation of the TTL values is 537.401.

• Lifetime of domain: This is the interval between a domain’s expiration date and
creation date in years. For example, the domain “ariel-cyber.co.il”, according to Whois
information, which was updated on 4 June 2018, was created on 14 May 2015 and
expires on 14 May 2022. Therefore, the lifetime of the domain is the number of years
from 14 May 2015 to 14 May 2022, i.e., 8.

• Active time of domain: Similar to the lifetime of a domain, the active time of a domain
is calculated as the interval between a domain’s updated date and creation date in
years. Using the same example as in the “Lifetime of domain”, the active time of the
“ariel-cyber.co.il” domain is the number of years between 14 May 2015 and 14 May
2021, i.e., 6.

3.4. Robust Feature Selection

Next, the robustness of the set of features described above was evaluated to filter those
that could significantly harm the classification process due to the adversary’s manipulations.
Table 2 lists the common features along with the mean value and standard deviation
(note that the std in some cases (e.g., mean TTL value) is higher due to fact that these
features have a positive value by definition.) For malicious and benign URLs based on our
dataset, note that some features have similar mean values for both benign and malicious
instances while they are commonly used. Furthermore, whereas “Standard deviation of
the TTL” has distinct values for benign and malicious domains, we later show that an
intelligent adversary can easily manipulate this feature, leading to a benign classification of
malicious domains.

In order to understand the malicious abilities of an adversary, the base features were
manipulated over a wide range of possible values, one feature at a time. This analysis
considers an intelligent adversary with black-box access to the model (i.e., a set of features
or output for a given input). The robustness analysis is based on an ANN model that
classifies the manipulated samples, where the train set is the empirically crawled data,
and the test set includes the manipulated malicious samples. Figure 3 depicts the possible
adversary manipulations over any of the features. We chose recall for the evaluation metric,
representing the average detection rate after modifications.
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Table 2. Classic features and statistical properties (*—robust features).

Feature Benign Mean (std) Malicious Mean (std)

Length of domain 14.38 (4.06) 15.54 (4.09)

Number of consecutive characters * 1.29 (0.46) 1.46 (0.5)

Entropy of the domain 4.85 (1.18) 5.16 (1.34)

Number of IP addresses 2.09 (1.25) 1.94 (0.94)

Distinct geo-locations of the IP
addresses 1.00 (0.17) 1.02 (0.31)

Mean TTL value * 7578.13 (17,781.47) 8039.92 (15,466.29)

Standard deviation of the TTL 2971.65 (8777.26) 2531.38 (7456.62)

Lifetime of domain * 10.98 (7.46) 6.75 (5.77)

Active time of domain * 8.40 (6.79) 4.64 (5.66)

Figure 3. Base feature manipulation graphs (*—robust features).

The well-known features were divided into three groups: robust features, robust
features that seemed non-robust (defined as semi-robust), and non-robust features. Next,
it it is shown how an attacker can manipulate the classifier for each feature and define
its robustness:

1. “Length of domain”: an adversary can easily purchase a short or long domain to
result in a benign classification for a malicious domain; hence, this feature was
classified as non-robust.

2. “Number of consecutive characters”: as depicted in Figure 3, manipulating the
“Number of consecutive characters” feature can significantly lower the prediction
percentage (e.g., move from three consecutive characters to one or two). Still, as
depicted in Table 2, on average, there were 1.46 consecutive characters in malicious
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domains (with a low standard deviation). Therefore, as this feature’s minimal value is
1, it is considered to be a robust feature.

3. “Entropy of the domain”: in order to manipulate the “Entropy of the domain” feature
as a benign domain entropy, the adversary can create a domain name with an entropy
of less than 4. For example, the domain “ddcd.cc” is available for purchase. The
entropy for this domain is 1.44. This value falls precisely in the entropy area of the
benign domains defined by the trained model. This example breaks the model and
causes a malicious domain to look like a benign URL. Hence, this feature was classified
as non-robust.

4. “Number of IP addresses”: note that an adversary can add many A records to the
DNS zone file of its domain to imitate a benign domain. Thus, to manipulate the
number of IP addresses, an intelligent adversary only needs to have several different
IP addresses and add them to the zone file. This fact causes this feature to be classified
as non-robust.

