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Abstract: Network layer multicast research is an important field of network research that requires
simulators or emulators to support Software-Defined Networking (SDN) as well as to provide
a specific structure at the network layer to facilitate packet forwarding, such as a multicast tree.
The existing emulation platforms cannot effectively support the emulation of certain key multicast
technologies, such as the Grafting Point (GP)-selection method and Rendezvous Point (RP)-selection
method, for the following reasons: First, the programmable data plane of the existing emulation
platform has many defects, such as the inability to process packet scheduling tasks, the prohibition
of dynamic memory allocation and loops with unknown iteration counts, which make it difficult to
deploy complex multicast protocols and algorithms. Secondly, at present, no emulation platform
integrates network layer multicast emulation functions. As a result, users need to develop the
multicast tree construction and maintenance mechanism in advance, which makes experiments
laborious. To solve the above problems, based on NS4, we designed a multicast emulation platform,
M-Emu. M-Emu presents a Service-Forwarding Architecture, which enables the data plane to deploy
arbitrary complex protocols and algorithms. Based on the Service-Forwarding Architecture, M-Emu
integrates a Multicast-Emulation Framework, which has a complete multicast tree construction and
maintenance mechanism. We explain in detail how the various parts of M-Emu cooperate to complete
the multicast emulation with an example and prove that M-Emu is efficient in CPU and memory
consumption, etc., through a large number of experiments.

Keywords: multicast; emulator; efficient; framework; interfaces

1. Introduction

Compared with application layer multicast or overlay multicast, network layer multi-
cast has clear advantages in multicast tree cost, end-to-end delay, control overhead, etc.,
and thus it has always been an important research topic [1,2]. Recently, increasingly net-
work layer multicast solutions have been designed based on SDN, which can effectively
reduce the cost of creating and maintaining multicast trees and improve the efficiency of
multicast group member management, etc. [3,4]. Most network layer multicasts create state
information per multicast distribution tree in the network [3–5]; therefore, the research of
network layer multicasting requires simulators or emulators to support SDN, as well as
provide a specific structure at the network layer to facilitate packet forwarding, such as a
multicast tree.

At present, the emulation platforms supporting SDN are mainly driven by Openflow
and P4 [6–8]. Compared with OpenFlow, P4 can generalize the match-action framework
to parsing–deparsing arbitrary header fields, flexible lookup tables with rich semantics,
configurable control flow and platform-specific extensions. Based on these features, P4 has
met with increasing enthusiasm [9–11]. NS4 is a state-of-the-art emulation platform driven
by P4.
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Although NS4 can effectively simulate a P4 network, it is difficult for NS4 to meet some
specific requirements of multicast emulation due to some deficiencies of its architecture
and functions. For example: (1) The design of P4 does not take packet scheduling into
account, which makes it difficult for NS4 to deal with strict priorities, weighted fair queue,
etc. However, in multicast systems, packet scheduling will greatly affect the allocation
of network resources and the quality of multicast service, which is a major direction of
multicast research.

(2) Different from imperative languages, such as C++, P4 is not a Turing-complete
language. P4 does not support dynamic memory allocation, resulting in the failure of
NS4’s data plane to apply basic data structures, such as linked lists. Furthermore, P4
forbids loops with unknown iteration counts, which makes it difficult for the data plane
to independently implement certain periodic operations, such as timeout verification and
neighboring information detection. Although this feature of P4 can guarantee the delay of
packet processing on the switch in real network, the research of multicast algorithms should
not be limited by such engineering design. In addition, some network architectures require
the data plane to have the ability to deploy applications [12–14] or respond to network
requests without interacting with the control plane [15], which requires the data plane to
be able to deal with arbitrary complex algorithms.

(3) NS4 does not have a complete multicast tree construction and maintenance mecha-
nism, nor does it provide multicast algorithm interfaces, such as a Rendezvous Point (RP)
selection method [16–20] interface, Grafting Point (GP) selection method [21–24] interface,
etc., which increases the workload of emulations.

