
����������
�������

Citation: Gao, Y.; Gu, X.; Gao, Q.;

Hou, R.; Hou, Y. TdmTracker:

Multi-Object Tracker Guided by

Trajectory Distribution Map.

Electronics 2022, 11, 1010.

https://doi.org/10.3390/

electronics11071010

Academic Editors: Andrea Prati, Luis

Javier Garcia Villalba and Vincent A.

Cicirello

Received: 21 February 2022

Accepted: 22 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

TdmTracker: Multi-Object Tracker Guided by Trajectory
Distribution Map
Yuxuan Gao , Xiaohui Gu, Qiang Gao, Runmin Hou and Yuanlong Hou *

School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
gaoyuxuan1994@njust.edu.cn (Y.G.); gxiaohui@njust.edu.cn (X.G.); gaoq0916@sina.com (Q.G.);
hourunmin1102@njust.edu.cn (R.H.)
* Correspondence: houyuanlong1964@163.com

Abstract: With the great progress of object detection, some detection-based multiple object tracking
(MOT) paradigms begin to emerge, including tracking-by-detection, joint detection and tracking,
and attention mechanism-based MOT. Due to the separately executed detection, embedding, and
data association, tracking-by-detection-based methods are much less efficient than other end-to-end
MOT methods. Therefore, recent works are devoted to integrating these separate processes into an
end-to-end paradigm. Some of the transformer-based end-to-end methods introducing track queries
to detect targets have achieved good results. Self-attention and track query of these methods has given
us some inspiration. Moreover, we adopt optimized class query instead of static learned object query
to detect new-coming objects of target category. In this work, we present a novel anchor-free attention
mechanism-based end-to-end model TdmTracker, where we propose a trajectory distribution map to
guide position prediction, and introduce an adaptive query embedding set and query-key attention
mechanism to detect tracked objects in the current frame. The experimental results on MOT17
dataset show that the TdmTracker achieves a good speed-accuracy trade-off compared with other
state-of-the-arts.

Keywords: multiple object tracking; end-to-end method; attention mechanism; adaptive query
embedding set; trajectory distribution map

1. Introduction

Object tracking is an essential component for computer vision. In particular, multi-
object tracking (MOT) attracts much attention owing to its strong practical merit. MOT
aims to continuously locate multiple targets in video frames as their trajectories and label
different targets with different track identities. The recent progress in deep learning has led
to great improvement of object detection performance, which makes tracking-by-detection
a popular paradigm in MOT [1]. Some advanced image retrieval [2,3] and preprocessing [4]
technologies have also been proposed to improve the accuracy of computer vision models.
However, MOT methods of the tracking-by-detection paradigm are limited by complex
pipeline, which brings a lot of computational cost and makes them not real-time. Further-
more, the disordered target pairs between two consecutive frames and the incomplete
detection in each frame bring great challenges to the tracking algorithm.

In the tracking-by-detection paradigm, the output of object detection is the input of
the tracking algorithm, so the performance of the detection algorithm will seriously affect
the effect of the whole tracking method. Afterward, the subsequent problem is to correctly
associate the targets between frames by calculating similarity between features extracted
from detection patches in the front and back frames and considering the location of the
tracked objects. Traditional tracking-by-detection paradigm treats MOT as two tasks, object
detection and data association [5]. In terms of object detection, there are many mature
backbone networks for feature extraction such as VGG16, GoogLeNet, ResNet, DenseNet,
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Darnet19, etc. Most state-of-the-art models, such as Faster R-CNN, YOLO, SSD, DSOD,
etc., use the features extracted by these backbone networks for object classification and
detection. The maturity of object detection technology makes current MOT research focus
on optimizing detection, feature extraction, trajectory prediction, and data association [1,6].
SORT [6] and DeepSORT [1] are the classical methods of the tracking-by-detection paradigm.
In these two methods, the detection patches of the target object are first obtained by
an off-the-shelf detector, then the cost matrix is generated according to the appearance
feature similarity and motion affinity of the detected patches, and finally the matching
algorithm is used to match the same targets in the front and back frames so as to achieve
multi-object tracking. Extracting features to calculate similarity significantly improves the
accuracy of the model; hence, most recently, tracking-by-detection methods contain three
sequential subtasks: object detection, feature extraction, and data association. In addition
to the features extracted by deep network, some handcrafted features for specialized
recognition have been used in recent work [7–9]. A survey of extant studies on gait
recognition [7] finds that the information of gait is usually obtained from different parts of
silhouettes. Reference [8] used handcrafted features based on Oriented Fast and Rotated
BRIEF (Binary Robust Independent Elementary Features) and Scale Invariant Feature
Transform (SIFT) features to realize efficient object recognition. In [9], speeded up robust
features (SURF) and SIFT are used for feature extraction to implement a face recognition
method. However, splitting the whole task into isolated subtasks may lead to local optima
and much computation cost. Considering the efficiency of the tracking model, more
and more works focus on the whole tracking speed to optimize the model architecture.
Therefore, the emergence of joint detection and tracking paradigm has become an important
stride in the development of MOT. Since JDE [10] incorporated the appearance embedding
model into a single-shot detector, which avoided re-computation by sharing the same set
of features, researchers have tended to solve object detection, feature extraction, and data
association in a whole network, namely an end-to-end solution, such as FairMOT [11],
CenterTrack [12], and CTracker [13]. These methods are more real-time than tracking-by-
detection methods, and we are inspired to implement MOT with an end-to-end solution
to realize higher practical merit. Hence, our model directly extracts the deep learning
features of the whole picture, realizes feature matching through attention mechanism,
and combines motion state by weighting the predicted trajectory distribution map of the
current frame. Through the identification of different tracking targets on different channels,
re-identification of targets is realized. It avoids recalculating features and integrates object
detection, feature extraction, and data association into a unified lightweight model.

