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Abstract: Image conversion of byte-level data, or binary visualisation, is a relevant approach to secu-
rity applications interested in malicious activity detection. However, in practice, binary visualisation
has always been seen to have great limitations when dealing with large volumes of data, and would
be a reluctant candidate as the core building block of an intrusion detection system (IDS). This is
due to the requirements of computational time when processing the flow of byte data into image
format. Machine intelligence solutions based on colour tone variations that are intended for pattern
recognition would overtax the process. In this paper, we aim to solve this issue by proposing a fast
binary visualisation method that uses Fuzzy Set theory and the H-indexing space filling curve. Our
model can assign different colour tones on a byte, allowing it to be influenced by neighbouring byte
values while preserving optimal locality indexing. With this work, we wish to establish the first
steps in pursuit of a signature-free IDS. For our experiment, we used 5000 malicious and benign
files of different sizes. Our methodology was tested on various platforms, including GRNET’s High-
Performance Computing services. Further improvements in computation time allowed larger files to
convert in roughly 0.5 s on a desktop environment. Its performance was also compared with existing
machine learning-based detection applications that used traditional binary visualisation. Despite
lack of optimal tuning, SAGMAD was able to achieve 91.94% accuracy, 90.63% precision, 92.7% recall,
and an F-score of 91.61% on average when tested within previous binary visualisation applications
and following their parameterisation scheme. The results exceeded malware file-based experiments
and were similar to network intrusion applications. Overall, the results demonstrated here prove our
method to be a promising mechanism for a fast AI-based signature-agnostic IDS.

Keywords: intrusion detection system; binary visualisation; fuzzy logic; space-filling curves; pattern
detection; malware detection; machine learning; security

1. Introduction

Today, there exists a variety of tools to protect computer systems and users from
malicious activity. Intrusion detection systems (IDSs) are used as a protective mechanism
by applying filtering techniques to distinguish between malicious and benign patterns.
Current signature-based IDSs often fail to provide protection, as suspicious patterns need
to be compared against a knowledge database that requires an ongoing update on the
latest threats, for which no signature is available [1,2]. Due to the increasing sophistication
of emerging cyber threats, researchers are now looking into signature-free IDSs for more
promising results for the problem of zero-day threats [3]. Nevertheless, constructing a
signature-free IDS presents a challenging problem, because mislabeled malicious activity
could lead to an increase in false positives [4–6]. Consequently, there is a clear need to
expand IDS performance to capture malicious patterns in an intelligent manner.
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First, to tackle the problem of detecting unknown threats, we believe that binary
visualisation can greatly assist in the construction of a signature-agnostic system [7]. Binary
visualisation consists of converting a file into a pixelated image; this is achieved by taking
the binary form of the file and converting it into a stream of pixel data before assembling it
into a 2D structure [8]. In this way, suspicious code can become visible by forming unusual
patterns of shape and colour [9]. Next, to achieve intelligent pattern detection of potentially
malicious areas, we introduce the concept of colour value adaptation of the pixels based on
fuzzy computations.

However, image conversion constitutes a computationally expensive process and
additional costs based on machine intelligence methods will excessively increase running
time and CPU [10,11]. As our research revolves around the construction of a system that
analyses malware in real-time, it is important to address these limitations by concentrating
our efforts on the optimisation of image conversion and effective pattern design processes.

To target these challenges, our paper presents the following contributions:

• We introduce SAGMAD, a binary visualisation tool that converts files into 2D images,
based on the concept of capturing binary character similarities through Fuzzy Set
theory. Our method was heavily based on binvis.io [12], a web application tool for
security analysts which helps visualise binary file structures using the Hilbert curve
clustering method.

• We employ an optimal clustering algorithm which has numerous advantages in terms
of speed and byte representation intelligence. We also assess this method by measuring
running time performance and comparing it with previous methods.

Ultimately, with SAGMAD, which can also serve as a potential tool for forensic and
reverse engineering analysts, we aim to build a foundation algorithm that can serve as
a real-time filtering method of a signature-free IDS in the future, and in this paper, we
present the first step.

The remainder of this paper is divided into five sections. In Section 2, we provide an
overview of the existing work on the field of binary visualisation, along with the evolution
of binary visualisation tools. In Section 3, we present a binary visualisation methodology
that uses an optimal space-filling curve and Fuzzy Set theory. In Section 4, we combine the
results from the individual steps of our algorithm to evaluate its performance. In Section 5,
we discuss our findings, along with their limitations and advantages. Finally, Section 6
concludes this paper and Section 7 outlines future work.

2. Related Work
2.1. The VizSec Domain, Works & Tools

In general, data visualisation plays an important role for successful detection in se-
curity operations. According to [8], visualisation for computer security (VizSec) is about
“putting robust information visualization tools into the hands of humans to take advantage
of the power of the human perceptual and cognitive processes in solving computer security
problems”. VizSec methods can be distinguished into two broad categories: techniques for
communicating value, and techniques for finding anomalies [13]. Our proposed methodol-
ogy, SAGMAD, uses binvis.io, a 2D security tool that falls into the second category.

Recent academic work includes multiple malware detection methodologies that lever-
age visualisation techniques. For example, in [14], researchers concentrated their efforts
on PE files using a navigational Hex editor and the Markov Byte Plot, a method that
builds two 256 × 256 RGB representations of the file in order to detect packed portions.
EventPad [15] is another promising tool which analyses PCAP files visually using auto-
mated rules. EventPad dissects network packets and represents them as series of blocks
allowing for aggregation and selection in an effective and user-friendly GUI. Researchers
in [16] proposed a signature-free framework, similar to SAGMAD in terms of image use
and successful detection through supervised learning. More specifically, they focused on
malware classification by building images of feature-based similarity matrices which are
then used as input to several ML models for detection. More VizSec techniques and tools
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are reviewed by [17–19]. For a brief listing of 2D visualisation tools that are concentrated in
network security only, the reader can consult the work of [20].

Recognising the effectiveness of 2D data visualisation methods in cyber security,
Ref. [21] argues that newer technologies based on 3D representation of data, such as Virtual
Reality, can drastically benefit Cyber Situational Awareness. Surprisingly, in their paper,
Ref. [22] presented a 3D printed object called the Cr@ck3n, which acts as an alert in the case
of a cyber attack communicating though light, sound, colour, and information scrolling.

2.2. Work & Tools Based on Binary Visualisation

Computer vision techniques focusing on byte-level analysis first made an appearance
more than ten years ago, and several tools were proposed for successful structure analysis
ever since. In his book in 2007, Ref. [23] was the first to introduce the concept of converting
documents and images to graphical structures based on their ASCII characters. Later in
2008, joined by other researchers in [24], he demonstrated the “byte view” method as an
extension to the existing research on hex editors to facilitate reverse engineering of files.
They later extended their research on mapping byte plots and analysing different fragment
types in [25,26].

