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Abstract: Markov decision processes (MDPs) are widely used to model stochastic systems to deduce
optimal decision-making policies. As the transition probabilities are usually unknown in MDPs,
simulation-based policy improvement (SBPI) using a base policy to derive optimal policies when the
state transition probabilities are unknown is suggested. However, estimating the Q-value of each
action to determine the best action in each state requires many simulations, which results in efficiency
problems for SBPI. In this study, we propose a method to improve the overall efficiency of SBPI
using optimal computing budget allocation (OCBA) based on accumulated samples. Previous works
have mainly focused on improving SBPI efficiency for a single state and without using the previous
simulation samples. In contrast, the proposed method improves the overall efficiency until an optimal
policy can be found in consideration of the state traversal property of the SBPI. The proposed method
accumulates simulation samples across states to estimate the unknown transition probabilities. These
probabilities are then used to estimate the mean and variance of the Q-value for each action, which
allows the OCBA to allocate the simulation budget efficiently to find the best action in each state. As
the SBPI traverses the state, the accumulated samples allow appropriate allocation of OCBA; thus,
the optimal policy can be obtained with a lower budget. The experimental results demonstrate the
improved efficiency of the proposed method compared to previous works.

Keywords: Markov decision process; simulation-based policy improvement; optimal computing
budget allocation; stochastic system optimization

1. Introduction

A Markov decision process (MDP) is a discrete-time stochastic control scheme that
aims to solve stochastic decision-making problems. Research on stochastic decision-making
problems has been widely reported in numerous fields, such as physics [1,2], finance [3],
and biology [4]. Intuitively, decision-making in MDP-based complex systems involves a
process of finding an optimal policy. This has been leveraged to simulate real dynamic
environments of complex systems to derive optimal solutions (i.e., policies) to predict or
improve system performance; see these examples of a robot motion planning system [5],
a dataflow system [6], and a mobile edge computing system [7]. The MDP consists of a
set of discrete states and a finite set of actions. The MDP policy involves mapping from
states to actions. When an action is implemented following the policy in a given state, it
is transferred to a new state according to the transition probability and receives a reward,
as shown in Figure 1. The objective of the MDP is to find an optimal policy, and the
optimal policy consists of the best actions that maximize the expected sum of discounted
rewards (i.e., Q-value) in each state. Since the MDP mimics practical management systems,
the action space is typically large and transition probabilities are usually not known in
advance; thus, directly finding the optimal policy is impractical and time consuming.
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Figure 1. An example of MDP, where a circle represents a state and a square represents an action that
is available in the state. P represents an unknown state transition probability, a reward is denoted by
r, and π is the policy.

When it is not feasible to directly determine an optimal policy, a more appropriate
solution is to improve from a given base policy, which is effective and often available
in engineering practice. Simulation-based policy improvement (SBPI) (also known as
rollout) [8] is a heuristic method of improving the base policy gradually by simulations.
In a given state, SBPI estimates the Q-value of each action using simulations and updates
the policy in the state with the selected best action depending on these values. Due to the
ease of implementation of SBPI, it has been widely applied for many problems, including
electric vehicle charging [9] and post-hazard recovery [10]. However, when the number of
available actions in each state is large or the reachable states are numerous, each collected
simulation sample may result in large variance. Thus, for selecting the best action accurately,
a large simulation budget (i.e., a large number of simulation replications) is required to
estimate the Q-value of each action, which results in an efficiency problem.

Ranking and selection (R&S) procedures can be used to address the above problem
because they can efficiently select the best action under a limited simulation budget by
allocating the budget based on statistical inference. There are various types of R&S proce-
dures, such as indifference-zone [11], uncertainty evaluation [12], and optimal computing
budget allocation (OCBA) [13]. Among them, OCBA is used in many fields owing to its
excellent efficiency, simplicity, and strong theoretical background. It allocates the simu-
lation budget to asymptotically maximize the lower bound of the probability of correct
selection based on the ratio of the sample mean to sample variance. Based on the merits
of OCBA, Jia et al. [14] applied it to improve the efficiency of SBPI and efficiently find the
best action for a given state. Wu et al. [15] developed a sample path sharing procedure
to further improve upon the above work. For a given state, a sample path is obtained by
selecting an action and thereafter following the given policy. When the number of sample
paths increases, the overlaps between the sample paths generated by different actions allow
accurate estimation of the Q-value for each action. They reported that the sample path
sharing procedure dramatically improves the efficiency of SBPI compared to the previous
methods [14].