5. “Distinct Geo-locations of the IP addresses”: in order to be able to circumvent the
model with the “Distinct Geolocations of the IP addresses” feature, the adversary
needs to use several IP addresses from different geo-locations. Suppose the adversary
can determine how many different countries are sufficient to mimic the number of
distinct countries of benign domains. In that case, he will be able to append this
number of IP addresses (a different IP address from each geo-location) in the DNS
zone file. Moreover, because this feature counts the number of the countries, the
attacker can choose a set of countries to meet the desired number. Thus, this feature
was also classified as non-robust (this assumption gave us the motivation for one of our
novel features which is based on the rank of the countries and not only the number of
the countries).

6. “Mean TTL value” and “Standard deviation of the TTL”: there is a clear correlation
between the “Mean TTL value” and the “Standard deviation of the TTL” features
since the value manipulated by the adversary is the TTL itself. Thus, it makes no
difference if the adversary cannot manipulate the “Mean TTL value” feature if the
model uses both. In order to robustify the model, it is better to use the “Mean TTL
value” feature without the “Standard deviation of the TTL”. Solely in terms of the
“Mean TTL value” feature, Figure 3 shows that manipulation will not result in a false
classification since the prediction percentage does not drop dramatically, even when
this feature is drastically manipulated. Therefore, this feature (“Mean TTL value”) is
considered to be robust.
An adversary can set the DNS TTL values to [0,120,000] (according to the RFC 2181 [71]
the TTL value range is from 0 to 231 − 1). Figure 3 shows that even manipulating the
value of this feature to 60,000 will deceive the model and cause a malicious domain to
be wrongly classified as a benign URL. Therefore, the “Standard deviation of the TTL”
is considered a non-robust feature.

7. “Lifetime of domain”: As for the lifetime of domains, based on Shi et al. [23], we
know that a benign domain’s lifetime is typically much longer than a malicious
domain’s lifetime. In order to deceive the model by manipulating the “Lifetime of
domain” feature, the adversary must buy an old domain that is available on the
market. Even though it is possible to buy an appropriate domain, it is expensive (if
feasible). Hence, we considered this to be a robust feature.

8. “Active time of domain”: Similar to the previous feature, in order to overcome
the “Active time of domain” feature, an adversary has to find a domain with a
particular active time, which is much more tricky. It is complex, expensive, and
perhaps unfeasible. Therefore we considered it to be a robust feature.

Based on the analysis above, the robust features presented in Table 2 were selected, and
the non-robust ones were dropped. Using this subset, the model was trained and achieved
an accuracy of 95.71% with an F1-score of 88.78%, compared to an accuracy of 97.2% and an
F1-score of 90.23% when using all the features (i.e., including the robust ones). Therefore,
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we extended our analysis and searched for new features that would meet the robustness
requirements to build a robust model with a higher F1-score.

3.5. Novel Features

We aim to validate that manipulating the features in order to result in the misclassifica-
tion of malicious instances will require a disproportionate effort that will deter the attacker
from doing so. The four novel features were designed according to this paradigm based on
two communication information properties, passive DNS changes, and the expiration time
of the SSL certificate. For each IP, we used Urlscan [68] to extract the geo-location, which in
turn was appended to a communication country list. The communication Autonomous
System Numbers (ASNs) is a list of ASNs, extracted using Urlscan, each IP address, and
appended the ASNs list. Benign-malicious ratio tables for communication countries, and
communication ASNs (Figures 4 and 5) were created using the URL dataset and the Urlscan
service. The ratio tables were calculated for each element E (country—for the communi-
cation countries ratio table; ASN—for the communication ASNs ratio table). Each table
represents the probability that a URL associated with a country (ASN) is malicious. In order
to extract the probabilities, the number of malicious URLs associated with E was divided
by the total URLs associated with E. Initially, due to the heterogeneity of the dataset (i.e.,
there exist some elements that appear only a few times), the ratio tables appeared to be
biased. To overcome this challenge, an initial threshold was set as an insertion criterion
which is later detailed in Algorithm 1.

Figure 4. Communication countries ratio.
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Figure 5. Communication ASNs ratio.

The following is a detailed summary of the novel features:

• Communication Countries Rank (CCR): This feature looks at the communication
countries with respect to the communication IPs, and uses the countries ratio table to
rank a specific URL. The motivation is to gain a broader perspective.

• Communication ASNs Rank (CAR): Similarly, this feature analyzes the communi-
cation ASNs with respect to the communication IPs, and uses the ASNs ratio table
to rank a specific URL. While there is some correlation between the ASNs and the
countries, the second feature examines each Autonomous System (AS) within each
country to gain a broader perspective.