Around the same time, several visualisation tools started to emerge from this re-
search to help security professionals locate identifiable image patterns in files, such as
CantorDust [27], Biteye & Vix [28], and Binary Analysis Tool [29]. For many of these tools,
including the original “BinVis” tool by [24,30], development has now stopped or have
reported bugs in their code. For others, development has been continued in different forms,
like the recently presented CantorDust, which was reintroduced as a Ghidra plugin [31],
or Binwalk Pro, a cloud version of the original Binwalk tool [32], which was recently ac-
quired by Microsoft [33]. Experimentation on binary visualisation by Aldo Cortesi [34]
started in 2011 and served as a precursor for binvis.io [12], which later became the main
inspiration for Binspect [35], a Mac-based version of the application.

Binglide [36] is another interesting tool for reverse engineering that started as a
master’s thesis drawing inspiration from previous tools. His creator later contributed to
Veles [37], a mature version of it, published in 2016 for binary visualisation and analysis;
Veles examines 2-grams and 3-grams of bytes and maps them into the 3D space to analyse
their frequency and spatial distribution. Another tool is PortEx [38], which focuses on
portable executables only.

2.3. Research Related to binvis.io

binvis.io was officially introduced in 2015 as a browser-based tool for visualising
binary data that can also export images or particular segments for further analysis. How-
ever, the original code can also be downloaded from Github as a 2.7 Python package,
called scurve [39]. scurve offers multiple visualisation options for investigating structural
features of bytes, including different space-filling curves, as well as entropy visualisation
serving as a measure of heterogeneity.

Even though the visual representation of computer files has been introduced as an
effective countermeasure in malware analysis, according to our best knowledge there has
been a limited number of studies based on the binvis.io tool.

Researchers in [40] used binvis.io to produce a dataset of images out of malicious
and benign files, and train a self-organising neural network (SOINN) to evaluate it as
a prediction mechanism. To achieve this, they extracted the prominent features of the
generated images and used them as an input vector into the SOINN. The malicious files
contained known malware classes and the algorithm achieved an overall detection rate
of 74% when trained with optimal parameters. Another study published by [41] paired
binvis.io image generation with several machine learning models to perform classification
of known malware families. The model accuracy achieved a score of 91% under the k-
nearest neighbours (KNN) algorithm and outperformed the work published in 2011 by [42]
when tested at previously unknown files. We should note that even though [42] did not
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use binvis.io, they were the first to observe feature similarities of malware families in 2D
grey scale images and were able to perform malware classification with 98% accuracy.

Malware Squid, proposed by [43], was a mechanism that used binary visualisation
to propose a malware analysis of IoT network traffic. In this study, the authors presented
a systematic approach to analyse real-time traffic data consisting of normal and malware
traffic. Pcap file chunks were then collected and converted to 2D images that were processed
by the MobileNet Convolutional Neural Network (CNN); the model was able to perform
classification achieving an accuracy of 91%. An extension of the works of [40,43] was
presented in [44], where the authors focused on training the Residual Neural Network
(RNN) algorithm for a large number of malicious and legitimate pcap files. They achieved
an overall accuracy rate of 94.5%.

2.4. Current Works with Image Conversion and Malware Detection

Current works that combine some form of pixelated image representation with ma-
chine learning models seem to successfully perform malware detection in a plethora of
environments. Table 1 presents a summary of the most recent work in this domain. Accord-
ing to the summary, it is safe to say that the rise of deep learning (DL) and specifically visual
imagery analysis networks have had a positive impact on image based malware detection
and its performance rates. For example, Refs. [45,46], who both used colour, experimented
with a large number of state-of-the-art DL models on Android and IoT datasets. Another
factor for this tendency is the existence of several high quality datasets, such as the Malimg
and the Leopard datasets, which provide a variety of file types for training and testing.
Under this scope, it is worth mentioning that [47] curated a new dataset for malware
detection, the Dumpware10 dataset, that resulted from their research.

We observe that all scientific work falls under two major goals: malware detection
(distinction between malicious/benign files) and malware family classification; except
for [48] who also performs family variant determination. This is independent from any
type of environment, in other words, researchers are interested in detecting malicious
activity on PCs, IoT, and mobile technology (Android and iOS) too. Ref. [49]’s work, which
focused on IoT network traffic, involved the performance of dynamic analysis and image
conversion on nested cloud environments and achieved excellent accuracy metrics for both
known and new types of attacks.

In terms of data balance, there were works such as [50] where the numbers of samples
were highly imbalanced. For others like [51], it was noted that despite the initial dataset
being balanced, their approach was effective for imbalanced datasets too.

Following the recent rise in Generative adversarial networks (GANs) in image analysis,
Ref. [52] used CycleGAN in order to increase the number of training examples, along with a
diverse range of malware datasets that helped them achieve an accuracy of 99.87%. In [53],
the authors leveraged the use of GANs to produce synthetic images of malware in order to
make their method robust to malicious deformations.

Researchers have also started to take into account the use of colour, contrary to older
methods that focused on gray scale representation of inputs. This was an effort to make
the most of the RGB colour model, as colour images could carry more information in a
relatively inexpensive way. For example, Ref. [54], who later extended their work in [55],
had initially used grayscale images, and noticed that coloured images performed better in
terms of accuracy, detection of obfuscated code, malware variant detection, and running
times. Ref. [56] also experimented with gray/colour schemes and byte layout, such as the
Hilbert space filling curve, with good results. Nevertheless, there exists no general effort
from the research community towards experimentation with new colouring schemes or
intelligent mapping of the byte sequence.
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Older tools include a study by [57], who proposed a Java-based tool that used byte
map, digraph, trigraph and histogram plot visualisations to label common file types.
However, their experiment demonstrated several weaknesses and proved to be unreliable
for prediction. For an extended review of various visualisation methods applied in malware
analytics that were published before 2015, the reader is requested to consult the work of [58].
For a study on the effectiveness of recent image-based frameworks, the reader is requested
to consult the work of [59].

Table 1. Summary of current works on general image-based malware detection.

Related
Work Year Environment Goal 1 Image

Novelty
Colour
Scheme Dataset Distribution Models Best Accuracy

[48] 2020 Mobile (1), (2), (3) No Gray Android apps,
Apple apps balanced

J48, RF, RT ,
BN, Ada

Boost, DL

91.8% for
Android, 96.4%

for iOS

[46] 2020 IIoT (1), (2) No Colour Malimg, Leopard imbalanced DL (CNN) 98.47%

[49] 2020 IoT (1) No Colour IoT network traffic imbalanced DL (CNN) 99.28%

[54] 2020 PC (2) No Gray Malimg imbalanced DL (CNN) 99%

[60] 2020 IoT (1) No Gray Android apps balanced DL (CNN) 95.8%

[55] 2020 PC (2) No Colour Malimg,
IoT-Android imbalanced DL (CNN) 98.82%

[56] 2020 PC (1) Yes Colour VirusShare,
Windows 10 balanced XGBoost,

DL (CNN) 93.01%

[61] 2020 PC (2) No Gray Malimg
balanced

and imbal-
anced

SVM, DT,
KNN, DT,
DL (CNN),

etc.