To derive the optimal policy, the SBPI should traverse all states until the base policy of
each state can no longer be improved. However, the above works focus on improving the
efficiency of the SBPI in a single state; i.e., there is room to further improve the efficiency of
finding the optimal policy with SBPI. In this work, we propose a method to improve the
overall efficiency of SBPI using OCBA and sample accumulation. Specifically, the proposed
method accumulates simulation samples across all states to estimate the unknown state
transition probabilities. These probabilities are used to estimate the mean and variance
of the Q-value for each action. As the SBPI traverses the states, the probabilities become
more accurate, thereby enabling precise estimations of the mean and variance. They allow
the OCBA to allocate a budget suited to each action and to select the best action for a
low cost. Thus, the proposed method can reduce the total budget required to derive the
optimal policy with SBPI compared to other methods, which is demonstrated using two
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MDP examples. The present work was adapted from our previous work [16], which used
accumulated samples to estimate the mean of the Q-values. We expanded the use of
these samples to further estimate the variance of the Q-values by fully adapting to the
OCBA workflow.

2. Problem Definition

Herein, we consider a discrete-time MDP with discrete state space S and discrete
action space A. In the MDP, the policy learner or decision-maker is called the agent.
Assume that the agent is at state s and performs an action a. Then it transits to a new
state in the set of reachable states Sa

s = {s1, s2, s3} that are determined by the unknown
transition probabilities Pa

ss1
, Pa

ss2
, Pa

ss3
. The agent receives one of the numerical rewards

r(s1), r(s2), r(s3) based on the state of arrival. We define a random variable h(s, a), whose
possible outcomes are the rewards received when arriving at the corresponding state by
taking the action a:

h(s, a) ∈ {r(s1), r(s2), r(s3)}. (1)

If the transition probabilities are known, the expected reward for the action a in state s can
be calculated as:

E[h(s, a)] = Pa
ss1
· r(s1) + Pa

ss2
· r(s2) + Pa

ss3
· r(s3). (2)

Now, we formulate the policy improvement problem. In this study, we only consider
a deterministic stationary policy π (i.e., a mapping from S to A), which is a guideline for
the agent for the action that should be taken in a particular state. Assume that there exists
a base policy π. For a given state s, if an action a is taken and then the base policy π is
followed afterward, the Q-value of the action a ∈ A can be defined as:

Qπ(s, a) = lim
T→∞

{
E[h(s, a)] + Eπ

[
T−1

∑
t=1

γth(st, π(st))

∣∣∣∣∣s, a

]}
, (3)

where T is the terminal time index, γ ∈ [0, 1] is the discount rate, and st is one of the

reachable states at time t (i.e., st ∈ Sπ(st−1)

st−1 ). Eπ indicates the expected sum of discounted
rewards obtained by taking actions following the given policy π from time 1 to T − 1.
Using the definition above, the policy improvement at state s can be defined as:

πPI(s) = ab = arg maxa∈{a1,a2,...,ak}Qπ(s, a), (4)

where πPI is the improved policy from π by updating the previous action π(s) with the best
action ab in s. In practice, the transition probabilities are usually unknown, and Qπ(s, a)
cannot be calculated directly. Thus, Equation (3) can only be calculated using an infinite
number of simulation replications n; i.e.,

Qπ(s, a) = lim
T→∞

lim
n→∞

1
n ∑

n∈N

{
h(s, a) +

[
T−1

∑
t=1

γth(st, π(st))

∣∣∣∣∣s, a

]}
. (5)

