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Abstract: In this paper, a low-power and low-noise capacitive-coupled chopper instrumentation
amplifier (CCIA) is proposed for biopotential sensing applications. A chopping technique is applied
to mitigate the domination of flicker noise at low frequency. A new offset cancellation loop is also
used to deal with the intrinsic offset, originating from process variation, to reduce ripple noise at the
output of CCIA. Moreover, the optimization of the chip area was resolved by adding a T-network
capacitor in the negative feedback loop. The CCIA is designed on 0.18 µm process CMOS technology
with a total chip area of 0.09 mm2. The post-simulation results show that the proposed architecture
can attenuate the output ripple up to 41 dB with a closed-loop gain of 40 dB and up to 800 Hz of
bandwidth. The integrated input referred noise (IRN) of the CCIA is 1.8 µVrms over a bandwidth of
200 Hz. A noise efficiency factor (NEF) of 5.4 is obtained with a total power dissipation of 1.2 µW
and a supply voltage of 1 V, corresponding to a power efficiency factor of 9.7 that is comparable with
that of state-of-the-art studies.

Keywords: biopotential sensing; chopping; body control; input-referred noise; instrumentation
amplifier; low power

1. Introduction

Nowadays, more and more portable sensing systems in the form of wearable and
implantable devices are being used to monitor biopotential signals from human body.
Among those, the two most important are electrocardiograms (ECG) from the heart and
electroencephalograms (EEG) from the brain. Electrical tissue impedance (ETI) has been
used to detect the tissue composition for physiology and pathology [1]. Local field po-
tentials (LFPs) and action potentials (APs) are important for neuroscience research and
therapy. Sensing these signals is vital for diagnosing neurological disorders, brain–machine
interfaces, and neuroprosthetic technologies. Biopotential signals often have quite small
amplitudes, from 10 to 100 µV for EEG and about 1 mV for ECG. These signals exist at a
frequency range from 0.5 to 150 Hz [2,3]. The peak amplitude of LFPs and APs is about
1 mV and 100 µV, respectively. LFPs have a frequency band from 0.5 to 200 Hz, while that
of APs runs from 300 Hz to 10 kHz [4].

To read out the inherently low-power biopotential signals, the acquisition system,
illustrated in Figure 1, often consists of an instrumentation amplifier (IA). This amplifier is
known for its high input impedance and operation at a low frequency of biosignals. How-
ever, at this frequency range, flicker noise is the dominant noise source. To suppress this
noise, switched-biasing and bulk-switching techniques, also called as chopping techniques,
have been previously investigated in [5,6]. However, these techniques cause output ripples
as the upmodulated offset is added by an integrator stage. Several approaches have been
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proposed to reduce these ripples. Passive ripple reduction approaches were introduced
by different authors in [7,8]. In [7], a large chip area low-pass filter (LPF) is added at the
output stage to filter out the output ripple. The cutoff frequency of the LPF must be much
lower than the chopping frequency that affects the bandwidth of the amplifier [9]. In [8], a
high-power efficiency DC blocking is inserted at the output of the input stage to prevent
the current offset through the output chopper and the integrator output stage. However,
these amplifiers all suffer from the noise aliasing issue due to the added capacitor inside
the chopper loop [10].
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Figure 1. Block diagram of a biopotential acquisition system.

Active approaches were proposed by [9,11,12] to mitigate the drawbacks of the passive
approaches. In [9], a combination of passive and active approaches was proposed. This
technique uses a larger capacitor at the output of the first stage; therefore, the amplifier
still suffers from noise aliasing issue as per [8]. In [11], a switched-capacitor notch filter
is added to the input of the output stage to filter out the signals causing output ripple.
However due to the phase delay, this architecture suffers from instability around chopping
frequency f CH [13]. In [12], a ripple reduction loop (RRL) using the auto-zero approach has
been investigated. This technique allows the instrumentation amplifier to achieve a low
output ripple. However, this approach utilizes an AC-coupled capacitor to sense output
ripple, which increases the output load [13].