99.3%

[62] 2021 PC (1), (2) No Colour Win-API call
sequences imbalanced DL (CNN) 98%

[63] 2021 PC (1) No Colour Virussign,
Windows 7 imbalanced DL (CNN) 92.5%

[51] 2021 PC (1), (2) No Gray

Malimg,
Microsoft’s BIG
2015, MaleVis,

Malicia, Windows

balanced DL (CNN) 98.46%

[64] 2021 Android (1), (2) Yes Colour Android apps imbalanced DL (CNN) 97%

[50] 2021 PC (1), (2) No Gray Malimg imbalanced DL (CNN) 97.68%

[47] 2021 PC (1), (2) No Gray Dumpware10 imbalanced

J48, RBF,
SMO, RF,
XGBoost,

SVM

96.39%

[45] 2022 Android (1) Yes Colour Leopard, Android
apps imbalanced DL (CNN),

SVM, RF 95.7%

[52] 2022 Mobile, PC (1), (2) No Colour

Malimg,
VirusShare,
VirusTotal,
Contagio

imbalanced DL (CNN,
RNN) 99.87%

[53] 2022 PC (2) No Colour Microsoft’s BIG
2015 imbalanced DL (CNN,

RNN) 97.47%

1 (1) Detect maliciousness, (2) Malware family classification, (3) Family variant determination.

2.5. Literature Review Conclusions and Motivation for This Work

Binary visualisation is not a new tool in the arsenal of security analysts. Nevertheless,
since its conceptualisation in 2007 and its first use for malware family classification in 2011,
there has been limited exploration of this method in terms of optimal image construction
such as colouring schemes and information layout. Meanwhile, deep learning and image
processing technologies have grown rapidly and have greatly improved malicious detection
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rates during the last few years. In our paper, we propose a novel method that leverages the
binvis.io algorithm and fuzzy sets to assist pattern recognition before the images enter an
ML/DL model. Under this scope, we believe that binary visualisation can be successfully
employed to address issues in the development of signature-free IDSs, and in the next
section, we will present our framework.

3. Materials and Methods
3.1. Building a Signature-Agnostic IDS Based on Binary Visualisation & Fuzzy Sets

In this section, we describe the construction of SAGMAD, a binary visualisation
methodology based on the pre-existing binvis.io application. In the past, visualisation
methods were used to reveal malicious activity by ensuring that all information is being
captured (no area should be left untreated as per method) and that accurate detection
would be the result of robust computational techniques (such as optimal representation
of data in space or successful statistical analysis of treated data). However, we argue that
there is much information to be derived from relations between data, since each element
can simultaneously reveal trends for its environment too (information representation does
not have to be one dimensional). Given that colour coding schemes are heavily underused
in security applications, SAGMAD leverages an existing colour scheme to optimise its
capabilities for more effective pattern recognition.

In this paper, we propose SAGMAD as the core element of a signature-free IDS,
the development of which will come as a future extension to our current work. The IDS’s
overall goal will be the detection of malicious activity in real-time after leveraging artificial
intelligence algorithms. More specifically, a data set of files, labelled as malicious or
benign, will be converted into binary images by our proposed methodology, the SAGMAD
prototype, the full framework of which is explained in the following sections. Next, the 2D
images will be provided into artificial intelligence algorithms for training and testing.
The classified patterns will then be stored in a training database to serve the purpose of
detecting previously unknown files in real-time. A visual depiction of SAGMAD as the
building block of the IDS engine is shown in Figure 1.

To successfully construct SAGMAD, we first describe the individual parts that make
it, starting from binvis.io and fuzzy set theory. We then describe SAGMAD’s colour
computation and assignment method, before focusing on the clustering algorithm that
optimally preserves the locality of the data as a sequence. We also provide details of the
programming language and a description of the performance computing environments.
Finally, to compare detection performance between SAGMAD and previous BinVis-based
experiments, we provide a detailed analysis of the methodologies given in Section 2.3.
To complete our proposed methodology, we evaluate the results by employing the most
commonly used machine learning metrics, a full description of which is given in the last
part of this section.

Figure 1. The architecture of our signature-free IDS engine.
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3.2. BinVis

binvis.io is a browser-based tool that converts files into 2D binary images. The binvis.io
algorithm (“BinVis” from now on) sees files at the byte level and assigns a different colour
to each ASCII character, according to its class. Three main classes divide the ASCII table,
plus two special case characters reserved for the analysis, making a total of five groups to
compare against each byte of the file.

The colours as per class are the following:

• blue for printable characters
• green for control characters
• red for extended characters
• black for the null character, or 0x00
• white for the non-breaking space, or 0xFF

BinVis then uses the Hilbert space-filling curve as its main clustering algorithm for the
coloured byte string and converts it into a 2D image. The concept of space-filling curves
was explored in the nineteenth century when mathematicians were interested in finding
a mapping of a 1D line into the 2D unit space in a way that traversed the full range of
it. The first space-filling curve was discovered and published by Italian mathematician
Giuseppe Peano in 1890 in [65]. The Hilbert curve, a variation of the Peano curves, was
published a year later in [66]. In general, the Hilbert curve is preferred over other space-
filling curves in various applications because of its locality-preserving behaviour [67].

For our research and the need to have colours that can exhibit a wide range of shades,
we replaced the white and black colour values of the original algorithm with yellow and
grey values, respectively.

3.3. Fuzzy Sets and Fuzzy Inference Systems

Fuzzy Set theory was proposed by Lotfi Zadeh in 1965 as an extension to the classical
set theory, in which elements are described by fuzzy numbers. Fuzzy logic was introduced
to approach a more realistic way of human thinking in a way that could provide tools
for dealing with vagueness and imprecision of data in decision making. In fuzzy logic,
knowledge representation is “interpreted as a collection of elastic or, equivalently fuzzy
constraint on a collection of variables [68]”. Consequently, “inference is viewed as a process
of propagation of elastic constraints [68]”.

In fuzzy set theory, elements can belong to more than one fuzzy set, using the notion
of set membership. These relations are represented by a degree of membership, and it
describes the degree of truth of an element. According to [69], given a non-empty set X,
a fuzzy set Ã in X is characterized by a membership function µÃ:

µÃ : X → [0, 1] (1)

and it is described as set of ordered pairs (x, µÃ(x)):

Ã = {(x, µÃ(x))|x ∈ X} (2)

where the first entity represents the element x of X, and the second one represents the
membership value µÃ ranging from [0, 1]. This membership value defines the degree of
membership of element x in the fuzzy set Ã for each x ∈ X. In this way, a fuzzy set Ã is
defined by a set of tuples. It is worth noting that a membership value of 0 for an element
would denote the complete non-membership of the element in the fuzzy set, whereas a
value of 1 would represent full membership. Similarly, intermediate values ranging in
(0, 1) represent a partial belonging of an element to a fuzzy set. Additionally, membership
functions can take many shapes, such as triangular, trapezoidal, Gaussian, etc. Essentially,
classical set theory is now considered a special case of fuzzy sets; a classical set is a fuzzy
set whose membership value is either 0 or 1.
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To capture the imprecision of data through natural language, Zadeh introduced the
idea of linguistic variables in 1975, which was a core concept of fuzzy systems [70–72].
These are variables “whose values are not numbers but words or sentences in a natural or
artificial language [70]”. According to him, linguistic variables are associated with fuzzy
sets using adjectives and hedges [73]. A full description of a linguistic variable requires the
quintuple:

〈x, T(x), U, G, M〉 (3)

or the name x of the variable, the set of terms T(x), the universe of discourse U, the syntactic
grammar G, and the semantic rules M [70].