To solve the above problems, we designed and developed M-Emu based on NS4.
The code is in https://gitee.com/T1anzhEnyu/multicast-emulation.git (accessed on 2
March 2022). In order to improve the architecture defects of NS4, M-Emu presents a Service-
Forwarding Architecture. The data plane of the architecture consists of the forwarding
module and service module. The forwarding module can forward packets based on the flow
tables. The service module can independently formulate and execute various algorithms
according to the network status information, such as the network load status and cache
queue status. As the service module can create and monitor the cache queue, the data plane
of NS4 can process packet scheduling tasks.

The service module is written in C++, which is a Turing-complete language and is
capable of any Turing computable function. Thus, C++ enables the data plane of NS4 to
deploy arbitrary complex multicast protocols and algorithms. In order to improve the
functional deficiencies, based on the Service-Forwarding Architecture, M-Emu integrates
a Multicast-Emulation Framework. The Multicast-Emulation Framework has a complete
multicast tree construction and maintenance mechanism, which significantly reduces the
emulation complexity of multicast technology. In addition, we deploy statistical tools for
common multicast performance metrics.

We take the emulation of Protocol-Independent Multicast Sparse Mode (PIM-SM) as
an example to explain in detail how the various parts of M-Emu cooperate to complete the
multicast emulation, and we prove that M-Emu is efficient in CPU and memory consump-
tion, etc., through a large number of experiments. The notations used in this article are
shown in Table 1.

The contributions of this paper are as follows:

1. M-Emu presents a Service-Forwarding Architecture, which enables the data plane to
process packet scheduling tasks and to deploy arbitrary complex multicast protocols
and algorithms.

2. Based on the Service-Forwarding Architecture, M-Emu integrates a Multicast-Emulation
Framework. The Multicast-Emulation Framework has a complete multicast tree con-
struction and maintenance mechanism, which can reduce the workload emulations.

3. We deploy statistical tools for common multicast performance metrics.
4. The effectiveness and efficiency of M-Emu is analyzed theoretically and experimentally.

https://gitee.com/T1anzhEnyu/multicast-emulation.git
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This paper is organized as follows. In Section 2, we present research related to our
work. In Section 3, we introduce the implementation of M-Emu. In Section 4, we explore
the effectiveness and efficiency of M-Emu theoretically and experimentally. In Section 5,
we conclude the paper.

Table 1. Notations and definitions.

Notation Definition

GP Grafting Point
RP Rendezvous Point
BP Branching point

cRPs candidate RPs
SBT Source Based Tree
ST Shared Tree

MFT Multicast Forwarding Table
DR Designated Router

NRS Name Resolution System
NA Network Address

SDN Software-Defined Networking
Emu-node The gateway of the emulation network and the real network.

2. Related Work

The need for simulators or emulators for SDN-based networks has already attracted
research efforts. Each of them is equipped with different characteristics for their applica-
tion scenarios. We investigated some well-known emulators and analyzed their features
as follows.

ns-3 is a discrete-event driven network emulator. It is designed to meet academic
and teaching needs, primarily in the research and education fields. The architecture of the
simulated network in ns-3 is similar to that of the Open System Interconnection Reference
Model (OSI model). ns-3 encapsulates data in the order of device layer, network layer,
transport layer, API sockets and application layer. The data transfer process in ns-3 is
similar to a physical network, making the simulation results of ns-3 accurate. ns-3’s fd-
net-device enables communication with a physical network by reading and writing traffic
from file descriptors. ns-3’s data plane is powered by OpenFlow, making ns-3 limited to a
strict set of header fields. Furthermore, ns-3 does not provide a network layer multicast
tree construction and maintenance mechanism [25,26].

Mininet can develop and validate various protocols based on the OpenFlow and
OpenVswitch models. The applications of Mininet can be well migrated to hardware
devices. It uses lightweight virtualization technology to make the system comparable to a
real network. Mininet makes it easy to create a network that supports SDN. With Mininet,
new features can be flexibly added to the network and tested and then easily deployed in
real hardware environments. However, Mininet’s CPU cycles are shared between hosts,
switches and controllers, and the CPU scheduler cannot accurately control the scheduling
sequence. As a result, Mininet’s simulation results are not sufficiently accurate and are
difficult to reproduce [27].