Since it is practically infeasible to take actions infinitely in a simulation replication, T
becomes a decision variable called epoch, and Equation (5) is approximated by

QT
π(s, a) = lim

n→∞

1
n ∑

n∈N

{
h(s, a) +

[
T−1

∑
t=1

γth(st, π(st))

∣∣∣∣∣s, a

]}
. (6)
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That is, in a single replication, T actions, including action a from state s, are sequentially
taken depending on π, and a sample trajectory of QT

π(s, a) can be obtained as follows:

Q̇T
π(s, a) = h(s, a) +

[
T−1

∑
t=1

γth(st, π(st))

∣∣∣∣∣s, a

]
. (7)

In practice, the number of simulation replications n is typically limited; thus, QT
π(s, a) can

be estimated from the average of the sample trajectories:

Q̄T
π(s, a) =

1
n

n

∑
l=1

Q̇T,l
π (s, a), (8)

when n is large, due to the central limit theorem, it is reasonable to assume that Q̄T
π(s, a)

follows a normal distribution of QT
π(s, a) [17].

For each s ∈ S, the SBPI estimates Q̄T
π(s, a) for every available action using many

simulation replications and improves π by replacing the base action π(s) with the estimated
best action ae:

πSBPI(s) = ae = arg maxa∈{a1,a2,...,ak}Q̄
T
π(s, a). (9)

To improve π exactly using the SBPI, the selection of ae should be correct (i.e., ae = ab)
at each s. From this point of view, the probability of the correct selection P{CS} can be
defined according to [14] as

P{CS} = P{ae = ab}
= P

{
Q̃π(s, ae) ≥ Q̃π(s, a)− ε

}
.

(10)

Here, ε ≥ 0 is the tolerance level, and Q̃π(s, a) is the posterior distribution of Qπ(s, a).
Increasing n and T for each action can maximize P{CS}, but it causes the efficiency problem
of the SBPI, as mentioned earlier.

To solve the problem, the existing methods [14,15] apply OCBA to allocate a given
simulation budget N efficiently; i.e.,

arg max{n1,...nk ,T}P{CS},

s.t.
k

∑
i=1

niT = N, and ni ≥ 0,
(11)

where ni is the number of simulation replications allocated to estimate the Q-value of the
ith action. Under this definition, the OCBA aims to accurately allocate N to each action so
that the best action can be correctly selected with higher P{CS}, thereby improving the
efficiency of SBPI. The allocation rule of OCBA [14] is defined as follows:

ni
nj

=

[
σi/(δT

e,i + ε− 2c)

σj/(δT
e,j + ε− 2c)

]2

,

ne = σe

√√√√ k

∑
i=1,i 6=e

(
ni
σi

)2
, i 6= j 6= e,

(12)

where δT
e,i ≡ Q̄T

π(s, ae) − Q̄T
π(s, ai), σ2

i is the variance of Q-value for action ai, and
0 ≤ c ≤ ε/2 is a constant determined by ε. In practice, σ2

i is unknown in advance
and so is approximated by sample variance [13]. In Equation (11), T is a decision variable,
which is an important hyperparameter to determine the optimal simulation length while
ensuring that the estimation of the action is as close as possible to the estimation with infi-
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nite simulation length. To determine the optimal T for each simulation sample, the authors
of [14] proposed

T =


log

[
c(1−γ)

F

]
log γ

, (13)

where d·e is the ceiling function and F is the maximum absolute reward; i.e., maxs∈S|r(s)|.
To find the optimal policy through SBPI, it is necessary to repeat the SBPI and traverse

across states until the policy is no longer improved. Here, the quality of the policy can be
evaluated as

Vπ(sα) = lim
T→∞

Eπ

[
T−1

∑
t=0

γth
(
st, π(st)