Query-key attention mechanism also benefits our model. As suggested in recent
works [14–17], attention mechanism has great prospect in computer vision. DETR [14]
applied the transformer widely used in the NLP field to the field of object detection
and achieved good results. Reference [15] proposed a general-purpose few-shot object de-
tector, through the well-designed Attention-RPN, Multi-Relation Detector, and contrastive
training strategy, and the network can squeeze out the matching relationship between
targets by training on a high-diversity dataset FSOD and carry out reliable detection of
novel categories without fine-tuning. It inspires us to train the model to learn a general
matching relationship to distinguish objects of the same category from those of different
categories instead of learning the details of each category separately. This enables the model
to have better generalization ability for novel categories. In particular, as MOT methods,
TransTrack [18] and TrackFormer [16] introduce the transformer to encode frame feature
and queries in the self-attention manner and use feature embedding of previous detection
objects as query for searching tracked targets in the current frame and static learned object
query [14] for detecting new-coming objects. We learn from their idea of using self-attention
to encode the relationship between pixel patches and the relationship between queries to
obtain more representative embedding. Moreover, we argue that these end-to-end models
only use the IoU of the objects detected in the front and back frames for position matching,
which does not make full use of the motion information of the tracked targets. Instead of
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IoU matching, we proposed a trajectory distribution map to introduce historical position
information of tracked objects to predict the position in the current frame so as to improve
the accuracy of position matching.

In our work, we present a novel anchor-free attention mechanism-based end-to-end
MOT model, referred to as TdmTracker. Considering that most methods based on attention
mechanism use static learned object query to detect new-coming objects, causing many
foreground objects of other categories to be detected in complex background; thus, our
model adopts a comparative learning mode similar to that in few-shot learning and utilizes
optimized class query to detect new-coming objects of target category. To be specific, we
refer to the structure of the few-shot detection model proposed in Reference [19] to a certain
extent for introducing query-key attention mechanism in a one-stage anchor-free manner,
and our model takes optimized class query and track query to form an adaptive query
embedding set to realize the unification of query-key attention operations. In addition, we
introduce self-attention to produce a good representation for feature embedding. In order
to integrate data association into the end-to-end tracking process and make full use of
the historical position information of the tracked object and the corresponding timing
information, we propose a trajectory distribution map for motion prediction to realize
tracking conditioned detection and association through predicted trajectory.

The contributions of our work are summarized as follows:

• We propose TdmTracker, a novel anchor-free attention mechanism-based end-to-end
MOT model, which presents a more unified and lightweight architecture by integrating
separate subtasks into a whole network. It has comparable tracking accuracy with
other state-of-the-art MOT methods and achieves a relatively high efficiency.

• We adopt a comparative learning mode similar to that in few-shot learning and utilize
optimized class query instead of static learned object query to detect objects of target
category. Our model takes optimized class query and track query to form the adaptive
query embedding set to realize the unification of query-key attention operations.

• We propose a trajectory distribution map for motion prediction to realize tracking
conditioned detection and association through predicted trajectory.

2. Related Works

Different from single object tracking, MOT is mainly about how to solve data as-
sociation problems under the premise of ID-available targets. Data association has now
developed a variety of different solutions, starting from the simplest matching with IOU [20]
to the popular Greedy matching algorithm [21] and Hungarian algorithm [22]. In recent
years, due to the tremendous strides in object detection, most modern MOT trackers
follow the tracking-by-detection paradigm. At the same time, recently, there have been
methods based on joint detection and tracking and attention mechanism, which began to
attract the attention of researchers. Here, we introduce three classic paradigms of MOT:
tracking-by-detection, joint detection and tracking, and attention mechanism paradigms.

Tracking-by-detection. Within this framework, an off-the-shelf detector is first uti-
lized to capture the target objects in video frames. After extracting appearance feature for
these detection bounding boxes and obtaining motion model, the cost matrix is calculated
by appearance similarity and motion affinity. Then, a matching algorithm is performed to
solve the data association problem in order to form the tracklets. Reference [6] proposed the
SORT method, which used Faster Region CNN (FrRCNN) for detection, Kalman filter for
predicting the motion state, and the Hungarian algorithm based on the detection locations
and IOU for data association, making the algorithm highly efficient. In Deep SORT [1],
Mahalanobis distance is used as motion metric for evaluating the difference between the
predicted Kalman state and the detection location in the current frame, and CNN is used to
extract appearance feature of detection bounding boxes to calculate cosine distance with
a feature gallery for each track. Furthermore, the matching cascade method is utilized
to improve matching accuracy. The improved effect of Deep SORT is obvious, which
greatly reduces the ID switches in SORT. Recently, some success has been achieved in



Electronics 2022, 11, 1010 4 of 17

computer vision by introducing graph neural networks (GNN), which is more effective
for modeling structured data. In [23,24], data association is formulated as a graph opti-
mization problem by treating each detection as a graph node, achieving state-of-the-art
performance. However, generally speaking, tracking-by-detection methods are two-step
methods, which conduct object detection and appearance feature extraction separately and
hence are computationally expensive [25].

MOT based on joint detection and tracking. In order to build a real-time MOT
system, JDE [10] incorporates the appearance embedding model into a single-shot detector,
which avoids re-computation by sharing the same set of features to save computation. It
reports a real-time MOT system with a speed much faster than two-step methods and a
tracking accuracy comparable to the state-of-the-arts. However, the tracking accuracy of
the one-shot method is often lower than that of the two-step method. Reference [11] finds
that this is because the learning feature embedding is not optimal, which leads to many
identity switches. They also find a better way is to extract features at the estimated object
centers. Because features extracted at coarse anchors may not be aligned with object centers,
FairMOT [11] uses the anchor-free method for object detection and identity embedding,
which can significantly improve the tracking accuracy on all benchmarks. CenterTrack [12]
adopts CenterNet [26] to localize object centers and adds four additional input channels
and two output channels in order to obtain the offset by comparing with the heatmap of
the prior frame. Afterward, with good offset prediction, greedy matching algorithm is
leveraged to associate objects across time. Reference [13] proposes an online end-to-end
MOT model CTracker which first unifies object detection, feature extraction, and data
association into a single end-to-end solution. This framework is also the first to convert a
data association problem to a pair-wise object detection problem. In addition, they design
a joint attention module to highlight informative regions for box pair regression, which
further improves the performance of CTracker.