To introduce inference from linguistic variable operations, fuzzy logic uses a set of
statements, called fuzzy rules, of the following structure:

“if <condition 1> and . . . and <condition k >, then <conclusion>”

where condition statements concern the input variables, conclusion statements concern the
output variable/s and usually both take the form of “xi is T(xi)” [74].

In general, there are three major types of fuzzy inference rules: the Mamdani fuzzy
rules [75,76], the Takagi-Sugeno (TSK) fuzzy rules [77,78], and the Tsukamoto fuzzy
rules [79], depending on the nature of <condition> and <conclusion>. In the Mam-
dani inference method, which is the most common one and can be found with multiple
variations in literature, both <condition> and <conclusion> are fuzzy sets. In the TSK
model, the output is a function of the input variable(s) and the idea is to generate the fuzzy
rules based on an existing dataset of the dependent and independent variables. Lastly, in the
Tsukamoto method, the output variable is a fuzzy set of a monotonic membership function.

Once all parameters for the inference model have been determined, e.g., type of the
model, input/output variables, linguistic terms (or the fuzzy sets to be associated with
them), fuzzy rules and shape of membership functions, the system is ready to accept crisp
inputs and proceed to fuzzy operations that lead to intelligent decisions. This process is
better known as a fuzzy inference system (FIS) and it is generally described by three main
blocks:

• Fuzzification: Translate input into truth values.
• Evaluation: Compute output truth values.
• Defuzzification: Transfer truth values into output.

It is worth noting that both TSK and Tsukamoto models avoid the costly defuzzification
computations that are present in the Mamdani method. This is achieved by the fact that the
outputs of their fuzzy rules are crisp numbers, which in turns facilitates the aggregation
computations during the defuzzification part of the FIS.

3.4. SAGMAD

SAGMAD is a novel method based on the code provided by BinVis, that tries to
intelligently capture byte sequence patterns through different tones of colour values. This
is achieved by introducing the concept of colour tone to the already used colour value-as-
per-class assignment.

According to our method, the colour tone of each byte is determined by the class types
of its adjacent bytes. As previously discussed, BinVis assigns a colour value to each byte
based on its ASCII value representation. In the case of SAGMAD, the colour assignment
process remains the same, except that the algorithm is now evaluating a particular number
of bytes that lay before and after the newly coloured pixel. It is worth noting that the
algorithm sees the set of bytes arriving before the current byte and the set of bytes coming
after it as two separate sets. It then continues by measuring the similarity of each collection
to the current byte, with each similarity value contributing to its colour tone using fuzzy-
based rules. In each case, the comparison of adjacent bytes is presented through the
positioning of the array and before the space-filling clustering procedure is applied.
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Essentially, SAGMAD adjusts the colour tone for each byte concerning whether n
bytes located on either side of it belong to the same class, and assigns this value as a colour
tint or shade. While BinVis tries to reveal patterns in code by visualising the byte class,
the goal of SAGMAD is to make those areas stand out and facilitate image processing
models. This is concerned with the fact that benign files appear to have a homogeneous
distribution of printable (blue) and extended (red) ASCII characters, whereas malicious
files present clustered areas of null (black) and orange (green) characters. In this way,
broad homogeneous areas have their colour standards toned down, while “islands” of the
malicious areas become more visible by becoming darker. With SAGMAD, each byte is
currently affected by both its type and its environment.

To equate the set of bytes placed next (left or right-separate) to the byte to which
we are assigning colour value and tone, we add the concept of similarity. We define the
similarity as the ratio of the number of bytes within this set (left or right) that belong to the
same class as the byte that we are currently interested in, over the total number of n bytes
in the set.

As illustrated in Figure 2, let us assume that we are involved in assigning colour value
and tone to byte xi, which is an extended ASCII character, and for which we consider five
adjacent bytes per side, i.e., n = 5. The byte is first given the red colour value and we
begin to analyse the five bytes on each side to have its colour tone adjusted. On the left
side, we find that four bytes out of the five are extended ASCII characters too, or, in other
words, they belong in the “red” byte class as well, and calculate the similarity as 4/5 = 0.8
(left similarity). In the same sense, we move on to the right side, counting once again the
number of bytes that belong to the same class, and we find that three out of the five bytes
are also in the red category. Hence, we measure a similarity of 3/5 = 0.6 (right similarity).
The two similarities are then given as inputs into a fuzzy inference system (FIS) where the
colour tone is given as an output value of 0.35. As a result, the red (extended) character
darkens because it resembles its environment. We should note that in the case of zero bytes
belonging in the same byte class, the similarity would be 0. Accordingly, if all five bytes
were in the “red” byte sequence, the similarity would be 1. It is a given that the colour
adjustment of a red character will be within the red colour spectrum. The 3D shape in
Figure 2 represents the whole spectrum of the potential red colour tones, ranging from 1
(the most pale) to 0 (the darkest) according to the membership functions of the FIS (we
define this FIS later). The same reasoning follows the bytes of the example that had their
colours toned down. As we observed in our example, we consider two sides per byte so
that the tone is influenced by two measures of similarity. The number n, which specifies
the number of objects we consider per collection, is always the same; in other words, we
count the same number of bytes on the left and the same number of bytes on the right side
of the byte xi. Throughout the process, we keep n = 5.

We now define the fuzzy inference system that determines the colour tone of the byte
xi, based on the two similarities that relate to it. For our process, we call Xi−n the set of
bytes on the left and Xi+n the set of bytes on the right. To create the FIS, we use two input
variables and one output variable, which are the linguistic variables of the scheme. We
describe a set of values for each linguistic element, the Fuzzy Sets.

According to the above and the theory presented in Section 3.3, we define the linguistic
variables and provide the visual representation in Figures 3–5.

Similarity of Xi−n (left similarity):
Input variable. Linguistic variable values: Different, Similar, and Same.

Similarity of Xi+n (right similarity):
Input variable. Linguistic variable values: Different, Similar, and Same.

Colour Tone:
Output variable. Linguistic variable values: Dark, Medium, and Light.
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We also define the set of rules, which will constitute the machinery for the FIS.
Fuzzy rules for Xi−n:

• IF Similarity of Xi−n IS Different THEN Tone is Light.
• IF Similarity of Xi−n IS Similar THEN Tone is Medium.
• IF Similarity of Xi−n IS Same THEN Tone is Dark.

Fuzzy rules for Xi+n:

• IF Similarity of Xi+n IS Different THEN Tone is Light.
• IF Similarity of Xi+n IS Similar THEN Tone is Medium.
• IF Similarity of Xi+n IS Same THEN Tone is Dark.

Figure 2. An example of colour tone adjustment applied to a sequence of bytes.