)∣∣∣∣∣sα

]
, (14)

where Vπ(sα) is the expected sum of discounted reward obtained by sequentially taking
actions based on π from the initial state sα. Vπ(sα) is maximized if π is the optimal policy
π∗. The iteration number of SBPI is denoted as m. When the total simulation budget is
given as B, the problem of finding π∗ using SBPI can be defined as

max Vπm
PI
(sα) s.t. Nm = B, (15)

where πm
PI represents the improved policy via mth SBPI. If N increases, the existing meth-

ods [14,15] can correctly select the best action in each state and improve the policy. However,
before π converges to π∗, the selected best action may not be the actual best action. In other
words, the best action in the same state may change as the policy is updated, as shown
in Equation (9). When B is fixed, increasing N causes insufficient iterations of the SBPI.
Hence, regardless of how correctly the best action is selected in each state, the existing
methods may not converge to π∗. Considering the this issue, it is necessary to decrease
N and increase m to find the optimal policy. However, the existing methods may not be
able to correctly select the best action when N is small, since they discard the previous mea-
surements after each update. In the next section, we propose a method for accumulating
simulated samples to allow the OCBA to allocate small N efficiently and select the best
action correctly.

3. Proposed Method

Herein, we illustrate the proposed method in two parts. Firstly, we show how to
utilize accumulated samples to estimate the unknown transition probabilities. Secondly, we
utilize the probability estimates to derive the mean and variance of the Q-values for OCBA
to accurately allocate the budget. As defined in Equation (3), if the transition probabilities
are known, they can be unrolled as

Qπ(s, a) = ∑
s′∈Sa

s

Pa
ss′

r
(

s
′)

+ γ ∑
s′∈Sa

s

Pa
ss′ ∑

s′′∈Sπ(s′ )
s′

Pπ(s
′
)

s′ s′′
r
(

s
′′)

+ . . .

+ γT−1 ∑
s′∈Sa

s

Pa
ss′

. . . ∑
s′(T)∈Sπ(s

′(T−1))

s
′(T−1)

Pπ(s
′(T−1))

s′(T−1)s′(T)
r
(

s
′(T)
)

.
(16)

The formulation above can be further rewritten in a recursive form by extracting the
common factor ∑

s′∈Sa
s

Pa
ss′

:

Qπ(s, a) = ∑
s′∈Sa

s

Pa
ss′

[
r(s

′
) + γQπ(s

′
, π(s

′
))
]
. (17)

With Equation (17), Qπ(s, a) can be computed for all the action candidates in state s, and
the best action can be accurately selected using Equation (4). However, the transition prob-
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abilities are unknown beforehand. To this end, our method accumulates all the state–action
pairs generated by each simulation sample to estimate the unknown transition probabilities.

Let Na
ss′

be the cumulative number for arriving at a state s
′

when an action a is taken
in that state s. Then, the transition probability can be estimated as

P̂a
ss′

=
Na

ss′

∑si∈Sa
s

Na
ssi

. (18)

We use a table to store all the Na
ss′

for estimating and updating probabilities, as shown in
Figure 2. The first column in Figure 2 represents the possible state–action pairs. The first
row represents the reachable states.

To state

From state & 

action taken

𝒔𝟏 𝒔𝟐 … 𝒔𝒏

𝒔𝟏, 𝒂𝟏 : 𝑵𝒔𝟏𝒔𝟏

𝒂𝟏 𝑵𝒔𝟏𝒔𝟐

𝒂𝟏 … 𝑵𝒔𝟏𝒔𝒏

𝒂𝟏

𝒔𝟏, 𝒂𝟐 : 0 𝑵𝒔𝟏𝒔𝟐

𝒂𝟐 … 𝟎

⋮ ⋮ ⋮ ⋮ ⋮

𝒔𝒏, 𝒂𝒏 : 𝑵𝒔𝒏𝒔𝟏

𝒂𝒏 𝟎 … 𝑵𝒔𝒏𝒔𝒏

𝒂𝒏

Figure 2. Table of the cumulative number of state–action pairs, where 0 represents the unreach-
able states.