Attention mechanism-based MOT. With the development of attention mechanism
in the field of computer vision, many state-of-the-art models based on attention mecha-
nism have emerged. Attention mechanism helps the model to be more focused, avoiding
the distraction by irrelevant yet confusing information. DETR [14] is the first successful
attempt, which applies the transformer widely used in the NLP field to the field of ob-
ject detection and has achieved good results. At the same time, it simplifies the NMS
and anchor mechanisms commonly used in object detection and it detects the objects in
the image through the learned object queries. The experimental result obtained on the
MS COCO dataset is equivalent to that of Faster-RCNN [27]. Afterward, TransTrack [18]
introduces the transformer architecture, which is an attention-based query-key mecha-
nism. It extracts object features from the previous frame as a query of the current frame
and utilizes a set of learned object queries for detecting new-coming objects. TransTrack
conducts object detection and data association in a single-shot, simplifying the complex
multi-step process. Similar to TransTrack [18], TrackFormer [16] also utilizes an attention
mechanism-based encoder-decoder architecture to query objects in frames. The difference
is that it proposes the scheme of using different track queries between different frames,
where new-coming objects are detected by static object queries as in [14,17] and subse-
quently transformed to future track queries, that is, the method of combining learned object
query and track feature. Thereby, it achieves detection and data association jointly in a
tracking-by-attention paradigm.

3. TdmTracker

In this section, we present the architecture of our end-to-end multi-object tracking
(MOT) model TdmTracker and the tracking pipeline. Afterward, we describe the technical
details of core components of TdmTracker.
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3.1. Architecture and Pipeline

In order to detect a complete set of objects of target category and correctly output
sorted tracked objects online, TdmTracker uses queries from two sources to obtain the
adaptive query embedding set. On the one hand, similar to [19], adaptive query embedding
set takes optimized class queries for target categories. On the other hand, track queries,
which are feature embeddings from previously detected objects, are introduced to form the
adaptive query embedding set.

As shown in Figure 1, TdmTracker takes current frame, adaptive query embedding
set, and a trajectory distribution map of the previous frame as inputs. The current frame
is first fed to a weight shared network which is the same as the network used to extract
feature embedding of the target category. Because it is mentioned in [11] that ResNet-34 [28]
has fewer parameters than ResNet-50 [28] but achieves better results, we decide to utilize
ResNet-34 as our weight shared network. Afterward, three feature maps are generated by
top-down connecting three extracted layers from the backbone ResNet-34. Moreover, we
introduce self-attention after each feature map to encode the relationship between different
objects and the relationship between foreground and background. The resulting feature
maps P1, P2, and P3 constitute a feature pyramid network (FPN) [29] so that TdmTracker
can detect objects from three different scales.

Figure 1. Network architecture of TdmTracker. After the current frame is input to the network, an FPN
is obtained first. Given the optimized class queries, track queries in adaptive query embedding set,
through query-key attention mechanism, a classification result for the objects corresponding to each
query is obtained. On the other hand, trajectory distribution map of previous frame is input to the
network for the branch of predicting trajectory distribution map of current frame, which guides
position prediction for each tracked object and produces modified identification vector. This modified
identification vector in turn guides the post-processing process of the prediction bounding boxes.

Through the branches of classification and regression bounding boxes, Ct ∈ RH×W×N

and Rt ∈ RH×W×4 are obtained, respectively. N is the maximum number of objects
allowed to be detected, which equals the total number of queries in the adaptive query
embedding set. As our model is designed to extract the feature maps according to the
general rules of foreground objects, a classification CH×W×1 distinguishing pixels between
foreground and background is first obtained, and then it is repeated on the channel N
times to form Ct . Rt ∈ RH×W×4 represents the regression bounding boxes (offsets of
left, top, right, and bottom) of foreground objects. Afterward, we utilize the adaptive
query embedding set composed of optimized class queries and track queries obtained from



Electronics 2022, 11, 1010 6 of 17

the detection result of the previous frame to determine whether the regression bounding
boxes belong to new-coming objects or tracked objects. To be specific, the similarity
between each query embedding in the adaptive query embedding set and the feature
map of the current frame is calculated by depth-wise cross correlation to generate an
attention feature map. A matching score map is obtained from the attention feature map
by referring to the results of the regression bounding boxes. The matching score map
indicates the probability of each pixel in the regression bounding boxes belonging to the
object corresponding to each query by calculating the average value of pixel similarity in
the regression bounding box. Afterward, this matching score map performs element-wise
product operation with the prior classification Ct. Here, we obtain a corrected classification
result for the objects corresponding to the adaptive query embedding set. For another
branch predicting trajectory distribution map, after deconvolution of each feature layer of
FPN, the deconvolutional feature layers are combined with the trajectory distribution map
obtained from the previous frame through channel-wise concatenation. This combined
feature map is then fed to a prediction head which consists of several convolutional layers
to generate the predicted trajectory distribution map of the current frame. This predicted
trajectory distribution map is used to guide the model to predict the position state of the
target objects. Specifically, the corrected classification result for the objects corresponding
to the adaptive query embedding set is weighted by the motion information from the
deconvolutional predicted trajectory distribution map; here, we call the result modified
identification vector. This modified identification vector finally returns to guide the filtering
of regression bounding boxes and identify these bounding boxes according to the channel
index.

The tracking pipeline is illustrated in Figure 2. Except that the detection of the first
frame in video sequence uses the manually initialized trajectory distribution map and the
class queries obtained by iterative optimization, the detection of other frames take the
trajectory distribution map and adaptive query embedding set obtained according to the
detection results of the previous frame as input.