In this paper, a low-power and low-noise CCIA with a higher ripple attenuation
factor (RAF) is presented. The proposed architecture employs a modified RRL with a
low-pass filter that is equivalent to an auto-zero offset cancellation loop (A-OCL) to remove
the inherent intrinsic offset due to process variation. The Gm1’s output offset is sensed
and reduced by adjusting the transconductance gain through the A-OCL. In addition, to
achieve a highly efficient silicon chip area, a T-network capacitor [14] is also introduced
to play the role of the negative feedback capacitor. The rest of this paper is organized
as follows: Section 2 introduces the structure of the proposed capacitive-coupled chopper
instrumentation amplifier (CCIA), applying a new chopping technique based on the zero
offset cancellation loop. Section 3 details the circuit implementation of the feedback loop,
including the operational amplifier (op amp) block and its feedback loop. Section 4 dis-
cusses the simulation results and benchmarking with recent research results. Section 5
concludes the paper.

2. Design

Figure 2 illustrates the schematic of the proposed CCIA [15], which consists of two
transconductor stages. The first stage employs folded-cascode amplifier topology (Gm1),
while the second adopts a single common source amplifier (Gm2) for higher output swing.
An auto-zero offset cancellation loop (A-OCL) is applied for the first Gm1 stage. A T-cap
loop (TCL) is introduced to the second Gm2 stage and fed back to the input of the first
stage. Due to unavoidable process variation during fabrication, the Gm1 is attached with an
intrinsic offset Vos1 that creates an output ripple considered as noise and affects the output
signal. Therefore, an A-OCL with a new chopping technique is inserted to the CCIA to
reduce the output ripple while assuring that loading effect is not added to the amplifier.
This technique can remove flicker noise so that low-noise amplifier can be achieved.
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The common-mode voltage VCM is set to 0.5 V for Gm1 through two pseudoresistors
Rp1,2. The neural input signal Vin is upmodulated to the chopping frequency band by the
chopper CHin, then downmodulated to the baseband by CHout. The chopping frequency
f CH is fixed at 10 kHz. To set the DC gain of CCIA to 100 dB, the quiescent currents Gm1 and
Gm2 are selected as 980 nA and 180 nA, respectively. The closed-loop gain of the CCIA of
40 dB is defined by the ratio of the input capacitor Cin1,2 and the feedback capacitor Cfb1.2.

Figure 3 shows the schematic of the main path of CCIA with proposed A-OCL in
feedback loop with the Gm1. This feedback loop consists of an active RC low-pass filter em-
ploying an NMOS pseudoresistor, a capacitor, and a A-Gm3 that contains the transconductor
Gm3 and will be detailed in the next paragraph. In a conventional A-OCL approach, as
in [4], the cancelation of output offsets VOS1, caused by the transconductor Gm1, is realized
by adding two transconductors Gm3 and Gm4 to create a negative offset compensation. The
residual input signal Vin,ω and the intrinsic offset VOS1 of the transconductor Gm1 result in
the two respective currents at its output. They are I1,ω at the chopping frequency band and
the offset current I1,OS at the signal base-band. To suppress V1,OS, the third transcoductor
Gm3, to form an integrator, and the fourth transconductor Gm4 are integrated to generate a
negative output offset voltage to add to the output offset voltage V1,OS to compensate for
each other. This conventional A-OCL is also called a negative A-OCL. The main drawback
of this approach is its complex design and high-power consumption. In our design, the
Gm4 is not needed; the transconductor Gm3 is connected to a new scheme in a feedback
loop to cancel the offset voltage of the Gm1. The A-OCL is connected from the output of
the Gm1 to its input voltage instead of from the output of the Gm2 to the output of Gm1 as
in the conventional approach. In the proposed approach, the compensation occurs at the
input of Gm1 so all the variations associated with mismatches due to PVT (process, voltage,
and temperature) are also canceled. The cancellation analysis is detailed as follows.

When chopping is applied for the amplifier, the finite bandwidth of the amplifier
creates the output ripple VOUT,Ripple at the chopping frequency f CH [12], which can be
expressed as follows:

VOUT,Ripple =
VOS1Gm1

2 fCHCm1,2
, (1)
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where Cm1,2 is the Miller compensation capacitor. By the feedback operation, VOUT, Ripple is
reduced by a factor of the DC loop gain LG(0) [9]. For the proposed A-OCL, LG(0) can be
written as

LG(0) = A3Gmb1RLP1,2 = ηA3Gm1RLP1,2, (2)

where A3 is the finite DC gain of the transconductor Gm3 in A-OCL. The η = Gmb1/Gm1 is
around 0.25 [16].
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Figure 3. Schematic of the main path of CCIA with the block of proposed A-OCL.