Essentially, by employing an FIS, we measure how much each similarity contributes
to the tone of byte xi. For instance, by examining how red byte xi should be, we ask what
the degrees of truth are that byte xi belongs to the fuzzy sets Light, Medium, and Dark.
As it was demonstrated in our example, the more a byte is surrounded by red class bytes,
the darker it becomes. Similarly, bytes that find their surroundings dissimilar to them adopt
pale tones.

To achieve the colour tone modification numerically, we pair the HSL (or Hue, Satu-
ration, Lightness) colour model, firstly introduced in [80], along with the RGB model; we
first keep the assigned RGB values intact as described in Section 3.2 to represent colors in
their purest form. We then use HSL’s Lightness L ∈ [0, 1] to express the output FIS variable
Colour Tone, without modifying Hue or Saturation. Shifting Lightness values towards 0 or
1, shifts a colour towards fully black or fully white, respectively.
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Finally, for the formulation of the input/output mappings, we choose to apply the
more intuitive Type-1 Mamdani FIS with the min implication and max aggregation methods.
Then, to compute the output crisp value z∗ we use the centroid defuzzification method,
given by:

z∗ = ∑i µ(xi)xi

∑i xi
(4)

where µ(xi) is the membership value for point xi in the universe of discourse U.

3.5. The H-Curve Mapping

Preserving the locality for mesh indexing is of paramount importance to the efficiency
of our data structure. This is also an especially crucial point for the next steps in our work,
as more attempts will be made to achieve higher precision in the AI dimension of the
IDS architecture.

To overcome this problem, we employed the H-curve algorithm, a 2D indexing scheme
which was proposed by [81] and was first presented under the name “H-indexing”. The H-
curve algorithm is made available in scurve [39] as one of the mapping layouts. By convert-
ing a file to an image based on this method, we achieve better locality preservation of our
data than the widely used Hilbert curve indexing. This also holds truth for the Euclidean
distance, as well as the maximum and the Manhattan metrics.

In general, in space-filling curves, the locality property is defined by a small constant
c. For Hilbert, c =

√
6, while for the H-curve c = 2. According to the H-curve method,

the maximal distance between two mesh nodes, indexed i and j, is a slow-growing function
of |i− j|. More specifically, the H-indexings form a Hamiltonian cycle that exhibits optimal
locality-preserving among all cyclic indexings, as they provide tight lower bounds without
any restriction. For a compact review of space-filling curves, the reader is invited to refer
to [82]. Mappings of the Hilbert and the H-curve method paired with the traditional and
the proposed colouring scheme can be seen in Figures 6–9.

3.6. The Data Set

To accurately test the image generation limitations and constraints for each variation
of the BinVis techniques outlined in this paper, we first required a collation of numerous file
formats. For the construction of our data set, we acquired files from the Contagio dataset
provided in [83], theZoo repository [84], the MalwareBazaar database in [85], as well as clean
EXE files that were extracted from the base Windows Operating System. The final data set
numbered a total of 5000 files that was averaged out in respect to their file sizes ranging
from a few bytes to several megabytes in size. Its distribution can be seen in Figure 10.
An enriched version of it has been uploaded and become available at the IEEE DataPort
under DOI:10.21227/vs0r-8s26, along with the complete set of images that been created
according to the described methodology.
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Figure 6. The Hilbert curve paired with the BinVis colouring scheme.

Figure 7. The Hilbert curve paired with the SAGMAD colouring scheme.

Figure 8. The H-curve paired with the BinVis colouring scheme.

Figure 9. The H-curve paired with the SAGMAD colouring scheme.
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Figure 10. Overview of the reduced files compiled from multiple sources.

3.7. Programming Language Selection for Image Generation

For performance purposes, we have opted to modify the programming language of
the original method. As discussed earlier, the BinVis package was written in the Python
programming language. To obtain quicker computational times, the paradigm has been
translated to the Rust language [86]. Rust is a low-level language, best suited for low-level
operating system interaction, embedded systems, and other improvements to memory
management and code execution [87].

3.8. Image Generation in High Performance Computing & Desktop Environment

As discussed earlier, the original revisions to the BinVis [39] program showed sig-
nificant flaws in the time of execution of the Hilbert image. This was evident for many
phases of the algorithm, from raw data processing, to image creation and pixel positioning.
As a result, this will cause a bottleneck when it comes to processing and generating vast
volumes of real-time data.

To address this problem, we have implemented different hardware specifications to
validate our methods by running our image conversion methods directly via the GPU.
This was done by modifying the SAGMAD prototype to run parallel CUDA computing
in Python (PyCUDA) [88] through the use of the GRNET High-Performance Computing
Services [89]. GRNET HPC access permitted the allocation of batch jobs and allocated
hardware access to 5000 GPU CUDA cores, allowing a significant reduction in computa-
tional load.

At the same time, the limitation of currently accessible data types in PyCUDA, such
as the ability to transfer dictionaries and lists to the kernel for computing, did not enable
certain functions to be completely configured for GPU processing. As a result, we used
Just-in-Time Compilation (JIT) [90] in cases where CUDA optimization in GPU performance
was not feasible.

For comparative purposes, we have also used a desktop environment to test the output
of each process with the following hardware specifications:

• 16 GB RAM
• 4 Core CPU
• Intel integrated GPU

3.9. Machine Learning Metrics

To evaluate the contribution of SAGMAD towards accurate predictions of malicious
patterns in unknown files, we will run the same machine learning algorithms that have been
used in BinVis applications. The details of these experiments are discussed in Section 3.10.
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As in all mathematical learning methodologies, some output indicators help to deter-
mine the robustness of the model. At the same time, when we want to assess SAGMAD
using the best-performing machine learning techniques of previous research projects, we
can also evaluate the findings using the same criteria to allow for a similar comparison.

For this purpose, we employ the accuracy, precision, recall, and F-score functions.
To explain what these terms stand for, we first need to describe the individual values
that make them, namely the True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) measures:

• TP is equivalent to all elements of a class that the algorithm correctly predicted to
belong in that class. In other words, it is the number of malicious files correctly
identified as malicious.

• TN is equivalent to all elements outside of a class that the algorithm correctly predicted
to belong in a different class. In other words, it is the number of benign files correctly
identified as benign.

• FP is equivalent to all elements outside of a class that the algorithm has incorrectly
predicted to belong in that class. In other words, it is the number of benign files
incorrectly identified as malicious.

• FN is equivalent to all elements of a class that the algorithm has incorrectly predicted
to belong in a different class. In other words, it is the number of malicious files
incorrectly identified as benign.

