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Abstract: In this study, we constructed a 3D range-only (RO) localization algorithm based on im-
proved unscented Kalman filtering (UKF). The algorithm can determine the location of unknown
UWB nodes in a 3D environment through a moving node with low computational complexity, which
can help agents to accurately identify feature points in 3D SLAM based only on the range. Specifically,
we established an original UKF framework based the 3D RO localization algorithm, and developed
a derivative UKF framework to reduce the computational complexity of the algorithm. We used
singular value decomposition to compensate for the robustness of the algorithm. Next, we performed
a theoretical analysis to show that our method reduces the computational burden without reducing
the stability or accuracy of the system. Finally, we conducted numerical simulations and physical
experiments to show the effectiveness of the developed 3D RO localization algorithm.

Keywords: UWB; RO-SLAM; derivative unscented Kalman filter; indoor localization

1. Introduction

Most of the current ultra-wideband (UWB) localization systems are implemented in
indoor environments, for example, in tunnels, factories, warehouses, etc. [1], where UWB
anchors are deployed beforehand and multiple nodes can be localized using their distance
to the anchors. This localization scheme cannot be used for localization in the absence
of UWB anchors (or in an unknown environment). The range-only localization approach
can be used to deal with this problem, which uses only the distance measurements via
UWB modules [2]. The study of localization without the assistance of UWB anchors has
important theoretical and practical value for exploring unknown indoor environments and
underground passages.

Unlike other traditional SLAM methods [3], RO-SLAM only needs to use the distance
measurements between the robot and the feature points for robot localization and map-
ping [4]. As its main principle, RO-SLAM adopts the range-only localization algorithm
to estimate the location of feature points and construct SLAM maps composed of the
location information of the feature points. The sensors applied in the current mainstream
RO-SLAM methods include Bluetooth, WiFi, RFID, UWB, etc. In practical applications,
Bluetooth modules are equipped on many smart devices and provide advantages in device
deployment [5]. However, Bluetooth modules have poor anti-interference performance
and limited coverage. The insufficient localization accuracy of WiFi devices does not meet
actual engineering requirements [6,7], and the short effective working distance of RFID
technology has limited its applications [8]. Compared to these technologies, UWB systems
can provide centimeter-level positioning accuracy in the absence of obstacle occlusion.
UWB also has a strong penetration ability, low power consumption, high transmission rate,
and a variety of technical advantages, which had led to UWB technology being widely
used in industry [9].
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The RO-SLAM framework has been intensively studied [10,11]. Recently, underwater
node points and unmanned boats were located using only long baseline hydroacoustic
devices [12]. Menegatti et al [13] introduced RO-localization into a SLAM system consisting
of an unmanned vehicle and a wireless sensor network, where the positions of sensor
nodes were back-projected from multiple positions of the unmanned vehicle. Bluetooth
sensors can be applied to determine the range between unmanned vehicles; on this basis,
an RO-SLAM framework was developed for interconnected robotic communication and
cooperative multirobot localization [14,15]. A region-based particle filter [16] based on
the RO-SLAM algorithm was proposed reduce the number of particles and improve real-
time performance, which was verified on an unmanned vehicle platform equipped with
UWB sensors [17]. Torres-González and colleagues proposed a scalable distributed RO-
SLAM scheme that uses robot-node collaboration to provide real-time performance while
improving SLAM accuracy. This algorithm was integrated in an unmanned aerial system
(UAS) and evaluated in a 3D SLAM outdoor experiment [18,19].

Although many solutions have been proposed for the localization problem in RO-
SLAM, many results were achieved by adopting the original EKF and UKF to estimate the
node positions. The original EKF method is widely used in RO-SLAM to locate feature
points; however, the accuracy of the system decreases when faced with high nonlinearity
and cannot meet application requirements [20,21]. The original UKF-based RO-localization
methods do not have many limitations in terms of nonlinear strength, but their computa-
tional complexity is too high, which has limited their development [22,23].

To deal with the above-mentioned problems, in this study:

• We constructed a 3D range-only localization algorithm to solve both the localization
problem for uncalibrated UWB nodes in an indoor environment and the feature point
localization problem in 3D RO-SLAM.