Figure 2. Tracking pipeline. The result of the previous frame is used to obtain the trajectory distribu-
tion map and track queries, which are inputs for current frame.

3.2. Model Details
3.2.1. Optimized Class Query

Inspired by the method of obtaining the optimal feature representation of support
samples in the Siamese network of few-shot learning, we adopt iterative optimization to
obtain the feature embedding of target categories. In order to generate a feature embedding
which can represent the target class in multiple scales, we select several images for each
category and input them into a weight shared network ResNet-34 which is the same as the
backbone of TdmTracker to extract features.

The process of obtaining the optimized class query is shown in Figure 3. Image sample
is first input to the ResNet-34, and three feature maps of different scales are extracted
respectively. We introduce self-attention to encode the relationship between different
objects and the relationship between foreground and background. Afterward, a global
feature map with high-resolution and high-semantic features is generated by deconvolution
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and element-wise product. Precise RoI pooling (PrRoI Pooling) [30] is adopted to extract
RoI features from this global feature map. These feature maps are then channel-wise
concatenated and the initial class query embedding is obtained by taking the average values
over channels. In order to better distinguish target category objects from the background,
we utilize 1× 1 convoluted global feature map G for iterative optimization.

Figure 3. Generation of optimized class query. The combined feature map of whole image is used to
extract the initial target model and iteratively optimize the query embedding.

Here are details. Suppose we express the value of position (h, w) of channel c in the
feature map of the ith labeled bounding boxes as Oi

h,w,c ∈ tS×S×C and the number of labeled
bounding boxes as N, then the initial class query embedding Init is defined as

Inith,w,c =
1
N

N

∑
i=1

Oi
h,w,c (1)

Next, a cross-correlation map Cor can be calculated as

Corh,w,1 =
1
C ∑

i,j,c
Initi,j,c · Gh+i−1,w+j−1,c, i, j ∈ {1, . . . , S} (2)

where the initial class query embedding Init serves as a kernel to compute depth-wise
cross-correlation with the global feature map G. Furthermore, we introduce an annotation
map T to compare with the cross-correlation map Cor and iteratively optimize the class
query embedding by reducing the deviation between T and Cor. The annotation map is
defined according to the spatial distance between the pixel and the center of the labeled
bounding box. In detail, for a labeled bounding box (x̄, ȳ, l, w) with center location (x̄, ȳ)
and length and width (l, w), the value of a pixel (x, y) within this bounding box can be
formulated by Gaussian distribution:

Tx,y,1 =
2

lwπ
exp{−2[

(x− x̄)2

l2 +
(y− ȳ)2

w2 ]}+ v (3)

where v is used to compensate the value at bounding box center to 1. Finally, we gain the
optimal class query by iteratively reducing the deviation between the cross-correlation map
Cor and the annotation map T.

3.2.2. Adaptive Query Embedding Set and Attention Feature Map

In order to update query embeddings for online tracking, we propose an adaptive
query embedding set, which contains class query embeddings and adaptive track query
embeddings. Our approach is to first initialize N query embeddings with all elements of
0 in a query set. When the nth object is detected for the first time, a uniform size feature
embedding will be obtained according to the predicted bounding box of this object, used as
a track query, and update the nth element of adaptive query embedding set. However, if the
detected object is an existing tracking object, the corresponding track query is updated.
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Class queries are listed behind track queries to detect new-coming objects of the target
category. In this way, the index of query embedding in the collection represents the
identification of the corresponding tracked object. The adaptive query embedding set
obtained from the current frame is used for the query-key attention within detection of the
next frame.

We utilize attention feature map to implement query-key attention mechanism. Sup-
pose we denote the query embedding of the nth tracked object as Xn ∈ tS×S×C and the
feature map of current frame T as Y ∈ tH×W×C, the attention feature map A can be
formulated as

Ah,w,n =
1
C

S

∑
i,j

C

∑
c

Xn
i,j,c ·Yh− S−1

2 +i,w− S−1
2 +j,c (4)

where each channel of the attention feature map A corresponds to a certain tracked object
according to the query.

3.2.3. Trajectory Distribution Map

In this work, we propose a trajectory distribution map for motion prediction in order
to implement tracking-conditioned detection. Unlike CenterNet [12] using predicted center
offset between previous frame and current frame, our trajectory distribution map encodes
all the position information from history before the current frame. Our model takes the
current frame I(t) ∈ RH×W×3, the previous frame I(t−1) ∈ RH×W×3, and a trajectory

distribution map Td(t−1) ∈ [0, 1]
H
R×

W
R ×N as inputs. We initialize the trajectory distribution

map as an abbreviated matrix map with a down-sample factor R = 4 and N channels whose
elements are 1, N channels represent N trajectories for N predefined target (N is greater
than the number of real targets). The element of each position of all channels is initialized
to 1, which means that each target to be tracked may appear at each position of the image.
Afterward, each detection result will be updated to the next input trajectory distribution
map. The principle of updating the trajectory distribution map is that when a new-coming
object is detected in this frame, a sequential channel of the trajectory distribution map is
assigned to it, and after setting all the element values of the channel to 0, the element values
of this channel are calculated by a multi-dimensional Gaussian distribution of which the
peak value is 1 and the standard deviation is determined by the size of the bounding box
of this object. If the tracking target with existing trajectory is detected, the value is updated
on the corresponding channel to make the distribution value near the detection position
of the current frame greater than that of the previous detection position. To be specific,
suppose we have m existing trajectories, and now an object identified as index n is detected
in the current frame I(t), the channel of number n in the trajectory distribution map can be
expressed as

T̃d
(t)
x,y,n =

{
2

abπ exp{−2[ (4x−x̄)2

a2 + (4y−ȳ)2

b2 ]} , i f n > m

max( t−1
t T̃d

(t−1)
x,y,n , 2

abπ exp{−2[ (4x−x̄)2

a2 + (4y−ȳ)2

b2 ]}) , i f n ≤ m
(5)

where (4x, 4y) is the corresponding coordinate on the original image and (x̄, ȳ) is the center
of the detected object, a and b are the length and width of bounding box, respectively. Since
the probability value of each pixel of the trajectory distribution map obtained in this way
is less than 1 by several orders of magnitude, in order to more intuitively represent the
probability, we enlarge the obtained value in equal proportion v as follows, so that the
largest probability value is 1.