Next, we define the Accuracy, Precision, Recall, and F-score metrics:

• Accuracy is the ratio of instances that were correctly predicted, or the ratio of the total
hits (malicious and benign) of the algorithm. We provide the formula as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

• Precision is the proportion of correct predictions of malicious cases over the total
amount of predicted malicious cases, or the ratio of actual malicious cases from all
cases predicted as malicious. We provide the formula as:

Precision =
TP

TP + FP
(6)

• Recall is the proportion of correct predictions of malicious cases over the total amount
of malicious cases, or the percentage of malicious cases detected. We provide the
formula as:

Recall =
TP

TP + FN
(7)

• F-score is the harmonic mean between precision and recall, and is indicative of the
accuracy and robustness of the model. We provide the formula as:

F-score =
2TP

2TP + FP + FN
(8)

3.10. Comparison with Previous Applications Based on BinVis

To properly analyse the efficiency of SAGMAD over the original BinVis tool, we need
to do a comparative analysis against current BinVis methods. These experiments were
originally mentioned in Section 2. In their approach, the authors [40,41,43,44] used the
BinVis algorithm to generate images which are used as input to the objective of feature
classification. Their aim was to conduct either malware/benign filetype classification [40],
malware family classification [41], or malware/benign IoT traffic classification [43,44].
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In the next paragraphs, we will briefly present their top-performing solutions and
explain the technical aspects of their approaches. This research will serve as the basic model
requirements when comparing the classification output of the images provided by BinVis
and SAGMAD.

3.10.1. Baptista et al.’s Experiment

Image classification through machine learning methods is a powerful technique for
computers to recognize patterns, especially when paired with neural networks. To perform
detection of malicious activity among various file types, Ref. [40] employed a self organising
incremental neural network (SOINN), a sophisticated neural network that uses only two
layers. SOINN, which was initially proposed in [91], adopts a minimalist approach that
keeps computational costs at a minimum without undermining its ability to perform
successful pattern recognition. The two layers focus on mapping a topological structure of
the input data competitively while taking on different tasks. The first layer estimates the
density distribution of the input vector by selecting a first and a second winner, and builds
an undirected graph representation that is continuously being improved. The second layer
can detect the different clusters by looking at the low-density areas between them. Many
improved methods of SOINN have been proposed since its conception.

Regarding the construction of the feature vector, Ref. [40] recognised the spatial
distribution of malicious patterns in specific parts of the binary representation of a file,
particularly on the top and the bottom of the image, and divided the clustered image into
four parts; top, bottom, upper and lower middle. This was particularly important since they
included multiple malware types within the infected files of their data set. In the feature
vector, each of these areas was represented by a vector of length 256 to denote the histogram
of the RGB colour space. Regional feature vectors were then put together following the
corresponding order of the regions in the image, resulting in a feature vector of length
1024. It should be noted that while SOINN is a robust algorithm for unsupervised learning,
parameterisation should be handled with care. Ref. [40] was able to achieve an accuracy of
73.7% with 12% false positives and 14% false negatives for the overall malicious/benign
file detection, with parameters lambda λ = 290 (number of iterations) and max. age A = 170
(age of communicating nodes). For this experiment, the rectangle-shaped image of the
scurve module was used.

3.10.2. O’Shaughnessy’s Experiment

Ref. [41] recognized the need for AV programs to perform malware family classifica-
tion, and employed computer vision techniques to provide a scalable solution. For this
reason, he performed data conversion while experimenting with three factors of the image
conversion and classification process: a variety of space-filling curves, different feature
extraction techniques, and various statistical learning models. Ref. [41] was the only one to
try multiple space-filling curves offered by the scurve module, other than the more widely
used Hilbert curve; namely the Z-order, Gray-code, and the Hilbert curve mappings were
employed, offering different representations for the same malicious file contents. Images
were then given as input to models using the local binary patterns (LBP), Gabor filters
and histogram of gradients (HOG). After malware family names were paired with the
appropriate feature vector, Ref. [41] tested three supervised machine learning algorithms,
namely k-nearest neighbours (KNN), random forest (RF), and decision trees (DT).

Parameterisation has performed automatically for each model with the help of a
Python module to evaluate the best parameter values. Out of all possible combinations,
the best performing process proved to be the KNN-HOG Z-order model. The HOG method
requires the tuning of various parameters, for which the author determined the best
performance under orientation = 16, pixels-per-cell = 60 and cells-per-block = 1. To deal
with changes in colour intensity, the L2-Hys normalisation was performed. Moving to
KNN parameters, the number of neighbours was chosen to be k = 1, and the distance metric
was the “cityblock” function. During the testing of the KNN-HOG Z-order method on
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unseen data, the model generalized well, with 82% precision, 80% recall, and 83% accuracy
scores. It is important to note that for this experiment, the square-shaped image of the
scurve module was used.

3.10.3. Shire et al.’s Experiment

IoT network traffic was monitored and cut in chunks by [43] in an attempt to identify
potential malware traffic from smart devices. Network traffic was collected in the form of
.pcap files, which were then converted into 2D binary visualisations. The overall idea of the
experiment was to test the model on various malicious network traffic scenarios, such as
DDoS, botnet, trojan horse traffic, alongside normal traffic, and test if binary visualization
was a promising solution on the getaway level of connected devices.

In this problem, the researchers chose convolutional neural networks (CNN) as the
primary detection algorithm. More specifically, they used Tensorflow’s MobileNet module,
where the data were trained for 500 batches. The PCAP files were inserted into the CNN by
dividing each image into smaller tiles.

In the test that used the largest number of samples, they were able to achieve the
highest values for the following metrics: 91.32% accuracy, 91.67% precision, 91.03% recall,
and 91.35% F-score. In this experiment, the researchers performed their method on the
rectangular layout of the scurve module.

3.10.4. Bendiab at al.’s Experiment

Continuing the works of [40,43,44], the use of deep learning for classifying mali-
cious/benign network traffic was proposed. Their best performing experiment employed
the ResNet50 model, a CNN with 50 layers.

Their method tested 2D images of IoT traffic that represented a plethora of common
attacks, such as DDoS, key loggers, back doors, and OS scans. For the training, the re-
searchers iterated the model for 50 epochs with a batch size of six. They also incorporated
the LRFinder function, a Python module that investigates the performance and finds the
optimal parameters. According to this experimentation, they used a learning rate of 0.05.

Overall, deep learning outperformed previous efforts for classification; the experiment
achieved 94.5% accuracy, 95.78% precision, 94.02% recall, and an F-score of 94.9%. Ref. [44]
used the rectangular-shaped form to construct the image samples.

As previously stated, the main focus of our research has been the construction of
a real-time malware detection system. In the next section, we are going to present the
running times of our method and of the original package tested in different environments,
as well as machine learning metrics to allow comparison with existing methods.

3.11. Programming Language Selection for Machine Learning Models

The Resnet50, SOINN, KNN-HOG and MobileNet learning algorithms were imple-
mented using the open-source TensorFlow and Keras Python libraries in an Anaconda
environment, utilizing NVIDIA driver 460, CUDA 10-1 and CuDNN 7.

3.12. Machine Learning Running Environment

The experiments were conducted on a physical machine, running on an AMD Ryzen 7
4800H 8 CPU Cores, 16 threads at 2.9 GHz with 64 GB memory running an Ubuntu 20.04
OS and an NVIDIA GTX 1660 Ti GPU with 6 GB memory was used as an accelerator.