EstiNet is a commercial OpenFlow network emulator that was developed by a Tai-
wanese SDN solution vendor. EstiNet is capable of emulating thousands of OpenFlow-
enabled switches. EstiNet has devised a method called Kernel re-entering, which enables
each simulation node to run the linux operating system, causing applications of EstiNet
to be well migrated to hardware devices with minor modifications. EstiNet’s GUI is easy
to use and can dynamically display the operation state of the simulation network, which
is helpful for analyzing simulation results. However, EstiNet is powered by OpenFlow,
making EstiNet is limited to a strict set of header fields. Furthermore, EstiNet does not
provide a network layer multicast tree construction and maintenance mechanism [28,29].
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OMNeT++ is a free multi-protocol discrete-event simulation software. It is not specifi-
cally designed for network systems and can simulate any system of components that pass
information to each other. The software has many useful functions, such as traffic modeling
between communication networks, protocol simulation, queuing networks and complex
networks. OMNeT++ has good parallel simulation capabilities. However, the architecture
of OMNet++ is not similar to that of the OSI network, thus, affecting the accuracy of the
simulation results. However, OMNeT++ is powered by OpenFlow, making OMNeT++
limited to a strict set of header fields. Furthermore, OMNeT++ does not provide a network
layer multicast tree construction and maintenance mechanism [30,31].

NS4 is a P4-driven network simulator [6]. NS4 integrates a P4 behavioral model
in ns-3. It contains a control plane and a programmable data plane, which provides an
accurate simulation of a P4-driven network system. NS4 is the first research effort to
enable the simulation of a P4-enabled network, providing a useful tool for P4 research and
development. Although NS4 has some deficiencies of its architecture and functions, NS4
effectively combines the advantages of P4 and ns-3 and is currently the best foundation for
the development of a multicast simulation platform.

The characteristics of all simulation platforms are summarized in Table 2. ns-3 and NS4
are superior in terms of accuracy among all the simulators or emulators. NS4 integrates P4
on the basis of ns-3 to simulate a P4 network, which makes NS4 a state-of-the-art emulator.
However, as we analyzed in Section 1, there are many problems in the data plane of NS4,
resulting in difficulties to support the simulation of a network layer multicast. We argue
that M-Emu comes to fill the gap in NS4 for network layer multicast research.

Table 2. Comparison of emulators.

Emulators Protocol Independent Accuracy Multicast Function

ns-3 No High No
Mininet No Medium No
EstiNet No High No

OMNet++ No Medium No
NS4 Yes High No

3. Implementation

In this section, we introduce the implementation of M-Emu. M-Emu presents a
Service-Forwarding Architecture, which enables the data plane to process packet schedul-
ing tasks and to deploy arbitrary complex multicast protocols and algorithms. Based on
the Service-Forwarding Architecture, M-Emu integrates a Multicast-Emulation Framework.
The Multicast-Emulation Framework has a complete multicast tree construction and main-
tenance mechanism. In addition, we deployed data collection and analysis capabilities for
common multicast performance metrics.

3.1. Service-Forwarding Architecture

The Service-Forwarding Architecture contains a control plane and a data plane. As
for the control plane, M-Emu adds basic function module and algorithm module on the
basis of the existing functions of NS4’s control plane. The data plane of M-Emu is divided
into a forwarding module and service module. The forwarding module contains all the
functions of the NS4’s data plane and adds the function of interacting with the service
module. The service module is the core of M-Emu’s Service-Forwarding Architecture,
which enables the data plane of M-Emu to deal with complex multicast protocols and
algorithms. The architecture diagram is shown in Figure 1.
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Figure 1. Service-forwarding architecture.

3.1.1. Control Plane

The control plane is divided into a basic function module and algorithm module.
In the basic function module, the topology analysis module analyzes the centricity, con-
nectivity and clustering attributes of a topology. The data statistics module calculates
the load of all nodes in the network in a certain period and records it in a text file in a
certain format. The source and receiver generation module provides an interface that can
determine the request number that the Designated Router (DR) receives from sources and
receivers. Users can flexibly modify the distribution of the request number according to the
experimental requirements.