• Considering the time-invariant property of the state evolution equation, we con-
structed a derivative RO-SLAM algorithm to improve the real-time performance of
the positioning system. Moreover, we introduced the SVD decomposition method to
improve the robustness of the system.

• We verified the effectiveness of the proposed algorithm through simulation examples
as well as practical experiments on UAV platforms.

In summary, we propose a UWB-system-based 3D RO-localization algorithm to
achieve the localization of uncalibrated UWB nodes in 3D RO-SLAM. Considering the
real-time and robustness requirements of the system, we further improved the algorithm
and applied it to a UAV platform.

The rest of the paper is organized as follows: In Section 2, the system dynamics and
observation models are established. By analyzing the shortcomings of the current RO-
localization method, an overall improvement scheme is proposed. Next, an unscented
Kalman filter based 3D RO-localization algorithm is proposed in Section 3 to achieve the lo-
calization of UWBs, which is called derivative unscented Kalman filter (DUKF). The DUKF
uses the KF to simplify the computation of measurement updates without degrading the
estimation accuracy. Furthermore, SVD decomposition is applied to the DUKF algorithm
to ensure the stability of the algorithm. In Section 4, the computational complexity and
stability of the proposed algorithm are theoretically analyzed. In Section 5, the feasibility
of the algorithm is verified through simulation and UVA platform experiments. Finally,
conclusions are drawn in Section 6.

The terminologies associated with the filtering algorithms in this paper are explained
in Table 1.
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Table 1. Definition of filtering algorithm abbreviations used in this paper.

Abbreviation Explanation

KF A method for state estimation of linear systems.

UKF A method for state estimation of nonlinear systems.

DUKF
A derivative algorithm is proposed by combining the KF and UKF
algorithms. The KF and UKF algorithms are used for the linear and

nonlinear parts of the system, respectively.

SVD-DUKF The Cholesky decomposition for calculating sigma points in the
DUKF algorithm is replaced with SVD decomposition.

The relationship between the filtering algorithms used in this study is illustrated in
Figure 1.

Figure 1. Relationship between filtering algorithms.

2. System Modeling and Problem Formulation
2.1. System Model

In this study, we considered a UAV system equipped with UWB and IMU sensors. To
localize uncalibrated UWB nodes in an indoor 3D environment using a UAV, the position
of the UAV and the UWB range information need to be measured. An IMU can quickly
provide accurate position and orientation information of the UAV; however, accelerometer
errors in the IMU may lead to drift-error accumulation over time. Although the UWB
cannot provide complete attitude information, its positioning results are relatively stable
and its positioning accuracy does not change over time. In this study, the UAV relied on
the IMU to provide motion information, combined with the UWB ranging information, to
localize UWB nodes and predictively correct the UAV motion trajectory. We combined the
UAV motion model and UWB sensors to build an RO-localization system model.

Figure 2 shows that, differently from the traditional multistation localization algorithm,
the range-only localization algorithm uses the distance measurements of the moving UAV
at different times. The detailed theoretical derivation of this algorithm is provided in
Section 3. The dynamic measurement model is described below.
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Figure 2. RO-SLAM schematic diagram. The blue dotted line represents the flight path of the UAV
over a period of time, the blue dots represent the position of the UAV at different times, and the blue
triangle is the node to be located.

The UAV position measurement is based on IMU and UWB sensors. Here, we chose
the position of the UWB node as the state quantity and the velocity information of the IMU
as the system input. The UWB modules considered in this study are spatially distributed,
where all nodes and anchors are treated as UWB nodes without any distinction. Assuming
that the indoor environment is an ideal three-dimensional environment, the location of
the UAV-carried No. 0 UWB node is denoted as p0 =

[
x0, y0, z0

]T and the velocity is

v0 =
[

v0,x, v0,y, v0,z
]T . The No. n uncalibrated UWB node position in a 3D environment

is denoted as
[

xn, yn, zn
]T , n = 1, 2, . . . , N, where N is the number of UWB nodes. The

state vector of the system is defined as:

Xk =
[

p0,k, p1,k, . . . , pN,k
]T

(1)

which represents the locations of all UWB nodes at time k. By incorporating the IMU
characteristics, the state-space system of the RO-SLAM model is:

Xk+1 = AXk + Buk + wk (2)

where the state transfer matrix A = I3N+3, the input matrix B = [T × I3, 03×3N ]
T , and

T is the sampling period. The input vector is the velocity information provided by the
IMU uk = v0,k, and the process noise wk is Gaussian white noise with its variance Qk
expressed as:

E
[
wkwT

k

]
= Qk (3)

The measurement equations are obtained based on UWB ranging information. We
assume that there are N + 1 UWB nodes in the system, the UAV carries the No. 0 node, and
other unknown UWB nodes are randomly distributed in the 3D environment. All UWB
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nodes are available for ranging between themselves and the UAV. The ranging information
at time k between the No. i node and the UAV can be expressed as the Euclidean distance,
as follows:

di,k =
√
(xi,k − x0,k)

2 + (yi,k − y0,k)
2 + (zi,k − z0,k)

2 (4)

where i = 0, 1, . . . , N. The measurement equation can be expressed as:

Zk =

d0,1,k
...

d0,i,k

+ vk (5)

where the measurement noise vk is Gaussian white noise, with its variance Rk being
expressed by:

E
[
vkvT

k

]
= Rk (6)

2.2. Problem Formulation

Given the system model (1)–(6), in the localization problem considered in this study,
the state sequence Xk is estimated using the distance measurements Zk, where the state
vector Xk consists of the time-varying positions of the UAV and the static positions of
the rest of the UWB nodes. The developed localization approach can algorithmically be
applied to the calibration of UWB anchors without any manual effort. UWB sensors are
characterized by an ability to provide centimeter-level ranging accuracy between nodes,
and the problem of reverse calculating the location of UWB nodes in space by the distance
between nodes can be achieved using only the RO-localization algorithm.

However, as introduced in the Section 1, the existing RO-localization algotithms are
generally adopt the EKF for state estimation. Although EKF technology is mature and EKF
has a small calculation burden, its accuracy is unsatisfactory, especially in 3D environments
where the nonlinearity of the system is higher.

In this study, we made the following efforts to improve the traditional RO-
localization algorithm:

• Improve the localization accuracy of the 3D RO-localization algorithm;
• Reduce the computational complexity of the 3D RO-localization algorithm;
• Verify the performance of the algorithm on a physical platform.

To improve the localization accuracy, we first considered adopting the UKF instead of
the EKF in RO-localization. To reduce the computational complexity, given the character-
istics of the linear state evolution equation and the nonlinear measurement equation, we
adopted the derivative method [24] to reduce the redundant calculations in the linear part
to reduce the computational complexity of the state update. Finally, we built a physical
platform to verify the performance of the proposed algorithm in an actual environment. In
addition, we used SVD decomposition to replace the Cholesky decomposition to improve
the stability of the filtering algorithm [25].

3. 3D Range-Only Localization Algorithm
3.1. Algorithm Overview

RO-SLAM is a special SLAM method that relies on ranging sensors to localize the fea-
ture points in a map. The mechanism of the RO-localization algorithm is visually illustrated
in Figure 3: when the UAV is not moving, relying on a single range value can only be used
to infer the possible position of the unknown node on a circle. As the UAV moves along the
x-axis direction, the uncertainty in the x-axis direction gradually decreases, but the y-axis
direction still has large uncertainty. As the UAV moves along the y-axis, the uncertainty in
the y-axis direction is reduced and the position of the unknown node eventually converges
to an acceptable range. These features of RO-SLAM have led to its wide use in sensor
calibration and search and rescue.
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Figure 3. Possible positions of an uncalibrated node as the UAV moves. (a) The initial position of
the UAV and uncalibrated node; (b) the possible positions of the uncalibrated nodes at the initial
moment; (c) as the UAV moves along the x-axis direction, the uncertainty in the x-axis direction
gradually decreases; (d) as the UAV moves along the y-axis direction, the uncertainty in the y-axis
direction gradually decreases.