Figure 4 shows the schematic of A-Gm3, including the proposed auto-zero (AZ) offset
technique, by controlling the switches S1,2, the transconductor Gm3, and the timing diagram.
Because of the process variation, Gm3 is also associated with an intrinsic offset VOS3, which
contributes to the output ripple as well. Therefore, the auto-zero (AZ) technique is applied
to reduce the offset voltage VOS3. The operation of switches S1,2 is controlled by the control
signals f S1,2, as shown in the timing diagram of Figure 4, which are chosen at 50% of
chopping frequency f CH. The auto-zero loop, independent of f CH, does not affect the
operated rippled reduction. During ϕ1, the VOS3 is charged to the stored capacitor CAZ.
During ϕ2, the charged voltage in the capacitor CAZ is charged to the opposite input of
Gm3. Hence, the DC voltage at the differential input of Gm3 is balanced so that the offset
voltage of Gm3 can be suppressed.
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In the CCIA, the mid-band gain is defined by Cin1,2/Cfb,eq. Increasing Cin1,2 for a
higher gain results in reduction of the input impedance Zin as well as an increase in
the chip area. The minimum capacitance Cfb,eq that can be designed is limited by the
technology. To reduce the chip area without increasing the input capacitor Cin1,2, a T-
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network capacitor [14] is employed. Considering differential operations, Cfb,eq, realized
using the T-network capacitor, can be expressed as follows:

Cfb,eq =
CU

2(N + 1)
, (3)

where N is the number of unit capacitors CU = 200 fF used to implement the shunt capacitor
N × CU (see Figure 4). The T-network capacitor in the feedback path, as illustrated in
Figure 5, increases the closed loop gain by shunting some of the feedback signals. As a
result, Cfb,eq is reduced for a given gain. It is noticed that the overall area saving is achieved
by the decrease in the Cin1,2 value enabled by the T-network capacitor. Increasing N can
further reduce Cfb,eq and the chip area, resulting in increased noise [14]. Considering this
tradeoff, the value of N is set to 4. This approach allows us to reduce the area of Cin1,2 and
Cfb,eq by 45.6%. A gain of 40 dB was achieved by using Cin1,2 of only 2 pF. In previous
works, the values of Cin1,2 are much higher, such as 12 pF [12], 10 pF [17], and 21 pF [18].
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Figure 5. Schematic of the feedback T-network capacitor. (a) Conventional configuration; (b) modified
configuration for symmetrical parasitic behavior.

The T-network capacitor will increase the asymmetry between the nodes connected to
the feedback network. To tackle this drawback, the configuration of the T-network capacitor
is modified. N × CU is divided into two (N/2) × CU pieces, connected symmetrically
to balance the parasitic behavior at two nodes TN1 and TN2. Then the top side of CU is
connected to reduce the parasitic capacitance.

3. Circuit Implementation

Figure 6 and Table 1 show the folded cascode op amp for Gm1 using the body control
technique and the dimension of the MOSFETs adopted in the schematic of the op amp,
respectively. All the transistors are set to work in the subthreshold region for the sake of
power efficiency. To isolate the body-control terminals from the noise coupled through
the substrate, a deep n-well is used for the input differential pair. The bias current of Gm1
is 840 nA. The CMFB circuit (not shown) generates the output VCMFB2 using a 140 nA
bias current.

Figure 7 shows a schematic of the two-stage op amp for Gm3. In order to achieve high
output swing, the output stage of Gm3 utilizes a class-A amplifier. The biased current for
Gm3 is shown in Figure 7.

Table 1. Dimension of MOSFETs in a folded cascode op amp.

MOSFETs W/L (µm/µm) MOSFETs W/L (µm/µm)

M0 60/0.7 M5,6 15/0.7

M1,2 30/0.7 M7,8 0.7/6

M3,4 15/0.7 M9,10 0.7/6
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Using the noise equivalent circuit shown in Figure 6, the input referred noise of Gm1,
V2

n,in,Gm1, can be expressed as follows:

V2
n,in,Gm1 = 4kTn

gm1,2
×
( gm1,2+gm3,4+gm9,10

gm1,2

)
+ 2V2

n,out,OCL ×
( gmb1,2

gm1,2

)2

∼= 4kTn
gm1,2
×
( gm1,2+gm3,4+gm9,10

gm1,2

) (4)

where V2
n,out,OCL is the output referred noise of the A-OCL and n = 1.5 is the subthreshold

slope factor [17]. As mentioned above, the flicker noise of A-OCL is also modulated by
the chopper technique at the output of Gm1, so the contribution of noise from A-OCL can
be negligible. It is also confirmed by simulation results that the output noise of A-OCL is
about V2

n,out,OCL
∼= 10−15 Vrms. So the input referred noise of the CCIA can be calculated

as follows:

V2
n,in =

(
Ctot

Cin1,2

)2
V2

n,in,Gm1
∼=
(

Ctot

Cin1,2

)2 4kTn
gm1,2

×
(

gm1,2 + gm3,4 + gm9,10

gm1,2

)
, (5)
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where Ctot = Cin1,2 + Cfb1,2 + Cp, Cp is the parasitic capacitance, V2
n,in,Gm1 are the input-

referred noise of Gm1, and gmi represents the transconductance of the transistors in Gm1.

4. Simulation Results

Figure 8 shows the CCIA layout using 180-nm CMOS technology, in which the core
occupies an area of 0.09 mm2. From this section onward, all post-simulation results, in a
standard 0.18-µm CMOS technology, are carried out with a full extraction of parasite by
choosing RCC option. Open-loop simulations are run to observe the gain bandwidth and
the phase margin of the main path amplifier with active A-OCL. As shown in Figure 9,
the gain bandwidth is achieved at 300 kHz, corresponding to a phase margin of about
60 degrees. The frequency response of the CCIA in a closed loop is presented in Figure 10. A
closed-loop gain of 40 dB is observed with a low-pass cutoff frequency at 800 Hz (Figure 10a).
In addition, the integrated input referred noise (IRN) reaches 1.8 µVrms over a bandwidth
of 200 Hz at a thermal noise of 121 nV/

√
Hz and a 1/f corner of 10 Hz (Figure 10b).
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In order to verify the impact of variations in the fabrication process and power supply
on the proposed CCIA, a Monte Carlo simulation was carried out by considering the
local and global mismatches due to the process corner. Figure 11 shows the Monte Carlo
simulation results of the mid-band gain of the CCIA obtained using 200 samples. At
VDD = 1 V, as shown in Figure 11a, the average mid-band gain is 39.7 dB, with a standard
deviation of 60.6 mdB. VDD varies by about 10% and the mid-band gain changes from 39.6
to 40 dB with corresponding standard deviations of 56.1 and 62.5 mdB, respectively.
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Monte Carlo simulation results. 

Figure 13 shows the Monte Carlo simulation results of the proposed CCIA, referring 

to the common mode rejection ratio (CMRR) and power supply rejection ratio (PSRR). By 

running 200 samples, the CCIA achieved a mean value of CMRR of 108.9 dB and PSRR of 

87 dB with standard deviations of 39.5 and 24.7 dB, respectively. The CCIA’s input was 

set to be short-circuited during the simulation to measure the output spectrum. Both VOS1 

and VOS3 were set to 5 mV. Figure 14 illustrates the output spectrum voltage and Monte 

Carlo simulation of the ripple attenuation factor (RAF). When A-OCL was disabled, the 

output spectrum at chopping frequency was around 7 mV. This spike in the CCIA was 

reduced to 61 µV when A-OCL was enabled, which allowed RAF to achieve a high value 

of 41 dB. The RAF was also double-checked by running 200 samples in the Monte Carlo 

simulation, considering local and global process variations, which obtained a mean value 

of RAF of 41.7 dB with a standard deviation of 3.37 dB. A significant reduction in the 

output ripple voltage was observed, which confirmed that the mismatches due to the 
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Figure 11. Monte Carlo simulation results of the mid-band gain of the proposed CCIA for different
values of VDD: (a) VDD = 1 V, (b) VDD = 0.9 V, and (c) VDD = 1.1 V.

Monte Carlo simulations, with random device mismatches to investigate the effect of
process corners on the noise, were realized. Figure 12a shows that the input-referred noise
of the proposed amplifier varied from 1.78 µVrms to 1.96 µVrms across different process
corners. Figure 12b shows that the average input-referred noise was 1.81 µVrms, with a
standard deviation of 62.2 nVrms.
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Figure 12. The input referred noise of the proposed CCIA: (a) Depending on the process corners;
(b) Monte Carlo simulation results.