4. Results
4.1. Image Generation Performance

In this section, we present the performance analysis results of our methodology that
was implemented as described in Section 3. We first outline the results regarding the image
generation part of our analysis, where we converted files into 2D representations based on
a fuzzy logic color scheme of their ASCII characters. The specific methods and tools for
this part were provided in Sections 3.1–3.8.
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To evaluate and compare the performance for the original BinVis algorithm and the
proposed method, we measured the required length of time to generate images from the
aforementioned data set in an increased file size arrangement. Initially, the file sizes in
our compiled data set, which ranged from a couple of bytes to little over 20 MB in size,
consisted of a large number of repeating common file sizes that would affect the evaluation
of the methodologies. In order to clearly determine the efficiency in image generation, we
decided to reduce the data set and focus on variation in computations instead. This was
achieved by selecting a smaller set of files with exponential growth in their size.

As mentioned in previous Sections, the initial implementation steps and testing of
our method proved to be a costly process, for which we needed to make use of an HPC
infrastructure. Regarding the running times of the original BinVis algorithm on GRNET’s
ARIS, incremental processing of file sizes ranging from 1000 KB to 20,000 KB was completed
between the ranges of 52.356 s to 210.489 s. At the same time, when testing the performance
of the Hilbert-curve SAGMAD method on ARIS, we achieved running times that ranged
from 64.83 s to 284.63 s for the same range of file sizes. As it can be seen from these numbers,
it is important to note that our access to high performing computers provided us great
flexibility to test our methods regarding the colouring scheme and curve experimentation.
By repeating the same experiment on a desktop computer, we acquired a range of 1299.9 to
2661.9 s for the BinVis implementation, and a range of 3623.99 to 7085.91 s of the Hilbert-
curve SAGMAD method, an apparent limitation, not only for building and testing code,
but for the construction of an IDS application running in real time.

Moving on to our final implementation, which employed the optimal locality-preserving
H-curve written in Rust, the H-curve SAGMAD exhibited running times of 0.002 to 0.574 s
on a desktop environment, again, for an incremental processing of file sizes from 1000 KB
up to 20,000 KB. H-curve SAGMAD outperformed every binary visualisation technique,
proving to be the best candidate for a real-time IDS traffic processing. For comparison
reasons, we also run the original Hilbert-curve BinVis in Rust, which achieved running
times of 0.001 to 0.512 s on a desktop environment, again, for an incremental processing of
file sizes from 1000 KB up to 20,000 KB.

The full description of the running times per file size for desktop and HPC environ-
ments is shown in Figures 11 and 12, respectively.

Figure 11. Running times of different binary visualisation methods for various files sizes on a
desktop environment.
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Figure 12. Running times of different binary visualisation methods for various files sizes on ARIS.

4.2. Performance of H-Curve SAGMAD within Machine Learning Algorithms

In this section, we present the performance of previously implemented binary visuali-
sation applications when incorporated with SAGMAD images in their detection algorithm,
the full description of which can be found in Sections 3.9–3.12. More specifically, the de-
tailed parametarisation and deliveries of these studies were presented in Section 3.10, while
the notions of the various metrics for a machine learning based IDS were provided in
Section 3.9. The methods described in these studies were recreated as faithfully as possible
to match the original work of their researchers, while the goal was to replace the images
implemented for detection with SAGMAD clustering.

Under this scope, we present the comparative performance between Hilbert BinVis
and H-curve SAGMAD colouring schemes in Tables 2–5 when measured for accuracy,
precision, recall and the F-score. We should note that for the replication of experiments run
by [43,44], we rerun the their original methods (Hilbert BinVis with respective learning
algorithms) using the malicious/benign file images produced by the data set in Section 3.6.
This was an essential step to ensure that the comparison of metrics in Tables 4 and 5 would
concern images created from the same data type. Hilbert BinVis metrics in Tables 2 and 3
on the other hand, were left the same.

The planned comparisons showed that SAGMAD outperformed the visualisation
methods in KNN-HOG [41] and SOINN-RGB Histogram [40]. More specifically, SAGMAD
delivered 91.83% accuracy, 89.33% precision, 94.32% recall, and an F-score of 91.76% when
used with the KNN-HOG learning algorithm, and 92.52% accuracy, 87.90% precision,
94.24% recall, and an F-score of 90.96% when used with the SOINN-RGB Histogram model.
Additionally, it exhibited similar performance when paired with MobileNet [43], achieving
90.71% accuracy, 91.33% precision, 90.24% recall and 90.78% for the F-score. At the same
time, it exhibited slightly poorer results when incorporated in ResNet 50 [44], reaching
92.68% accuracy, 93.96% precision, 91.98% recall, and an F-score of 92.96%.

In Tables 6–9, we also present the confusion matrices of our experiments as a per-
formance measurement of the four different combinations of predicted and actual mali-
cious/benign files.
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Table 2. Performance comparison with [41].

KNN-HOG
Accuracy Precision Recall F-Score

Z-order BinVis 83.00% 82.00% 80.00% 80.99%
H-curve SAGMAD 91.83% 89.33% 94.32% 91.76%

Table 3. Performance comparison with [40].

SOINN-RGB Histogram
Accuracy Precision Recall F-Score

Hilbert BinVis 73.70% 87.76% 86.00% 86.87%
H-curve SAGMAD 92.52% 87.90% 94.24% 90.96%

Table 4. Performance comparison with [43].

MobileNet
Accuracy Precision Recall F-Score

Hilbert BinVis 91.32% 91.67% 91.03% 91.35%
H-curve SAGMAD 90.71% 91.33% 90.24% 90.78%

Table 5. Performance comparison with [44].

ResNet 50
Accuracy Precision Recall F-Score

Hilbert BinVis 94.50% 95.78% 94.02% 94.90%
H-curve SAGMAD 92.68% 93.96% 91.98% 92.96%

Table 6. Confusion matrix for the KNN-HOG experiment.

Predicted
Malicious Benign

Actual
Malicious 2358 (TP) 142 (FN)

Benign 282 (FP) 2218 (TN)

Table 7. Confusion matrix for the SOINN-RGB Histogram experiment.

Predicted
Malicious Benign

Actual
Malicious 2356 (TP) 144 (FN)

Benign 324 (FP) 2176 (TN)

Table 8. Confusion matrix for the MobileNet experiment.

Predicted
Malicious Benign

Actual
Malicious 2256 (TP) 244 (FN)

Benign 214 (FP) 2286 (TN)

Table 9. Confusion matrix for the ResNet 50 experiment.

Predicted
Malicious Benign

Actual
Malicious 2300 (TP) 200 (FN)

Benign 148 (FP) 2352 (TN)
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5. Discussion

The results demonstrated in Section 4 represent the first efforts of our research towards
the construction of signature-free IDS architecture. For this reason, measuring running
time performance was one of the most important aspects of our method, given the interest
in analysing excessive amounts of data in real-time. At the same time, our efforts focused
specifically on optimal image construction and malware detection, with no effort being
made towards optimising the machine learning part of the framework.

As is demonstrated in Figure 11, the performance analysis of the BinVis model in
a desktop environment exhibited high running times even for small files, rendering it
an unsuitable foundation algorithm for a real-time detection mechanism. On the other
hand, even though computational functions were handled with great care within the first
SAGMAD implementation, fuzzy-based operations heavily affected the running costs; the
Hilbert SAGMAD method running times were about 2.7 times higher than the traditional
BinVis. This limitation is also reflected on the lack of experimentation regarding the number
n. Initial attempts to insert a larger number of adjacent bytes proved to be prohibitive
during the early phases of the experiment and we eventually kept n as a constant to focus
on code execution and malicious detection performance.