• Number of passive DNS changes: When inspecting the passive DNS records, benign
domains emerged as having much more significant DNS changes that the sensors (of
the company that collects the DNS records) could identify, unlike malicious domains
(i.e., 26.4 vs. 8.01, as reported in Table 3). The number of DNS record changes was
counted for the “Number of passive DNS changes”, which is somewhat similar to
other features described in other works [11,25]. Nonetheless, these features require
much more elaborated information, which is not publicly available. On the other hand,
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this feature can be extracted from passive DNS records obtained from VirusTotal,
which are scarce (in terms of record types).

• Expiration time of SSL certificate: When installing an SSL certificate, a Certificate
Authority (CA) conducts a validation process. Depending on the type of certificate, the
CA verifies the organization’s identity before issuing the certificate. When analyzing
our data, it was noted that most malicious domains do not use valid SSL certificates
and those that only use one for a short period. Therefore, this feature was engineered
in order to represent the time the SSL certificate remains valid. The “Expiration time
of SSL certificate”, in contrast to the binary feature version used by Ranganayakulu et
al. [69], extends the scope and represents both the existence of an SSL certificate and
the remaining time until the SSL certificate expires.

Algorithm 1 Communication Rank
Input: URL, Threshold, Type
Output: Rank (CCR or CAR)

if Type = Countries then
ItemsList = communication countries list of the URL

else
ItemsList = ASNs list of the URL

end if
Rank = 0
for Item in ItemsList do

Ratio = 0.75 {Init value}
Total_norm = 1 {Init value}
if TotalOccurrences(Item) >= Threshold then

Total_norm = Normalize(Item)
Ratio = BenignRatio(Item)

end if
Rank+ = (log0.5(Ratio + ε)/Total_norm)

end for

Table 3. Novel features and statistical properties.

Feature Benign Mean (std) Malicious Mean (std)

Communication Countries Rank (CCR) 31.31 (91.16) 59.40 (215.15)

Communication ASNs Rank (CAR) 935.59 (12,258.99) 12,979.38 (46,384.86)

Number of passive DNS changes 26.40 (111.99) 8.01 (16.63)

Expiration time of SSL certificate 1.547×107 (2.304×107) 4.365×106 (1.545×107)

Algorithm 1 receives a URL as an input and returns its communication country rate or
the ASN communication rate (based on the type of the input in the algorithm). For each
item (i.e., country or ASN), first the algorithm initializes the value of the ratio variable to
0.75 (according to [65], 25% of all URLs in 2020 were malicious, suspicious, or moderately
risky). It then normalizes an item’s total occurrences (Total_norm) to be 1. Next, in Step 9,
if an item’s total number of occurrences is ≥ to the threshold, the algorithm replaces the
ratio. It normalizes occurrences to the correct values according to the ratio tables given in
Figures 4 and 5. Finally, the algorithm sums the rank with a log base of 0.5 of the ratio (ε is
a very small value that was added for the special case where Ratio = 0) and divides this
value by the normalized total occurrences.

Figure 6 depicts the detection rate as a function of the novel features’ values for each
feature in Table 3. This evaluation proves that manipulating our novel features does not
affect the robust model (i.e., the detection rate remains steady). The negative correlation
between “Expiration time of SSL certificate” feature and the detection rate may raise
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concern. Nevertheless, it is noteworthy that the average value for malicious domains is
three times higher than the benign ones. While, theoretically, the adversary can lower
this value, the implications of such an action mean acquiring (or attaining for free) an
SSL certificate. Since there is a validation process involved in the acquisition of an SSL
certificate, doing so will cause the adversary to lose its anonymity and disclose its identity.

Figure 6. Novel robust feature manipulation graphs.

4. Empirical Analysis and Evaluation

This section describes the testbed used to evaluate models based on the types of
features (both robust and not). General settings are provided for each of the models
(e.g., the division of the data into training and test sets), as well as the parameters used
to configure each of the models, and the efficiency of each model. (our code is publicly
available at https://github.com/nitayhas/robust-malicious-url-detection; accessed on
20 March 2022).

4.1. Experimental Design

In addition to intelligently choosing the model parameters, one should verify that the
data used for the learning phase accurately represent the domain malware’s real-world
distribution. Hence, the dataset was constructed such that 75% were benign domains,
and the remaining 25% were malicious domains (~5000 benign URLs and ~1350 malicious
domains, respectively) [65].