The algorithm module of the control plane mainly provides the interface of func-
tional node deployment and some multicast algorithm interfaces. The functional node
deployment interface can determine the number and location of some functional nodes,
such as the RP and name resolution system nodes (NRS). The GP selection module, RP
selection module and other algorithm interfaces can use global information to run in a
centralized paradigm.

3.1.2. Data Plane

The data plane includes a forwarding module and service module. The forwarding
module is responsible for forwarding packets. In the existing NS4’s data plane, we added
service ports. These ports are identified with a specific port number and bound to two
queues, which are used to cache the packets entering or leaving the service module. The pre-
processing module and post-processing module are used to process the data packets before
or after the P4 pipeline. Their main function is to determine whether the data packets are
entering or leaving the service module.

The service module of the data plane is the module that formulates and executes the
algorithms. The service module mainly includes algorithm module and basic function
module. The algorithm module includes the GP selection module, RP selection module,
multicast state reduction module and packet scheduling module. Users can modify the
methods in these modules to flexibly deploy experiments. The basic function module
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includes a protocol handler module, network status measurements module, protocol
conversion module and the discrete event encapsulation module.

The protocol handler module is responsible for the construction and maintenance
of the multicast path. The status management module mainly manages and maintains
the multicast forwarding table (MFT) according to the multicast protocol message. This
module also manages the load information of the node and its neighboring domains.

The protocol conversion module is responsible for the protocol conversion between
the emulation network and real network. The advantage of this module is that it can
avoid modifying the protocol of emulation network or real network and, thus, significantly
reduce the experiment workload. The discrete event encapsulation module encapsulates
the operations of the service module into discrete events. One of the core concepts of ns-3
is to model the packet forwarding processing in the network system as discrete events
occurring in a certain sequence. Encapsulating the actions of the service module as discrete
events is in line with the design concept of ns-3.

3.1.3. Analysis of Service-Forwarding Architecture

M-Emu’s Service-Forwarding Architecture effectively solves the deficiency of NS4
architecture. The service module can create and monitor the cache queue so that the
data plane of NS4 can process multiple packets at the same time, thus, supporting the
emulation of packet scheduling. The algorithm of the service module is written in C++,
which overcomes the deficiency of p4 language and enables the data plane of NS4 to
deploy complex multicast protocols and algorithms. The Service-Forwarding Architecture
provides sufficient centralized algorithm interfaces on the control plane and distributed
algorithm interfaces on the data plane, which reduces the workload of emulations.

3.2. Multicast-Emulation Framework

Many IP multicast solutions need to maintain multicast trees, such as PIM-SM, PIM-
SSM and DVMRP. Therefore, the construction and maintenance mechanism of multicast
trees is important for multicast emulation. According to the type of multicast tree estab-
lished, multicast routing protocols can be categorized as a Source-Based Tree (SBT) or
Shared Tree (ST)-based [32,33]. Both SBT and ST use the shortest paths between the source
or core and receivers to form the multicast tree. In order to enable M-Emu to build SBT
and ST, we designed the Multicast-Emulation Framework based on ILDM. This framework
enables M-Emu to not only construct ST and SBT but also to flexibly adjust the position of
multicast tree root points and grafting points, thus supporting more complex multicast tree
structures. Therefore, the Multicast-Emulation Framework makes M-Emu highly versatile.

3.2.1. Introduction to Key Elements

The architecture involves a name resolution system (NRS), Designated Router (DR)s,
Rendezvous Points (RPs), data sources, data receivers, multicast processing nodes and
so on. NRS consists of multiple switches with the name resolution function. NRS uses
globally unique names to identify multicast services and maintains the mapping between
identifiers and network addresses (NAs) of one or more multicast processing nodes. DR is
responsible for processing requests from data sources and receivers and performs RP and
GP-selection methods to determine the locations of RP and GP for the multicast tree.