To solve the inverse localization problem of unknown UWB nodes in a 3D environment
using the distance measurements of the UAV, we adopted the RO-localization framework.
The observation model of the system in Section 2.1 is a nonlinear model. To improve the
localization accuracy and avoid large truncation errors, similar to those experienced with
EKF, we established a UKF framework to solve the RO-localization problem.

The UKF uses UT transform to achieve linear approximation based on the mean and
variance approximation, which was first proposed by Julier et al. [26]. In this study, they
proved that the accuracy of the UT transform is not lower than the linear approximation
based on the third-order Taylor expansion, and the existing EKF is usually based on the
first- or second-order Taylor expansion. This leads to the estimation accuracy of the UKF
being higher than that of the EKF. Therefore, we developed a UKF-based RO-localization
algorithm to improve the estimation accuracy of inversion localization.

However, since UT transform needs to obtain sigma points and their state prediction
multiple times, the computational complexity of the UKF is much higher than that of the
first-order Taylor-expansion-based EKF. To cope with this problem, we further developed
a derivative algorithm based on the UKF based RO-localization algorithm to reduce the
computational complexity.

3.2. Reduction in Computational Complexity

The linear Kalman filter (KF) cannot be used for calculation because the observation
model of the system is nonlinear (as described in Section 2.1). Accordingly, we introduced
the unscented Kalman filter (UKF), which helps achieve accurate results. However, 2n + 1
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sigma points must be implemented with the complete filtering processes in the UKF during
the linearization of the nonlinear model. This substantially increases the complexity of
the calculation.

We noticed that the system has a linear state model, as shown in Equation (2), and a
nonlinear observation model, as shown in Equation (4). Hu et al. [24] proposed a derivative
method to reduce the computational complexity of the system where either the system
state model or the system observation model is linear. In other words, the standard KF is
used for processing the linear part of the system, while the mean- and variance-based linear
approximation is applied for the nonlinear part. In our previous work [27], we employed
the same idea to successfully reduce the computational complexity of UWB-based location
systems. Here, we also introduced derivative methods to reduce the computational burden.
The specific steps of the algorithm are as follows:

First, the system state prediction can be directly updated in linear time for the given
initial value of the iteration (X̂k) and the initial error covariance (Pk), because the system
has a linear state equation, as shown in Equation (2).

X̂k+1|k = AX̂k + wk (7)

Pk+1|k = APk AT + Qk (8)

Then, the Sigma point set can be calculated based on Equations (7) and (8):
η0

k+1 = X̂k+1|k
ηi

k+1 = X̂k+1|k + Sk+1|k
√
(n + λ), (1 ≤ i ≤ n)

ηi
k+1 = X̂k+1|k − Sk+1|k

√
(n + λ), (n + 1 ≤ i ≤ 2n)

(9)

where λ is the scaling parameter, which controls the sampling interval of the sigma point
around xk+1|k; n is the dimension of the system state vector, which was 15 in this study;
Sk+1|k is obtained by Cholesky decomposition of the error covariance Pk+1|k. Then, the
measurement of the obtained sigma points can be predicted:

ζ i
k+1 = H

(
ηi

k+1

)
, (0 ≤ i ≤ 2n) (10)

where ζ i
k+1 represents the measurement prediction of the ith sigma point at time k + 1.

Then, we can calculate the measurement prediction and covariance of the system at time
k + 1:

Ẑk+1|k =
2n

∑
i=0

ωi
mζ i

k+1 (11)

PẐk+1|k
=

2n

∑
i=0

ωi
c

(
ζ i

k+1 − Ẑk+1|k

)(
ζ i

k+1 − Ẑk+1|k

)T
+ Rk (12)

where ω is the weight of the ith sigma point, which is usually determined by the
following equation: 

ω0
m = λ

n+λ

ω0
c = λ

n+λ +
(
1− α2 + β

)
ωi

m = ωi
c =

λ
2(n+λ)

, (1 ≤ i ≤ 2n)
(13)

Subsequently, we can calculate the cross-covariance between the system state predic-
tion and the measurement prediction based on the state prediction of the system, the sigma
point set, and the associated measurement prediction at time k + 1:

PX̂k+1Ẑk+1
=

2n

∑
i=0

wi
c

(
ηi

k+1 − X̂k+1|k

)(
ζ i

k+1 − Ẑk+1|k

)T
(14)
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Then, the Kalman gain K can be obtained:

Kk+1 = PX̂k+1Ẑk+1
P−1

Ẑk+1|k
(15)

Finally, the system state and covariance can be updated based on the Kalman gain K:

X̂k+1 = X̂k+1|k + Kk+1

(
Zk+1 − Ẑk+1|k

)
(16)

Pk+1 = Pk+1|k − Kk+1PẐk+1|k
KT

k+1 (17)

As is shown in Equations (7) and (8), many redundant calculations of sigma points are
avoided due to the application of linear update in the state prediction stage, which consid-
erably reduces the overall computational burden of the algorithm. A specific quantitative
analysis of the computational complexity is provided in Section 4.1.

3.3. Robustness

The introduction of the derivative algorithm successfully lowers the overall com-
putational complexity by eliminating redundant calculations in the state prediction part.
However, during the experiments, we found that the estimation error covariance matrix is
often positive semidefinite, which causes the filtering process to be unstable.

The reason for this problem is that the Cholesky decomposition adopted in the UKF
and DUKF requires the decomposed matrix to be strictly positive. To deal with this problem,
singular value decomposition (SVD) was proposed to replace Cholesky decomposition in
the UKF [25], which can more effectively decompose the positive semidefinite covariance
matrix and improve the robustness of the algorithm. Similarly, we also introduced SVD
into the DUKF algorithm in this study. The specific steps of the improved algorithm are
as follows:

As shown in Equation (9), Sk+1|k is calculated by decomposing the error covariance
Pk+1|k using the Cholesky decomposition. In comparison, here, we use the SVD method to
decompose Pk+1|k. When Pk+1|k is a non-negative definite symmetric matrix, we have:

Pk+1|k = Uk+1|kΛk+1|kUk+1|k
T (18)

With Λk+1|k = Dk+1|k
2, we have:

Pk+1|k = Uk+1|kDk+1|kDk+1|kUT
k+1|k (19)

Substituting Equation (19) into Equation (9) yields:
η0

k+1 = x̂k+1|k
ηi

k+1 = x̂k+1|k + Uk+1|kDk+1|k
√
(n + λ), (1 ≤ i ≤ n)

ηi
k+1 = x̂k+1|k −Uk+1|kDk+1|k

√
(n + λ), (n + 1 ≤ i ≤ 2n)

(20)

Then, we can use the sigma points obtained in Equation (20) to replace Equation (9).
This operation is the essence of the SVD-DUKF algorithm. The specific steps of the SVD-
DUKF-based 3D RO-SLAM algorithm are provided below.

3.4. Detailed Steps of the Algorithm

After integrating SVD-DUKF into the 3D range-only RO-SLAM proposed in Section 3.2,
we obtained a simplified algorithm that can complete similar tasks but has a lower compu-
tational burden, which we call the SVD-DUKF-based 3D Range-only RO-SLAM algorithm.
The specific steps of this algorithm are shown in Algorithm 1.
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Algorithm 1: Detailed steps of the range-only 3D RO-SLAM based on SVD-DUKF.

Input: X̂k, Pk, uk
Output: X̂k+1, Pk+1, A1–A4
1. Perform linear state prediction on Pk and X̂k to obtain Pk+1|k and X̂k+1|k;
2. Implement SVD on Pk+1|k to obtain Dk+1|k;
3. Calculate the sigma point according to Equation (20) to obtain

ηi
k+1, i = 0, . . . , 2n;

4. Calculate the measurement prediction of the sigma point according to the
measurement equation, and obtain ζ i

k+1, i = 0, . . . , 2n;
5. Combine the sigma points to obtain the overall measurement prediction of the

system Ẑk+1|k;
6. Calculate the measurement covariance PẐk+1|k

based on the measurement

prediction of the system and sigma points;
7. Calculate system cross-covariance PX̂k+1Ẑk+1

based on measurement prediction
and state prediction;

8. Calculate the Kalman gain K based on the measured covariance PẐk+1|k
and

cross-covariance PX̂k+1Ẑk+1
;

9. Update the system state and error covariance to obtain Pk+1 and X̂k+1;
10. Strip the 4th to 12th elements in A1–A4 as A1–A4 and output them as the

results of the RO-SLAM algorithm;
11. Set Pk+1 and X̂k+1 as the new initial values, and repeat steps 1–10.
12. end.