As the simulation progresses, the state–action pairs accumulate and result in accurate
estimates of the transition probability. Thus, we use these estimates to derive the mean
and variance of the Q-values, which allows OCBA accurately allocate the given simulation
budget to each available action based on the sample accumulation. To derive the mean
with estimated probabilities, we substitute Equation (18) into (17):

Q̂π(s, a) = ∑
s′∈Sa

s

P̂a
ss′

[
r(s

′
) + γQ̂π(s

′
, π(s

′
))
]
. (19)

When the samples are accumulated, the probability estimates are approximate equal to
the real probability distribution, thereby ensuring that Q̂π(s, a) is an unbiased estimated
mean of the Q-value. For the variance of the Q-value, we utilize the variance definition of a
random variable as follows:

σ2
π(s, a) = Eπ

(h(s, a) +
T−1

∑
t=1

γth(st, π(st))

)2
∣∣∣∣∣∣s, a

−Qπ(s, a)2. (20)

Unrolling the quadratic sum in Equation (20), we then have

σ2
π(s, a) = ∑

s′∈Sa
s

Pa
ss′

r(s
′
)2 + 2 ∑

s′∈Sa
s

Pa
ss′

r(s
′
)Eπ

[
T−1

∑
t=1

γth(st, π(st))

∣∣∣∣∣s′ , π(s
′
)

]

+ ∑
s′∈Sa

s

Pa
ss′

Eπ

(T−1

∑
t=1

γth(st, π(st))

)2
∣∣∣∣∣∣s′ , π(s

′
)

−Qπ(s, a)2.

(21)

From the equation above, we can observe that the first term Eπ

[
∑T−1

t=1 γth(st, π(st))
]

has a form similar to Equation (3). The difference here is that it multiplies γ from the
first state and follows the base policy from the beginning. Further, the second term
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Eπ

[(
∑T−1

t=1 γth(st, π(st))
)2
]

has a form similar to the expected form in Equation (20). Thus,

we extract γ from the first term and γ2 from the second term

σ2
π(s, a) = ∑

s′∈Sa
s

Pa
ss′

r(s
′
)2 + 2γ ∑

s′∈Sa
s

Pa
ss′

r(s
′
)Eπ

[
T−1

∑
t=1

γt−1h(st, π(st))

∣∣∣∣∣s′ , π(s
′
)

]

+ γ2 ∑
s′∈Sa

s

Pa
ss′

Eπ

(T−1

∑
t=1

γt−1h(st, π(st))

)2
∣∣∣∣∣∣s′ , π(s

′
)

−Qπ(s, a)2.

(22)

It is clear that the term Eπ

[
∑T−1

t=1 γt−1h(st, π(st))
]

can be substituted by Qπ(s
′
, π(s

′
))

based on Equation (3), and the term Eπ

[(
∑T−1

t=1 γt−1h(st, π(st))
)2
]

can be rewritten as

σ2
π(s

′
, π(s

′
)) + Qπ(s

′
, π(s

′
))2 according to Equation (20). Thus, we have

σ2
π(s, a) = ∑

s′∈Sa
s

Pa
ss′
[γ2Qπ(s

′
, π(s

′
))2 + 2γr(s

′
)Qπ(s

′
, π(s

′
)) + r(s

′
)2]

+ γ2 ∑
s′∈Sa

s

Pa
ss′

σ2
π(s

′
, π(s

′
))−Qπ(s, a)2

= ∑
s′∈Sa

s

Pa
ss′

[
r(s

′
) + γQπ(s

′
, π(s

′
))
]2

+ γ2 ∑
s′∈Sa

s

Pa
ss′

σ2
π(s

′
, π(s

′
))−Qπ(s, a)2.