Td(t)x,y,n = v× T̃d
(t)
x,y,n, v =

1

max(T̃d
(t)
n )

(6)

We multiply the trajectory distribution of the previous frame Td(t−1) by t−1
t to represent

the effect of time sequence. In this way, the closer the previous frame to the current frame,
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the greater the impact on position distribution prediction. Considering that the tracker
objects may leave the frame or be occluded and reappear, we decide the update strategy of
the trajectory distribution map when the tracked object is not detected in the current frame
as follows.

Td(t)x,y,n =
t− 1

t
Td(t−1)

x,y,n , i f tracked object n is not detected (7)

We found that our trajectory distribution map cooperates with the adaptive query set
to implicitly handle short term occlusion but assigns a new identity to an object leaving the
frame or being occluded for a long period. Here is an example of trajectory distribution
map (see Figure 4).

Figure 4. An example of trajectory distribution map. The brighter the position, the greater the
probability of object distribution.

3.2.4. Matching Score Map

Referring to the practice in [19], we adopt a matching score map to transform the
classification of foreground and background pixels into the classification of target and
non-target category pixels. To be specific, for the feature map with the stride = s of FPN,
we denote a regression bounding box of a pixel (x, y) as B∗ = (l∗, t∗, r∗, b∗). l∗, t∗, r∗, and
b∗ are the distance from the pixel (x, y) to the four sides of the regression bounding box [31].
Therefore, the coordinates of the upper left corner (ulx, uly) and lower right corner (lrx, lry)
of the regression bounding box on the attention feature map A can be calculated as

ulx =
xs+ s

2−l∗

s , uly =
ys+ s

2−t∗

s ,

lrx =
xs+ s

2+r∗

s , lry =
ys+ s

2+b∗

s .
(8)

Additionally, our matching score map Mat is defined as

Matx,y,n =
1

Nb

lrx

∑
i=ulx

lry

∑
j=uly

Ai,j,n (9)

where Nb equals (lrx − ulx)× (lry − uly), and the index of channels on the matching score
map corresponds to the index of different query embeddings.
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4. Training TdmTracker
4.1. Dataset

FSOD. FSOD [15] is a highly diverse few-shot object detection dataset. As the key
of few-shot learning is the generalization ability when novel categories appear, and the
detection of tracked targets in our model is based on the detection results of the previous
frame, of which corresponding query embeddings can be regarded as the embeddings of
new categories, we use FSOD for training the branches of classification and bounding box
regression. In FSOD, there are 1000 categories with unambiguous category split for training
and testing, where 531 categories are from ImageNet dataset [32] and 469 from Open Image
dataset [33]. As proved in [15], this dataset with high diversity in categories is effective for
learning a general rule of objects and distinguishing objects of different categories.

MOT17. MOT17 [34] is a real-world benchmark for MOT, which contains 7 training
sequences and 7 test sequences. The videos were captured by stationary cameras mounted
in high-density scenes with heavy occlusion. Only pedestrians are annotated and evaluated.
MOT17 is the video sequence of high frame rate, of which framerate is 14–30 FPS.

4.2. Training Strategy and Training Loss

Since the branch of trajectory distribution map prediction in our model is only used to
adjust the results of classification and bounding box regression prediction branches based
on the trajectory information, and will not affect the training and inference of classification
and regression prediction branches, we divide the classification and regression prediction
branches and the branch of predicting trajectory distribution map into two steps for training.
When we have well-trained the branch of classification and regression, we can train the
branch of the predicting trajectory distribution map.

We leverage the two-way contrastive training strategy and the triplet loss of [15] to
train the branch of classification and regression on FSOD so that our model can identify
objects corresponding to the same query embedding from objects corresponding to different
query embeddings. To be specific, we randomly choose some support images with objects of
the same category as the target category in the input image Ic and some support images with
objects of other different categories to generate query embeddings Qc and Qn, construct
a training triplet (Ic, Qc, Qn). In the image Ic, only the objects of category are labeled
as positive, while other objects and background are labeled as negative. For this triplet,
our model should not only match the same category objects between (Ic, Qc) but also
distinguish objects with different classes between (Ic, Qn). Therefore, we design the training
loss function as follows at the beginning:

L(Ic, Qc, Qn) =λmcLmatch(Ic, Qc) + λmnLmatch(Ic, Qn)

+ λl1Ll1(Ic, Qc) + λiouLiou(Ic, Qc)
(10)

where Lmatch(Ic, Qc) is focal loss [35] for offsetting the impact of class imbalance and makes
the model pay more attention to hard examples by adjusting the weights, Lmatch(Ic, Qn)
is the binary cross-entropy loss, Ll1(Ic, Qc) and Liou(Ic, Qc) are L1 loss and generalized
IoU loss [36] between normalized center coordinates and height and width of predicted
boxes and ground truth box, respectively. λ is the weighting factor for components. This
multi-task loss function can be summarized as

Ltriplet = ∑
i

λiLi (11)

However, tuning these weights λi by hand is a difficult and expensive process, and the
resulting loss weights might be far from optimal. As suggested in [37], the optimal weight-
ing of each task is dependent on the magnitude of the task’s noise. Thus, we adopt the



Electronics 2022, 11, 1010 11 of 17

automatic learning scheme for loss weights in [37]. Therefore, our loss function can be
written as

Ltriplet = ∑
i

1
2
(

1
esi

Li + si) (12)

where si is the task-dependent uncertainty for each component loss and can be modeled as
learnable parameters as in [37].