4. Analysis of Computational Complexity and Stability

In the previous section, we improved the estimation accuracy and computational
complexity of the original 3D RO-localization algorithm, and ensured its robustness. In this
section, we analyze the computational complexity and stability of the proposed algorithm.

4.1. Computational Complexity Analysis

In this study, each multiplication or addition operation was defined as a flop. The
total number of flops represented the computational complexity of the algorithm. Table 2
shows the computational complexity of the original UKF and SVD-DUKF algorithms with
15-dimensional state equations and 10-dimensional observation equations for the system
described in Section 2.1.

Table 2. Computational complexity analysis of three systems.

Step Algorithm Original
System (5 + 5)

Augmented
System (6 + 6)

Simplified
Augment

System (6 + 4)

Calculation
of Cubature Points

Pk = SkS−1
k

ξ j,k = Skχj + Xk
ξ j,k+1|k = A(ξ j,k)

450 flops
460 flops
200 flops

792 flops
844 flops
552 flops

508 flops
538 flops
300 flops

Time update Xk+1|k =
m
∑

j=1
ωjξ j,k+1|k 50 flops 72 flops 52 flops

Prediction
of covariance update

Pk+1|k =
m
∑

j=1
ωj(Xk+1|k − ξ j,k+1|k)·

(Xk+1|k − ξ j,k+1|k)
T + Qk

260 flops 372 flops 270 flops

Measurement forecast Zk+1|k = H(Xk+1|k) 90 flops 132 flops 94 flops
Calculation

of Kalman gain
Kk = Pk+1|k HT · (HPk+1|k HT + Rk)

−1 1504 flops 2596 flops 1684 flops

Status update Xk+1 = Xk+1|k + Kk(Zk+1 − Zk+1|k) 30 flops 36 flops 30 flops
Covariance update Pk+1 = (I − Pk+1|k H)Pk+1|k 950 flops 1656 flops 1068 flops

Total N/A 3994 flops 7052 flops 4544 flops
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As shown in Table 2, the simplified SVD-DUKF algorithm requires 3054 flops (43.42%)
less than the original UKF algorithm in each iteration. Therefore, we concluded that the
simplified SVD-DUKF algorithm successfully reduces the computational burden of the RO-
SLAM algorithm in the filtering process. The simulation results supporting this conclusion
are provided in Section 5.2.

4.2. Stability Analysis

The stability analysis and lower bounds of error for DUKF were provided by
Hu et al. [28]. They proved that the DUKF has similar stability to and lower bounds
of error than the original UKF. However, although they proved that the DUKF can achieve
convergence under positive semidefinite error covariance, the Cholesky decomposition
cannot be applied to semipositive semidefinite matrices. Therefore, the filter cannot con-
tinue to run when the covariance matrix is positive semidefinite. They added a minimal
positive definite matrix to the error covariance matrix during each iteration to ensure the
matrix is positive definite as the solution. However, the added matrix affects the estimation
accuracy of the filter after multiple iterations. Especially in the case of high sensor accuracy
or long-term estimation, this situation becomes more serious. For this problem, we intro-
duced SVD decomposition to the DUKF. The final result is that the proposed SVD-DUKF
algorithm has similar stability to and error lower bounds than the original UKF, and can
operate under positive semidefinite error covariance matrices.

5. Experiment Verification

To verify the performance of the algorithms proposed in Sections 3 and 4, we con-
ducted numerical simulations on an x86 microcomputer and physical experiments on a
UAV platform. Next, we introduce the simulation settings and the experimental details.