(23)

To simplify the equation above, we rewrite it in recursive form. Let R(s
′
) be a new re-

ward function

R(s
′
) =

[
r(s

′
) + γQπ(s

′
, π(s

′
))
]2
− Qπ(s, a)2

∑s′∈Sa
s

Pa
ss′

. (24)

Then, Equation (23) can be rewritten with Equation (24) as:

σ2
π(s, a) = ∑

s′∈Sa
s

Pa
ss′

[
R(s

′
) + γ2σ2

π(s
′
, π(s

′
))
]
. (25)

As the unknown transition probabilities can be calculated from the table, as shown in
Figure 2, the variance of the Q-values can be estimated as

σ̂2
π(s, a) = ∑

s′∈Sa
s

P̂a
ss′

[
R̂(s

′
) + γ2σ̂2

π(s
′
, π(s

′
))
]
, (26)

Despite the fact that the σ̂2
π(s, a) of each action’s Q-value may not be accurate at the

beginning of the iteration, the allocation rule of the OCBA enables additional simulation
replications to the promising action as the number of iterations increases by updating the
measurement for each action. Thus, the estimation of probabilities becomes accurate as
more samples are accumulated and results in an accurate estimate of the variance. To
estimate Q̂π(s, a) and σ̂2

π(s, a), we rewrite them into recursive forms. Since it is not feasible
to use an infinite number of T for estimation, we use Equation (13) to determine T. Then,
Q̂π(s, a)) and σ̂2

π(s, a) are approximated as

Q̂T
π(s, a) = ∑

s′∈Sa
s

P̂a
ss′

[
r(s

′
) + γQ̂T−1

π (s
′
, π(s

′
))
]
, (27)

σ̂2,T
π (s, a) = ∑

s′∈Sa
s

P̂a
ss′

[
RT(s

′
) + γ2σ̂2,T−1

π (s
′
, π(s

′
))
]
. (28)
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In the existing methods, the simulation budget allocated to estimate each Q̄T
π(s, a) in a

given state is limited to N. Thus, when N is small, inaccurate estimates of Q̄T
π(s, a) and

sample variance degrade the effectiveness of OCBA at allocating simulation replications to
each action and result in low efficiency of SBPI. On the other hand, the proposed method
accumulates simulation samples from the previous m updates (i.e., ∑m

1 N) to estimate and
update transition probabilities. These probabilities are then used to compute Q̂T

π(s, a) and
σ̂2,T

π (s, a) for the OCBA allocation rule of Equation (12), so that the OCBA can accurately
allocate N to each action in each state and help improve the overall efficiency of SBPI.
The proposed method is summarized in Algorithm 1.

Algorithm 1 Efficient simulation-based policy improvement with optimal computing bud-
get allocation based on accumulated samples.

Require: a base policy π, an incremental replication 4, simulation budget N, an initial
state sa ∈ S, total simulation budget B. Initialize the probability table. Set the iteration
number of SBPI m→ 1. Determine T using Equation (13).

1: while Nm ≤ B do
2: for s in S do
3: Initialize l → 0
4: if SBPI has never been applied to s then
5: Set nl

1 = · · · = nl
k = n0

6: Run n0 for a ∈ {a1, · · · , ak}, and store Na
ss′

7: Estimate P̂a
ss′

by (18) and Calculate Q̂T
π(s, a), σ̂2,T

π (s, a) for each a
8: else
9: Calculate Q̂T

π(s, a), σ̂2,T
π (s, a) by P̂a

ss′
and

10: set nl
1 = · · · = nl

k = 0
11: end if
12: Select ae ← arg maxa∈{a1,a2,...ak}Q̂

T
π(s, a)

13: while ∑k
i=1nl

i T < N do
14: Increase the simulation budget by4
15: Compute new allocation nl+1

1 , . . . , nl+1
k with Q̂T

π(s, a) and σ̂2,T
π (s, a) using (12)

16: Run additional max(0, nl+1
i − nl

i) simulations for each a
17: Update P̂a

ss′
and compute Q̂T

π(s, a), σ̂2,T
π (s, a)

18: Select ae ← arg maxa∈{a1,a2,...ak}Q̂
T
π(s, a) and set l ← l + 1

19: end while
20: return πPI(s)← ae
21: if Nm ≥ B then
22: break
23: else
24: m← m + 1
25: end if
26: end for
27: end while

In Algorithm 1, lines 12 to 16 show the procedure of OCBA using Q̂T
π(s, a) and σ̂2,T