After training the branch of classification and regression, we keep the well-trained
parameters when training the branch of predicting trajectory distribution map on MOT17.
Since each channel of our trajectory distribution map corresponds to different objects
corresponding to the query embeddings, we design the total loss as a weighted sum of the
loss of different channels. Because our purpose is to replace motion prediction with the
predicted trajectory distribution map, we pay more attention to the frequently detected
targets. Based on the fact that the fewer the number of updates in the trajectory distribution
map, the greater the gap of the channel value between the previous trajectory distribution
map T− 1 and the predicted trajectory distribution map T, we assign large weighted value
for the loss of the channel with multiple updates and small weighted value for the loss
of the channel with less updates. Furthermore, for each channel, we argue that the closer
to the real position of the object, the greater the loss weight should be. Therefore, we
formulate the loss for each channel as

Ln = ∑
xy

Tdxyn(Tdxyn − T̂dxyn) (13)

where T̂dxyn is the predicted probability at position (x, y) of the channel n of the predicted
trajectory distribution map. Then, the total loss of the predicted trajectory distribution map
can be written as follows:

Ltotal = ∑
N

eUn

∑
N

eUn
Ln (14)

where N is the number of channels of the predicted trajectory distribution map and Un is
the number of updates of channel n, that is, the number of times an object with index n
is detected.

4.3. Post-Processing

Although our TdmTracker is implemented based on the object detection model, it is
obviously different from the conventional object detection model in post-processing. Since
only one corresponding tracking object can be found or no corresponding object can be
detected for a track query, while class queries are for detecting new-coming objects and can
detect multiple different objects in the current frame, we conduct different post-processing
strategies for the results obtained by track query and class query.

According to each channel of modified identification vector, we can obtain the prob-
ability of each regression bounding box belonging to the corresponding query. For each
track query, we only take the bounding box with the highest probability. However, if the
highest probability of a track query is lower than a predefined threshold Ttrack for track
queries, we believe that the track query does not detect the corresponding target. We also
consider the overlap of two tracked objects. In this case, the probability value obtained by
the overlapped tracked object on the pixels at the overlapping region will be much less than
that of the other object. If the bounding box of the highest probability of the two tracked
objects is the same one, it is considered that the bounding box belongs to the tracked object
with higher probability value. For another overlapped object with lower probability value,
the bounding box with the second highest probability value of pixels in the nearby 9× 9
area centered on the pixel is taken as the detection bounding box.

After obtaining the bounding boxes corresponding to the track queries, we perform
Soft-NMS on the remaining regression bounding boxes for all class queries together. To be
specific, for each bounding box, we take the highest value of the probability belonging
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to each class query as the probability that it belongs to a new-coming object. Since most
objects overlap a lot with other adjacent objects in images with densely arranged objects,
many correct detection results are filtered out by conventional NMS due to large IoUs. We
use Soft-NMS rather than conventional NMS to process the detection results. Soft-NMS
retains the correct results by reducing the lower confidence score instead of zeroing it when
there is an IoU above the predefined threshold Tiou. For example, if the IoU between a
bounding box bi and another bounding box bj is greater than Tiou, and bj has a higher
confidence score than bi, the probability score pi of bi will be recalculated according to the
following formulation:

pi =

{
pi, i f IoU(bi, bj) < Tiou,
pi(1− IoU(bi, bj)), i f IoU(bi, bj) ≥ Tiou.

(15)

Finally, we identify all bounding boxes with recalculated probabilities greater than a
predefined threshold Tobj as new-coming targets.

5. Experiments
5.1. Implementation Details and Evaluation Metrics

We implement our model based on a Pytorch framework. Our model is trained from
scratch with a computer running Ubuntu 18.04 LTS. Stochastic gradient descent (SGD) is
performed on Nvidia GeForce GTX 1060 with 8 GB GPU memory. The experiments utilize
CUDA v10.0, cuDNN v7.5.0 to accelerate computation. Considering that too many training
iterations may damage performance by making the model overfit, we take 50,000 iterations
to train the branches of classification and bounding box regression on dataset FSOD, where
the first 45,000 iterations are trained with learning rate 0.002 and, later, 5000 iterations are
trained with learning rate 0.0002. Afterward, the branch of predicting trajectory distribution
map is trained on MOT17 for 40 epochs. We use the momentum method to optimize SGD.
We train the model with an initial learning rate of 0.0002, momentum of 0.9, and weight
decay of 0.0005.

We adopt the standard metrics of MOT Benchmarks for evaluation, including Multiple
Object Tracking Accuracy (MOTA), ID F1 Score (IDF1), Mostly tracked targets (MT), Mostly
lost targets (ML), the number of False Positives (FP), the number of False Negatives (FN),
and the number of Identity Switch (IDs). In addition, we use Tracking Speed in Frames Per
Seconds (Hz) to measure the running speed of all methods.

5.2. Model Differences and Performance Comparison with Other MOT Methods on MOT17

Our proposed model TdmTracker is an end-to-end MOT method. We adopt anchor-
free one-stage network to form classification and regression branches. On this basis, the
adaptive query embedding set is introduced to realize attention mechanism for detecting
both new-coming and tracked targets. At the same time, we propose the trajectory distri-
bution map to introduce motion information of tracked objects, which is used to adjust
the probability of different tracked objects appearing at different positions in the current
frame. By adjusting the detection results by position probability, our model realizes the
re-identification of targets.