5.1. Numerical Simulations

To verify the performance of the proposed algorithms, we simulated the UKF-
and SVD-DUKF-based algorithms on an x86 PC with an Intel Core i5 7500 CPU with
16 GB memory. The simulation environment was MATLAB 2019a. The system models
adopted in the numerical simulation were described in Section 2.1. We added un-
correlated Gaussian noise as the process noise of the system, and the measurement
noise conformed to a normal distribution. In the simulations, we tested the original
UKF-based and SVD-DUKF-based RO localization algorithms, and we simulated a total
of 1500 Monte Carlo experiments and took the mean of their results to evaluate their
localization accuracy and computational burden. Because the UKF is no less accurate
than the EKF with linearized approximation by third-order Taylor expansion [26], the
EKF, in practice, is usually based on linearized approximation by first-order Taylor
expansion. Therefore, the accuracy of the EKF is theoretically much lower than that of
the UKF. For this reason, we only performed numerical simulations of original UKF-
and SVD-DUKF-based algorithms in this study. The specific parameters of simulation
are shown in Table 3.

The simulation results are shown in Figures 4–6. Figure 4 shows the average lo-
calization error of each node from 1500 Monte Carlo trials. The figure shows that the
two algorithms have similar error curves for the localization of all four nodes, which shows
that the two algorithms have basically consistent localization performance. Figures 5 and 6
show samples of the two filtering algorithms with 1500 Monte Carlo trials, where these
two algorithms show similar performance.
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Table 3. Parameters used in the simulation.

Item Parameter

Initial state

UAV coordinate: x1 = [1, 1, 0]T

Controls : Changes with time
node 1 coordinate: A1 = [9, 5, 6]T

node 2 coordinate: A2 = [8, 12, 3]T

node 3 coordinate: A3 = [3, 8, 6]T

node 4 coordinate: A4 = [6, 10, 4]T

X1 = [x1, A1, A2, A3, A4]T

Simulation time 1000 (/s)
Sampling time T = 1

Initial estimate X1 X̂1 = X1 + N( 0, P1 )
Initial covariance P1 15-order diagonal identity matrix

Driving function of process noise

G =

 wu · · · 0×12
...

. . .
...

0×12 · · · 0×12


wu =

 T 0 0
0 T 0
0 0 T


Distribution of process noise wk N(0, 0.09)

Distribution of measurement noise rk N(0, 0.05)
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Figure 4. Average localization errors of 4 nodes in 1500 Monte Carlo trials. The red line represents
the RO localization based on the original UKF, and the blue line represents the RO localization based
on SVD-DUKF.

Table 4 shows the average calculation time required for the 1500 Monte Carlo trials
for the two algorithms. The calculation time of the SVD-DUKF based algorithm is about
10.24% lower compared to that of the original UKF-based algorithm. In the theoretical
analysis in Section 4.1, the calculation complexity of the simplified algorithm was reduced
by more than 20% due to the calculation of the other parts of the entire algorithm except
filtering, such as SVD decomposition.
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Figure 5. One Monte Carlo trial of the UKF-based 3D RO-localization algorithm.
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Figure 6. One Monte Carlo trial of the SVD-DUKF-based 3D RO-localization algorithm.

Table 4. Average calculation time.

Item Original UKF-Based Algorithm SVD-DUKF-Based Algorithm

Average Calculation time (s) 0.5376 0.4826

According to the simulation results, the simplified RO-SLAM algorithm proposed in
Section 4 has similar precision to the original algorithm but a computational burden that is
lower by about 10%. This allows the UAVs to use a lower-energy CPU to obtain a longer
airborne time or a higher system refresh rate to achieve compliant control.

5.2. Physical Experiment

After verifying the performance of the proposed algorithm through numerical simula-
tions, we used the data of a physical UAV to verify the actual performance of the proposed
algorithm. The hardware adopted in the experiment is shown in Figure 7, and the specific
technical parameters are provided in Table 5. The actual states of each node is obtained by
manual measurement.
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Figure 7. Sensor and UAV adopted in this study: (A) LinkTrack-P UWB rangefinder (NoopLoop,
Shenzhen, China); (B) P450 UAV (Amovlab, Chengdu, China).

Table 5. Hardware parameters.