π (s, a)
to allocate the simulation budget for each action. It is noted that Algorithm 1 initially
allocates n0 simulation replications to each action only when the SBPI has never been
applied to that state, whereas the existing methods allocate n0 to each action regardless
of whether the state has been visited. The reason for this is that our method stores the
accumulated samples from the previous updates and calculates the prior information for the
state (i.e., line 5, 6); it does not allocate n0 for the prior information in the next visit. For SBPI,
the estimated best action ae is considered as the best action for a given state and is used to
update the base policy. If the base policy is updated as the SBPI proceeds, the previously
selected ae may no longer be the best for the updated policy even in the same state. Owing
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to this property of SBPI, existing methods may waste some of the simulation budget for
previous policy updates when the SBPI is applied to each state to obtain the optimal policy.
To avoid this, Algorithm 1 accumulates simulation samples from the previous updates and
applies them to compute Q̂T

π(s, a) and σ̂2,T
π (s, a),a) to accurately deduce the optimal action

in the following m. As Algorithm 1 proceeds, the accumulated samples help SBPI obtain
the optimal policy with minimum m, thereby reducing the total simulation budget required.
This suggests that the proposed method is efficient for improving the overall efficiency of
SBPI, which accumulates the samples considering the property of SBPI.

The proposed method can be computationally inefficient owing to the recursive forms
of Q̂T

π(s, a) and σ̂2,T
π (s, a). However, this issue is tolerable compared to the simulation cost

of an actual system. For a real-world MDP system (e.g., water resource management),
a large duration of time is needed to return a reward. In this aspect, the computational
time taken by Q̂T

π(s, a) and σ̂2,T
π (s, a) is negligible relative to the running time of obtaining

the reward. Moreover, compared with the existing methods, the proposed method ha
higher efficiency for finding the optimal policy, as shown in the Experiments section. This
indicates that the superior efficiency of the proposed method is sufficient to mitigate its
limitation with respect to the recursive calculation.

4. Experiments

Herein, we compare our method with five existing methods (EA, OCBAPI [14], OCBA-
S [15], EA-sample accumulation (SA), and OCBAPI-SA) using two MDP models, namely, a
two-state example and its extended version. The extended version is used to verify the effec-
tiveness and efficiency of the proposed method in a more complex manner. The description
of the five methods is summarized in Table 1.

Table 1. Summary of comparison methods.

Method Description Allocation Rule Best Action Selection

EA Standard SBPI ni = N/k ae = arg maxaQ̄T
π(s, a)

OCBAPI Using OCBA to allocate the simula-
tion budget efficiently Equation (12) ae = arg maxaQ̄T

π(s, a)

OCBA-S Improving efficiency of OCBAPI
with sample path sharing Equation (12) ae = arg maxaQ̄T

π(s, a) a

EA-SA
Using sample accumulation for EA
to select the best action via Equa-
tion (27)

ni = N/k ae = arg maxaQ̂T
π(s, a)

OCBAPI-SA
Using sample accumulation for
OCBAPI to select the best action via
Equation (27)

Equation (12) ae = arg maxaQ̂T
π(s, a)

OCBAPI-SA2
(Algorithm 1)

Using the estimated mean from
Equation (27) and variance from
Equation (28) of the Q-value to effi-
ciently allocate computing budget
for OCBAPI-SA.

use Q̂T
π(s, a),

σ̂2,T
π (s, a) for

Equation (12)
ae = arg maxaQ̂T

π(s, a)

a Sample path sharing is used to calculate Q̄T,S
π (s, a); see more details in [15].

The two-state example was expanded by increasing the available actions in state
s2, as shown in Figure 3. The example had two states, and 20 actions were available
in each state. Action αi and βi were the ith elements in the action vector A = B =
[0.0, 0.05, . . . , 0.95]. The state transition probabilities were determined by the choice of
actions. For example, if the agent selected an action α2 in state s1, the probability of
remaining in state s1 was 0.05 and the probability of transferring to state s2 was 0.95. When
the agent arrived at state s1, it always received a reward of 0 but received a reward of 1
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when arriving at state s2. The extended version of the two-state example was obtained
by increasing the number of states from 2 to 10, as shown in Figure 4. The agent in the
extended model received a reward of 5 only when it reached state s10.