Figure 13 shows the Monte Carlo simulation results of the proposed CCIA, referring
to the common mode rejection ratio (CMRR) and power supply rejection ratio (PSRR). By
running 200 samples, the CCIA achieved a mean value of CMRR of 108.9 dB and PSRR of
87 dB with standard deviations of 39.5 and 24.7 dB, respectively. The CCIA’s input was set
to be short-circuited during the simulation to measure the output spectrum. Both VOS1 and
VOS3 were set to 5 mV. Figure 14 illustrates the output spectrum voltage and Monte Carlo
simulation of the ripple attenuation factor (RAF). When A-OCL was disabled, the output
spectrum at chopping frequency was around 7 mV. This spike in the CCIA was reduced
to 61 µV when A-OCL was enabled, which allowed RAF to achieve a high value of 41 dB.
The RAF was also double-checked by running 200 samples in the Monte Carlo simulation,
considering local and global process variations, which obtained a mean value of RAF of
41.7 dB with a standard deviation of 3.37 dB. A significant reduction in the output ripple
voltage was observed, which confirmed that the mismatches due to the PVT-generated
offset voltage (VOS1, VOS3) can be compensated for by the proposed feedback loop.
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Figure 13. Monte Carlo simulation results of the proposed CCIA: (a) Common mode rejection ratio
CMRR; (b) power supply rejection ratio PSRR.

To verify the linearity of the amplifier, an FFT of output voltage is analyzed with a
differential input of 2 mV and an input frequency of 100 Hz (Figure 15). The total harmonic
distortion was about −56.2 dB, which is determined by the ratio between the output
amplitude at the input frequency and its third-order harmonic of 300 Hz, given that the
fifth- and seventh-order harmonics are small enough to be ignored.
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The power breakdown of the proposed CCIA is given in Table 2. The power effi-
ciency factor (PEF) is used to evaluate the tradeoff between noise and power efficiency for
biopotential amplifiers. As in [18], PEF is calculated as follows:

PEF = V2
ni,rms

2PDC

πUth4kT · BW
= NEF2 ·VDD, (6)

where Vni,rms is the input-referred noise voltage, PDC is the power consumption, and BW is
the amplifier bandwidth. The performance of the proposed design, in comparison with
state-of-art studies, is shown in Table 3.

Table 2. Power breakdown.

Block Components Current (nA) Voltage (V)

Gm1
(Folded cascode)

Input pair
Cascode branches + CMFB

700
280

1
Gm2

(Common-source) Input pair 200

Gm3
(Two-stage op amp)

Input pair
Common source + CMFB

5
25

Total power 1210 (nW)
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Table 3. Performance summary and comparison.

[8] [13] [19] [20] This Work

Power (µW) 2.0 3.96 19.8 2 1.21

Supply (V) 1.2 1.2 1.8 1.2 1.0

Current (µA) 1.2 3.3 11 1.7 1.21

Gain (dB) 34 40 40 26 40

CMRR (dB) >94 N/A 82 N/A >108

IRN (µVrms) N/A N/A 0.8 9 1.8

Noise floor (nV/
√

Hz) 37 43 40 100 121

Bandwidth (Hz) 11K N/A 100 5000 800

RAF 78 14.8 26 N/A >41

NEF/PEF ** 1.8/3.3 3.8/17.3 12.3/272 7/49 5.4/29.7

Tech. (nm) 65 130 180 40 180

Area (mm2) N/A 0.3 1.3 0.07 0.09
** Calculated using (6).

5. Conclusions

In this paper, a sub-µW capacitively coupled chopper instrumentation amplifier
(CCIA), using an auto-zero offset cancellation loop A-OCL and T-capacitor network, is
introduced. The proposed A-OCL not only reduces the output ripple but also avoids in-
creasing the output loading effect. Applying the proposed approach, the ripple attenuation
factor achieves a value higher than 41 dB. For area efficiency, the T-network capacitor is
added to the negative feedback loop, enabling the usage of a low-input capacitor. The
simulation results show an IRN of 1.8 µVrms with the A-OCL enabled. The noise density
is 121 nV/

√
Hz at a 40 dB gain with a power consumption of 1.21 µW. The NEF/PEF is

5.4/29.7, which compares favorably with the state-of-the art studies. The obtained results
suggest another potential application of this amplifier in autonomous fire-rescue robots for
the detection and biosignal recognition of human beings.
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