Item Details

Onboard CPU Nvidia Jetson Xavier NX
Hashrate 21TOPs

Flight control system Pixhawk
Onboard OS Promeheus V1.0

Size 335 × 335 × 230 mm
Rotor number 4

Diagonal wheelbase 410 mm

Ranging accuracy 2D: mean 10 cm, standard deviation 5 cm
3D: mean 30 cm, standard deviation 15 cm

Maximum range 500 m
Maximum frequency 200 Hz

The experimental scene is shown in Figure 8. We placed four UWB nodes with
different heights in the experimental site. Each UWB node had complete ranging and
communication functions, and the fifth UWB node (also had complete functions) was
equipped on the UAV. The position of node 1 was the origin of the x-axis and y-axis, and
the ground altitude of the UAV was the origin of the z-axis. We had the UAV take off and
fly back to the starting point, we recorded the data obtained by the UWB sensors during
this flight, and performed RO-localization. The video of the experiment can be found at
[https://www.bilibili.com/video/BV1Tr4y1k7rU/ (accessed on 22 March 2022)]. The
parameters set in the experiment are provided in Table 6 (some parameters that were the
same as in the simulation are not described in detail, and can be found in Table 3).

The results are shown in Figure 9: the final convergence error of the physical exper-
iment is similar to that of the result of the simulation. Therefore, the SVD-DUKF-based
3D range-only localization algorithm proposed in this paper can be applied for precise
localization of fixed nodes in a 3D environment with range-only measurements.

https://www.bilibili.com/video/BV1Tr4y1k7rU/
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Table 6. Parameters used in the experiment.

Parameter Values

Initial state

UAV coordinate: x1 = [0, 0, 0.24]T

Controls : Changes with time
node 1 coordinate: A1 = [2.023, 0, 1.06]T

node 2 coordinate: A2 = [0, 2.023, 0.52]T

node 3 coordinate: A3 = [4.046, 2.023, 1.5]T

node 4 coordinate: A4 = [0,−2.023, 0.14]T

X1 = [x1, A1, A2, A3, A4]T

Simulation time 69 (/s)
Sampling time T = 0.05

Initial estimate X1 15 × 1 Identity matrix vector
Initial covariance P1 15-order diagonal identity matrix

Distribution of process noise wk N(0, 0.0081)
Distribution of measurement noise rk N(0, 0.022)

Figure 8. Experiment scene.
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Figure 9. Localization error of UWB nodes in a physical experiment.
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However, node 2 had a high localization error that showed a tendency to increase.
After analyzing the data of the UWB rangefinder, we found that the ranging information
of the node 2 had some non-Gaussian noise. As a result, the RO-localization position
information of node 2 was considerably affected. In addition, as shown in Figure 10, this
noise was proportional to the magnitude of the range values and showed a Gaussian
distribution when the range values were similar. Based on this characteristic, we think that
this occurred due to the longer distance between node 2 and the UAV, which caused flicker
noise during range measurement. In future research, we will attempt to solve this problem.

experimental time
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Figure 10. Range measurement of node 2.

6. Conclusions

In this paper, we proposed the SVD-DUKF-based RO-localization algorithm for locating
unknown UWB nodes in a 3D environment based only on distance measurements of a moving
UWB module. By exploiting the linear property of the state evolution equation, the algorithm
was improved by reducing the computational burden while ensuring localization accuracy. In
addition, to solve the convergence problem caused by linearization approximation error, singular
value decomposition was incorporated into the derivative algorithm. Through simulation
examples and practical experiments, we showed that the proposed method can provide accurate
3D localization of uncalibrated UWB nodes in an indoor environment. This allows the UAV to
more precisely locate feature points in a map in 3D based on range-only measurement, which
enables better completion of the 3D RO-SLAM task.

The following aspects will be investigated in our future work:

1 The effect of non-Gaussian noise in the positioning process.
2 Integrating the proposed algorithm into a 3D RO-SLAM program for experiments to

verify its practical performance in SLAM tasks.
3 Extending the 3D RO-SLAM algorithm to dynamic environments for development in

cooperative UAV localization.
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