Further adaptation of the Hilbert curve SAGMAD on HPC (Figure 12) provided
flexibility and experimentation with the method as computation times dropped 55 times
for the smallest files, and 24 times for the largest ones compared to the Desktop application.
Given the low running times from working on HPC, we were able to perform further
improvements to optimisation, and proceeded with the implementation of the H-curve
clustering method, as well as the conversion to Rust. The obtained results indicated the
success of the method by dramatically decreasing running times, as shown in Figure 11. Due
to these improvements in computation times, we were able to maintain high performance,
with the largest file sizes converting in roughly 0.5 s. This is particularly important as it
was achieved without trading off the time taken for image generation, even when working
from a desktop CPU.

Given the results of the first part of our experiment, we can safely claim that we have
eliminated the need for GPU assistance in generating binary visualisation images. These
findings confirm our initial hypothesis and suggest that our method is able to perform
file-to-image conversion and colour value computations for real-time data streams.

Moving on to the results produced for the second part of our methodology, and
presented in Tables 2–9, SAGMAD exhibited a consistent behavior in detecting malicious
content when inserted in machine learning systems. It is important to note that these results
were yielded when using the fuzzy-generated images within algorithms and parameters
that were not tuned for the model’s optimal performance. By contrast, the execution of
the experiment followed the feature extraction and the best-performing parameters that
were investigated from the previous machine learning applications (see experiments in
Section 3.10). Moreover, those applications incorporated training and testing data sets that
exhibited quantifiable differences in affecting learning rates.

It is also important to emphasise the performance of the experiments given the small
size of our dataset. One of the main goals of our paper was a ML framework where the
training is performed fast. For this reason, we chose to employ a relatively small number
of files with a diverse range of file sizes. This helped us to achieve a good performance
and show that the learning rate could keep increasing, which is something that we will
explore in our future work to increase detection rates. Another interesting find was that the
BinVis-based models that performed better than our method dealt with network intrusion
data; SAGMAD on the other hand, delivered comparatively better results for malware
file detection.

Given the results of the second part of our experiment, it is worth noting that, without
any customisation of the various learning algorithms, SAGMAD substantially proved its
applicability in malware pattern detection. This is particularly important when considering
the lack of experimentation on this prototype, such as fuzzy aspects of the colour coding
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scheme, the shape of the fuzzy membership values, the number of the fuzzy rules, fuzzy
implication models, or the magnitude of the fuzzy sets.

The recent rise of visualisation analytics in the security domain comes with many
challenges, especially when paired with machine learning and AI. One expert argued
that when employing a ML/AI algorithm for detection, the methodology should revolve
around “capturing expert knowledge” rather than using it to simply look for anomalies [92].
Authors in [93] also cite several reasons that have contributed to the construction of a
plethora of cyber security visualisation tools that are classified as too simplistic to help
them gain a more widespread adoption. At the same time, we witness an effort towards
more computational approaches to this problem, such as STAMINA, a collaborative project
between Microsoft and Intel, which bears strong resemblance to our own methodology.
According to them, malicious executable files are converted to 2D grey scale images, resized,
and then fed into a pre-trained Deep Neural Network (DNN) for detection [94]. Resizing
the image according to the initial size of the pixel file size was, for them, the way to deal
with high dimensionality data in order to maintain computational costs at a lower level.
In our approach, colour (and different shades of it) is viewed as an essential medium
to convey information, thus computational costs were handled differently. In general,
fuzzy logic adds major computational costs in applications, regardless of the number of
fuzzy sets and fuzzy rules we choose to incorporate. Regarding the results of existing
applications, as mentioned earlier, Ref. [16] proposed a similar approach, with images of
similarity matrices that proved efficient, achieving almost 99% accuracy in the case of the
SMO-Normalised Polynomial Kernel. Nevertheless, there was not enough information
regarding running times, since they too were interested in preventing zero-day attacks.
We believe that more research on 2D image construction for malware detection is going
to follow in the future and we suggest that running time performance should be a crucial
component of the experimentation. We would like to also note that according to our best
knowledge, this is the first application where fuzzy logic is used to assign different colour
tones in pattern recognition.

At the same time, we acknowledge that there are a number of limitations in our study.
These include a lack of experimentation on the fuzzy elements of the method, such as
the number n, or experimentation with different shapes of membership functions, which
could result in more interesting colour patterns. Furthermore, as previously mentioned,
the AI part of the framework was completely untreated for optimal parameterisation for the
fuzzy-based image data set, and we chose to adopt the optimal tuning of previous research
methods instead. Even though this seemed to impair the detection rates of SAGMAD, it was
considered to be essential for the evaluation of our method, as we did not want to associate
successful detection rates with optimal NN tuning. It is notable, however, that the overall
results were either superior or comparable to the models that used tailored parameters.
Therefore, SAGMAD can be regarded as a promising methodology for malware detection.
Another limitation of our methodology is potential vulnerability to adversarial machine
learning. While SAGMAD may present benefits, we did not employ any technique that
could introduce robustness to our NN towards adversarial attacks. Thus, SAGMAD can
be considered vulnerable to wild patterns that will try to manipulate colour and pattern
representation.

6. Conclusions

In this paper, we implemented a new method of binary visualisation of files, based
on fuzzy logic and the H-curve mapping. The performance of our model was measured
in multiple environments in order to capture the running times of different file sizes.
In addition, it was inserted into previous machine learning-based applications to compare
the accuracy metrics of malicious activity. The present findings prove that colour tone
assignment as a way to carry information on surrounding patterns seems to improve
the detection of malicious code areas in suspicious files. Collectively, the results of our
work will aim to contribute to the construction of a fast binary visualisation tool that
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performs real-time intelligent pattern recognition. According to our findings, our proposed
methodology provides a promising mechanism towards this direction.

7. Future Work

In the future, we intend to proceed with the implementation of an IDS architecture
where the core mechanism will rely on the H-curve SAGMAD algorithm. In terms of model
selection, it was demonstrated that our framework vastly improved the detection rates of
the KNN-HOG [41] and the SOINN-RGB Histogram [40] methods, while it yielded similar
results to the more expensive MobileNet [43] and ResNet 50 [44] models. As computational
costs are a concern for our future work, we plan to further improve the detection rates
of the first two methods in order to exceed those of the DL-based ones. Our motivation
behind this approach is to have our method incorporated on economical devices such as
the Raspberry Pi, or low-end devices such as a home gateway where resources are crucial.

Future research should also explore the potential effects of the number of n adjacent
bytes that is used as an input to the FIS. In addition, further analysis to create more
intelligent rules and useful bytes classes might shed light onto the performance of the IDS.
Accordingly, we will need to investigate how the selected membership functions contribute
to the accuracy of predicting models. Finally, it is possible that multiple geometries of
surrounding bytes need to be tested; for instance, using all adjacent byte pixels as inputs to
let them influence the colour value of a central byte, instead of the array-wise technique
which receives inputs from left and right directions only.
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