There are many ways to define the efficiency of a model. A broad set of metrics was
extracted to account for most of them, including accuracy, recall, F1-score, and training
time. Note that for each model, the dataset was split into train and test sets where 75%
of the data (both benign and malicious) were assigned to the train set, and the remaining
domains were assigned to the test set. Note that the entire dataset included 75% benign
samples. Later, when we trained a model, we used 75% of the dataset for the training
process and 25% for the evaluation (i.e., test set).

The evaluation measured the efficiency of the different models while varying the
robustness of the features included in the model. Specifically, four classical models (i.e.,
Logistic Regression, SVM, ELM, and ANN) were trained using the following feature sets:

• Base (B)—the set of commonly used features in previous works (see Table 2 for
more details).

• Base Robust (BR)—the subset of robust base features (marked with a * in Figure 3).
• “TCP” (TCP)—the four novel features: Time of SSL certificate, Communication ranks

(CCR and CAR) and PassiveDNS changes (see Table 3).
• Base Robust + “TCP” (BRTCP)—the combination (union) of BR and TCP, the robust

subset of all features.
• Base + “TCP” (BTCP)—the union of B and TCP.

https://github.com/nitayhas/robust-malicious-url-detection
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4.2. Experimental Results

Four commonly used classification models were considered: Logistic Regression (LR),
Support Vector Machines (SVM), Extreme Learning Machine (ELM), and Artificial Neural
Networks (ANN). All the models were trained and evaluated on a Dell XPS 8920 computer,
Windows 10 64Bit OS with 3.60GHz Intel Core i7-7700 CPU, 16GB of RAM, and NVIDIA
GeForce GTX 1060 6GB. In the following paragraphs, we describe the experimental results
for each model, followed by a short discussion of the findings and their implications.

4.2.1. Logistic Regression

As a baseline for the evaluation process, and before using the nonlinear models, the LR
classification model was used. The LR model with the five feature sets (Base, Robust Base,
TCP, BRTCP, BTCP) was trained. Table 4 shows that the different feature sets resulted in
similar accuracy rates. However, the accuracy rate measures how well the model predicts
(i.e., TP + TN)with respect to all the predictions (i.e., TP + TN + FP + FN). Thus, given the
unbalanced dataset (75% of the dataset are benign and 25% are malicious domains), ~90%
accuracy is not necessarily a sufficient result for malware detection. For example, the TCP
feature set has high accuracy and, at the same time, a very poor F1-Score, due to the high
precision rate and poor recall rate. As the recall is low for all features sets, the accuracy rate
is not a good measure in this domain. Consequently, we focused on the F1-score measure,
the harmonic mean of the precision, and the recall measures.

4.2.2. Support Vector Machine (SVM)

Compared to the results of the LR model (Table 4), the results of the SVM model
(Table 5) show a significant improvement in the recall and F1-score measures; e.g., for Base,
the recall and the F1-score measures were both above 90%. It should be noted that the model
that trained on the Base feature set resulted in a higher recall (and F1-score) compared to the
one trained on the Robust Base feature set. Nonetheless, it is also noteworthy that the Robust
Base feature set is robust to adversarial manipulation and uses less than half of the features
provided in the training phase with the Base feature set. This discussion also applies to the
BRTCP and BTCP feature sets. Another advantage of including the novel features is that
models converge much faster. The results are based on the analysis of a non-manipulated
dataset. As stated above, the Base feature set includes some non-robust features. Hence, an
intelligent adversary can manipulate the values of these features, resulting in the wrong
classification of malicious instances (to the extreme of 0% recall). However, an intelligent
adversary will need to invest much more effort with a model that was trained using the
Robust Base or TCP features since each was specifically chosen to avoid such manipulations.
In order to find models that were also efficient on the non-manipulated dataset, the two
sophisticated models were examined in the analysis, the ELM model Shi et al. [23] provided
and the ANN model.

Table 4. Model performance—logistic Regression.

Feature Set Accuracy Recall F1-Score

Base 89.99% 38.82% 53.21%

Robust Base 88.33% 38.87% 49.42%

TCP 86.20% 8.30% 14.99%

BRTCP 88.82% 52.46% 65.57%

BTCP 92.86% 64.14% 72.48%
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Table 5. Model performance—SVM.