The base policy was set as selecting the action 0.5 in each state for two examples, and
state s1 was set as the initial state. In the two-state example, let the discount rate γ = 0.7 and
tolerance level ε = 0.1. Then, c = ε/2 = 0.05 is obtained and
T = d(log [c(1− γ)/F])/ log γe = 12, where F = 1. The simulation budget for each
method in each state was N = 60T. The number of iterations of the SBPI was m = 20
so that the total simulation budget was B = Nm = 1200T. In the extended example, we
only changed the tolerance level to ε = 0.5 and the iteration number to m = 100. For the
methods using OCBA, we set n0 = 2T, and incremental replication 4 = 2T. The value
function and PCS of each method were estimated over 5000 independent replicated experi-
ments, and the results are shown in Figure 5. In both examples, the proposed OCBAPI-SA2
converged to the optimal policy faster than the other methods, and the gap increased as
the problem complexity increased. All experiments were implemented based on Python
(version 3.7.9).
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Figure 3. A two-state Markov decision process.
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Figure 4. An extended version of the two-state example.

The results of EA-SA, OCBAPI-SA, and OCBAPI-SA2 indicate the effectiveness of the
sample accumulation in the SBPI. As shown in Figure 5A,C, these methods had superior
efficiencies to their original versions, i.e., EA and OCBA. As m increased, the accumulated
samples allowed precise estimates of Q̂T

π(s, a), which enabled the methods to select the
best action correctly, as shown in Figure 5B,D. Meanwhile, OCBA-S achieved a higher
P{CS} than EA-SA at the beginning iteration of SBPI, which can be attributed to its efficient
allocation rule and sample path sharing. However, the sample path sharing was limited to
a single state, EA-SA, and the sample accumulation improved as m increased.
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(A) (B)

(C) (D)

Figure 5. Graphs indicate the value function of the improved policy and P{CS} of each method for
the two examples: (A,B) the results of the two-state example; (C,D) the results of the extended version.

While OCBAPI-SA only used Q̂T
π(s, a) and sample variance for OCBA allocation,

OCBAPI-SA2 used Q̂T
π(s, a) and σ̂2,T

π (s, a) evaluated from the accumulated samples. When
N was small, OCBAPI-SA could not efficiently allocate4 to each action owing to inaccurate
sample estimates. On the contrary, OCBAPI-SA2 surpassed the limited N by accumulating
samples from previous updates to estimate Q̂T

π(s, a) and σ̂2,T
π (s, a). As SBPI proceeded,

OCBAPI-SA2 could efficiently allocate4 to the promising actions and resulted in a higher
P{CS} than OCBAPI-SA. Although the gap between them was relatively insignificant in
the two-state example owing to the small number of states, it became large in the complex
problem, as shown in Figure 5C,D.

5. Conclusions

In this study, we proposed a method called OCBAPI-SA2 that uses OCBA to improve
the overall efficiency of SBPI. Unlike existing methods, OCBAPI-SA2 aims to improve
the overall efficiency by considering the state traversal property of SBPI. To achieve this,
OCBAPI-SA2 applies SBPI to traverse across states and accumulates the simulation samples
to estimate the unknown transition probabilities. Then, it utilizes these probabilities to
compute the mean and variance of the Q-values for OCBA to efficiently allocate simulation
budget. With the accumulation of samples, OCBAPI-SA2 allows SBPI to obtain the optimal
policy with a lower simulation budget, which is important in practice for complex systems
with limited budgets. The experimental results show that the superior efficiency of the
OCBAPI-SA2 is comparable to those of existing methods. Considering the properties of the
SBPI, the sequence of improving policy has a significant impact on reducing the simulation
budget. To further improve the overall efficiency of SBPI, our future work will focus on the
optimal sequence of state traversal.
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