On the one hand, compared with the methods based on the tracking-by-detection
paradigm, such as SORT and DeepSORT, our model is more unified and lightweight, which
results in a faster running speed of our model. Most tracking-by-detection methods first
detect the targets through a detector, and then extract the features of different targets.
When extracting features, it is very time consuming to recalculate the feature map. On the
other hand, the extracted features are used to calculate the similarity of different object
features in consecutive frames and combined with motion state to realize data association.
Splitting the whole process into isolated subtasks may lead to local optima and much
computation cost. In contrast, as an anchor-free end-to-end model, our model directly
extracts the features of the whole picture, realizes feature matching through attention
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mechanism, and combines motion state by weighting the predicted trajectory distribution
map of the current frame. Through the identification of different tracking targets on
different channels, re-identification of targets is realized. It avoids recalculating features
and integrates object detection, feature extraction, and data association into a unified
lightweight model. On the other hand, compared with the well-known methods based on
the end-to-end paradigm, such as JDE, FairMOT, CenterTrack, CTracker, TransTrack, and
TrackFormer, our model makes use of the historical position of tracked targets to improve
the accuracy. JDE, FairMOT, and CenterTrack are half end-to-end models. They integrate
object detection and feature extraction to avoid feature recalculation, but they also need to
execute another matching algorithm to realize data association. CTracker, TransTrack, and
TrackFormer are implemented as end-to-end models. Among them, CTracker integrates
data association into an overall network through converting a data association problem to a
pair-wise object detection problem. TransTrack and TrackFormer introduce the transformer
architecture. Data association is integrated by introducing object features from the previous
frame as track queries into the query-key mechanism detection process of the current frame.
However, since these end-to-end models do not predict the motion state of targets and only
use IoU and feature similarity for re-identification, there are ID switches when positions of
targets in consecutive frames are too far away, such as blocking and high-speed motion of
the object. In contrast, our model TdmTracker introduces an adaptive query embedding
set to record features of all detected targets. The feature embeddings of targets will not be
deleted when the targets disappear briefly in the video but continue to search all existing
tracked targets. Because many targets inevitably have similar features, we utilize the
trajectory distribution map to introduce historical position information of tracked objects to
predict the position in the current frame, so as to improve the accuracy of position matching.
In this way, our model not only searches for the corresponding target in the current frame
near the position of the previous frame but also takes into account the motion of the target.
It can alleviate the ID switch problem caused by occlusion and high-speed movement of
objects to a certain extent.

In order to extensively evaluate our model TdmTracker, we compare it with other
state-of-the-art trackers, including DeepSORT, FairMOT, CTracker, CenterTrack, Track-
Former, and TransTrack. Table 1 lists the performance comparison of our proposed model
TdmTracker with other state-of-the-art MOT methods on MOT17. As the running speeds
of some of these methods are not reported, for fair comparison, we re-implemented these
methods on our experimental equipment and benchmark their running speeds.

Table 1. Performance comparison of our proposed model with other state-of-the-art MOT methods.
↓ means the smaller the better; ↑ means the larger the better. In each column, the best result is in
bold, and the second best is underlined.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓ Speed (Hz)↑
DeepSORT 60.3 61.2 31.5 20.3 36,111 185,301 2442 5.1
FairMOT 73.7 72.3 43.2 17.3 27,507 117,477 3303 6.1
CTracker 66.6 57.4 32.2 24.2 22,284 160,491 5529 9.0

CenterTrack 67.8 64.7 34.6 24.6 18,498 160,332 3039 5.2
TrackFormer 65.0 63.9 45.5 13.8 70,443 123,552 3528 8.7
TransTrack 74.5 63.9 46.8 11.3 28,323 112,137 3663 6.4

TdmTracker (ours) 70.2 65.5 43.1 15.4 30,367 115,986 3265 10.7

As Table 1 shows, our proposed TdmTracker gains competitive tracking accuracy
and, meanwhile, runs faster than other state-of-the-arts. Considering the overall MOT
metrics, our model achieves the second-best result at IDF1 and FN metrics, and it yields
70.2% MOTA, ranking third among all methods. In terms of tracking speed, we can clearly
observe that our model has the best efficiency, which achieves the fastest speed at 10.7 Hz,
outperforming other state-of-the-arts. In general, our proposed TdmTracker introduces the
attention mechanism to realize the comparative learning ability similar to that of few-shot
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learning and proposes the trajectory distribution map to predict the motion trajectory,
which results in a comparable accuracy. At the same time, it has the fastest running speed
due to our anchor-free end-to-end model architecture with a single frame input. Therefore,
our model achieves a good speed-accuracy trade-off. There are some examples of tracking
results produced by our proposed TdmTracker (see Figure 5).

(a) (b) (c)

Figure 5. Some examples of tracking results produced by our proposed TdmTracker. Some tracked
objects in image (a) are occluded in image (b), so that they cannot be detected, but when they reappear
in image (c), they are identified with the ID in image (a), which suggests our model can handle short
term occlusion.

5.3. Ablation Studies

In this section, we investigate the validity of different components in our proposed
TdmTracker, including trajectory distribution map, optimized class query, and self-attention.
Several controlled experiments on MOT17 datasets are conducted for the ablation study.
To be specific, for performance analysis, we compare the following models on the MOT17
dataset to prove the effectiveness of the components in TdmTracker:

1. Baseline. It only covers the classification branch and the bounding box regression
branch, without guidance from the trajectory distribution map. In addition, it does not
use self-attention to encode the relationship between pixel patches and the relationship
between queries to obtain more representative embedding, and we use static learned
object query instead of optimized class query.

2. Baseline + Tdm. Based on Baseline, it adds the branch of predicting trajectory distri-
bution map to adjust the final result.

3. Baseline + Tdm + Cq. It uses optimized class query instead of static learned object
query on the basis of model (2).

4. TdmTracker. It uses self-attention to encode the relationship between pixel patches
and the relationship between queries to obtain more representative embedding on the
basis of model (3). It is the complete version of our proposed model.

The results of these models are shown in Table 2. Obviously, our trajectory distribution
map, optimized class query, and introduced self-attention improve the tracking perfor-
mance.

Table 2. Ablation study on MOT17 dataset. ↓ means the smaller the better; ↑ means the larger the
better.