Feature Set Accuracy Recall F1-Score

Base 96.49% 91.20% 91.36%

Robust Base 90.14% 56.51% 69.93%

TCP 83.10% 60.21% 54.21%

BRTCP 96.78% 91.37% 92.02%

BTCP 97.95% 90.73% 92.83%

4.2.3. ELM

The architecture of the ELM is the one previously used [23]: one input layer, one
hidden layer, and one output layer. Activation function: first layer—ReLU; hidden layer—
Sigmoid. Overall, the ELM model resulted (see Table 6) in a high accuracy and higher recall
rates compared to Table 4, for any feature set. When compared to the SVM models, the
Base model resulted in a lower recall rate (though a higher F1-score was achieved with the
ELM model). On the other hand, the Robust Base resulted in a higher recall rate with the
ELM model compared to the SVM model. Even though the Robust Base feature set had a
low dimensional space, the three rates (i.e., accuracy, recall, and F1-score) were higher than
those of the Base feature set. Using the sets that include the novel features increased these
metrics while improving the robustness of the model at the same time.

Table 6. Model performance—ELM.

Feature Set Accuracy Recall F1-Score

Base 98.17% 88.81% 92.92%

Robust Base 98.83% 92.24% 95.81%

TCP 98.88% 94.64% 96.84%

BRTCP 98.86% 95.82% 97.07%

BTCP 98.19% 93.09% 95.34%

4.2.4. ANN

The architecture of the neural network was as follows: one input layer, three hidden
layers, and one output layer. Activation function: first layer—ReLU; first hidden layer—
RELU; second hidden layer—LeakyReLU; third hidden layer—Sigmoid. Batch size: −150,
with a learning rate of 0.01; solver: Adam with β1 = 0.9 and β2 = 0.999. Similar to the ELM
results, the ANN results (Table 7) show high performance with all feature sets. For the
“basic” feature sets (i.e., Base and Robust Base), the ELM models resulted in higher recall and
F1-score. Nevertheless, the main focus was in the BTCP feature set and, more specifically,
on the BRTCP variant, where the ANN models resulted in a higher recall and F1-score.

Table 7. Model performance—ANN.

Feature Set Accuracy Recall F1-Score

Base 97.20% 88.03% 90.23%

Robust Base 95.71% 83.63% 88.78%

TCP 98.03% 96.83% 95.24%

BRTCP 99.36% 98.77% 98.42%

BTCP 99.82% 99.47% 99.56%
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Our analysis concludes with Figure 7, which depicts the F1-scores of the feature sets
for all the models.

Figure 7. The F1-Score by feature sets and models.

All the results provided in this article are based on clean data (i.e., with no adversarial
manipulation). Naturally, given an adversarial environment where the attacker can manip-
ulate the values of the features, models which are based on the Robust Base or TCP feature
sets will dominate models that are trained using the Base dataset. Thus, by showing that
the Robust Base feature set does not dramatically decrease the performance of the classifier
using clean data and that adding the novel feature improves the model’s performance as
well as its robustness, it leads to the conclusion that malicious domain classifiers should
use this feature set for robust malicious domain detection.

5. Conclusions

Numerous attempts have been made to tackle the problem of identifying malicious
domains. However, many fail to successfully classify malware in realistic environments
where an adversary can manipulate the features in order to make the model wrongly
classify malicious domains. Specifically, this research used a large empirical dataset that
was crawled over a significant amount of time at different hours of the day, and captures
traffic generated in various countries and continents. Based on this rich dataset, this paper
tackled the case where an attacker has access to the model (i.e., a set of features or output for
a given input) and tampers with the domain properties. This tampering has a catastrophic
effect on the model’s efficiency. As a countermeasure, we propose two feature-based
mechanisms: (I) an intelligent feature selection procedure that is robust to adversarial
manipulation. We evaluated the robustness of each feature, taking into account both the
hardness of changing its value and the effects of such manipulations on the classifier;
(II) a novel and robust feature engineering process. Based on the domains’ properties, we
engineered a set of four features which are robust to adversarial manipulation and, together
with the common features, improve the classifiers’ performance.

We empirically evaluated the common feature set as well as our novel ones using
a large dataset, which took into account both malicious and benign models. To extend
our evaluation, we picked a broad set of well-known machine learning algorithms. Our
evaluation showed that models trained using the robust features are more precise in terms
of manipulated data while maintaining good results on clean data as well.

From the industry perspective, our solution can be easily adopted either in any organi-
zation’s DPI center solution, Firewall, Load Balancer, behavioral analytic or as a client agent
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that will query a cloud-service dataset. Further research is needed to create models that
classify malicious domains into malicious attack types, either in terms of a more extensive
list of models or by sampling data in a stratified way, validating the amount of data for any
feature value. Another promising direction would be to cluster a set of malicious domains
into one cyber campaign.
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