Model MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDs↓
Baseline 52.4 51.9 30.6 25.4 64,597 120,895 7351

Baseline + Tdm 61.8 59.6 36.9 19.3 32,262 135,603 4176
Baseline + Tdm + Cq 69.1 64.7 42.6 15.8 30,980 115,054 3317

TdmTracker 70.2 65.5 43.1 15.4 30,367 115,986 3265

Trajectory distribution map. By comparing Baseline and Baseline + Tdm, we find
that our proposed trajectory distribution map greatly improves MOT performance of our
model. It is because that trajectory distribution map encodes the position information
of tracked objects and the corresponding timing information so as to realize tracking
conditioned detection and association through predicted trajectory. MOTA increases from
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52.4 to 61.8 and IDF1 also increases from 51.9 to 59.6. The most significant improvement is
shown in IDs, which decrease from 7351 to 4176.

Optimized class query. By comparing Baseline + Tdm and Baseline + Tdm + Cq, it
can be found that optimized class query also plays a key role in our model. Since static
learned object query focuses on whether there are objects of different sizes in different
positions of the image, and is not sensitive to the category of objects, it is often confused
by some unwanted objects or complex backgrounds. In contrast, optimized class query is
obtained by offline training and can be distinguished from different categories of objects
and complex backgrounds. Optimized class query increases the MOTA of our model by 7.3
and the IDF1 by 5.1.

Self-attention. As mentioned in some recent MOT works based on transformer [14,16,18],
self-attention can help produce a good representation for feature by using the relationship
between different parts of itself. This is confirmed in our experiment by the comparison
between model Baseline + Tdm + Cq and TdmTracker. It can be observed that, except FN,
other MOT metrics have a small increase after the introduction of self-attention.

5.4. Comparison of Different Loss Functions for Training the Branches of Classification
and Regression

We first compare the discriminative ability of our model when using different loss
function to train the branches of classification and regression, e.g., cross entropy loss LCE
and our triplet loss Ltriplet. For fair comparison, the models trained with both loss functions
use FSOD dataset for training and are tested on MOT17 to gain results. Three aspects of
performance are evaluated. Average precision (AP) is computed to evaluate the detection
accuracy, and MOTA and IDs are employed to evaluate the tracking performance of the
whole MOT system. Table 3 presents the results obtained from the two loss functions with
different loss weighting strategies. According to Table 3, two observations can be made.

Table 3. Comparing different losses with different loss weighting strategies. App.Opt means using a
set of approximate optimal loss weights obtained by cross validation and uncertainty means using
task-dependent uncertainty to obtain loss weights as described in Section 4.2. ↓means the smaller
the better; ↑means the larger the better. In each column, the best result is in bold.

Loss Function Weighting Strategy
Detection MOT

AP↑ MOTA↑ IDs↓
LCE App.Opt 78.4 60.7 4266
LCE Uncertainty 79.5 62.2 4037

Ltriplet App.Opt 83.6 68.3 3603
Ltriplet Uncertainty 84.8 70.2 3265

First, we can clearly find that no matter which weighting strategy is used, the result
of using Ltriplet for training is better than that of using LCE for training. We analyze that
this is because using Ltriplet can make better use of the advantages of the FSOD dataset,
that is, there are many categories and less samples in each category. Moreover, we believe
that using Ltriplet for training makes the model more inclined to remember the method of
comparing different categories, while using LCE for training makes the model more inclined
to learn the representation of the category. Therefore, when a new category appears or the
appearance of an object changes greatly, the model trained with Ltriplet is more adaptive.

Second, it can be seen that correctly weighting loss terms is of paramount importance
for multi-task learning. For each loss function, using task-dependent uncertainty to obtain
loss weights is better than using a set of approximate optimal loss weights obtained by
cross validation. This is because finding the approximate optimal loss weights by cross
validation is a difficult and expensive process, and the final result is often far from optimal.
However, as far as using task-dependent uncertainty, optimizing the loss weights using a
homoscedastic noise term allows for the weights to be dynamic during training and the
uncertainty term decreases during training which improves the optimization process [37].
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6. Conclusions

The research on MOT detection is of great significance. In this work, we propose a
novel anchor-free attention mechanism-based end-to-end MOT model TdmTracker, which
introduces the trajectory distribution map to guide position prediction and uses the adap-
tive query embedding set and query-key attention mechanism to detect tracked targets in
the current frame. Our work presents a novel unified and lightweight architecture of the
MOT model. Moreover, we utilize optimized class query instead of static learned object
query to detect new-coming objects, which realizes the specialization of the tracking target
category in the tracking process. Furthermore, the model uses a comparative learning mode
similar to that in few-shot learning so that when there are novel category targets to track,
only the optimized class query of the novel category needs to be trained without retrain-
ing the model. The experimental result on the MOT17 dataset shows that our proposed
TdmTracker has comparable tracking accuracy with other state-of-the-art MOT methods
and achieves the highest tracking running speed. Such good time-accuracy trade-off of
our model makes it possible to be applied on applications with real-time requirements.
In addition, our model uses the features extracted from the deep network rather than
handcrafted features; thus, it has good generality in application objects. However, our
model has a limitation on the number of tracking targets in the application scenario. Unlike
other state-of-the-art models, which delete features for targets that have not appeared for
a period of time, when the number of targets to be tracked is large, the adaptive query
embedding set of our model needs to set a large number of channels to store the features of
each target. At the same time, the trajectory distribution map also needs the same number
of channels to predict the motion state of each tracked target. A lot of calculation will slow
down the model. Moreover, when dealing with the cases in which most targets in the video
only appear for a short time, it will obviously waste much computation cost. Therefore,
our model expects the duration of tracking targets to account for most of the total tracking
time, and the number of possible tracking targets is small. In the future, we believe that our
model can be used in the research of UAV tracking and the tracking of suspicious people in
some important places.
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