The RP in this framework is similar to the RP in PIM-SM. It is a set of pre-arranged
nodes that can receive data from DRs and provide the data distribution service as the root
node of the multicast tree. All multicast processing nodes maintain an MFT. Each entry
in the MFT corresponds to a forwarding rule of a multicast group. The key of the entry is
the ID of the multicast service, and the value is the NA list of the next-hops. Each node
in the multicast distribution tree can register the mapping between the multicast service
ID and its NA in NRS. Emu-nodes are the gateway of the emulation network and the real
network, which is used to complete the data exchange between the real network and the
emulation network.
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3.2.2. Construction and Maintenance Mechanism of Multicast Tree

As shown in Figure 2, the controller can deploy RP, DR, NRS and Emu-nodes in the
network according to the logic of its function deployment module. All RPs register their
NAs on NRS with the same specific identity. The data source generates the data and the
multicast service ID and sends it to DR (arrow 0). After receiving the data from the source,
DR sends the RP request (arrow 1) to NRS, and NRS replies with the RP NAs list (arrow 2).
DR selects an RP as the root of the multicast distribution tree according to the RP-selection
method and sends data to the selected RP (arrow 3). Our Multicast-Emulation Framework
considers that no multicast transmission path is constructed between the source-side DR
and RP, and thus the data is transmitted through unicast in this stage.

Figure 2. Multicast-Emulation Framework.

After receiving data from the source-side DR, the RP adds an entry to the MFT for the
multicast service. The RP needs to register the mapping between the multicast service ID
and its NA to NRS (arrow 4). After receiving data requests from the receivers (arrows 5–6),
the receiver-side DR requests the NAs of the nodes in the multicast distribution tree from
NRS based on the multicast service ID. After receiving the NA list replied to by NRS, DR
selects an appropriate GP according to the GP-selection algorithm. DR sends a joining
request (arrows 8, 9, 16 and 17) to the selected GP. After receiving the joining request, GP
sends the Multicast Data Reply to the receiver-side DR (arrows 10, 11, 18 and 20).

Each node on the forwarding path determines whether to add an entry for the multicast
service. If the node creates an entry in MFT for the multicast service, the node also needs to
add its NA to the entry of the previous hop node. Furthermore, the node needs to register
the mapping between its NA and the multicast service ID to NRS (arrow 12 and arrow 19).
If the node does not create an entry in MFT for the multicast service, the node only needs
to forward the multicast data to the receiver side DR.



Electronics 2022, 11, 1152 8 of 17

Multicast Data Reply contains the DR NA and the next Branching Point (BP) NA. Next
BP refers to the node that is reachable for GP through the same outgoing interface as the
receiver-side DR. If a node found that the unicast paths of the receiver-side DR and the next
BP diverge, the node becomes a new branch node for the multicast tree. This mechanism is
essentially the same as NBM [34].

3.3. Statistics Tools

To help users analyze the performance of multicast algorithms, we developed some
statistical tools that can conveniently calculate various common multicast evaluation metrics.
When each node receives or forwards packets, it records the packet information in memory
according to the format shown in Figure 3.

Figure 3. The packet information format.

Self ID is the ID of the current node. The link ID is the ID of the link through which
the packet enters the current node. The Src Node ID indicates the ID of the node that
sends the packet. The Dst node ID indicates the ID of the destination node of the data
packet. The timestamp refers to the time when the packet is forwarded or received by the
current node.

The data statistics module of the control plane periodically records the packet infor-
mation and MFT of each node into the text file as the raw data. M-Emu provides analysis
scripts for these raw data to generate some common multicast evaluation metrics, such as:

(1) The MFT load. The MFT load of each node is obtained by calculating the MFT size of
each node.

(2) The Link load. With the link ID as the index, the amount of data passing through the
link throughout the experiment can be obtained. In addition, the load changes of links
in different time periods can be analyzed according to time stamps.

(3) The Multicast tree cost. With the multicast ID as the index, all the links that the
multicast tree passes through can be obtained, and then the cost of the entire multicast
tree can be obtained.

(4) The End-to-end delay. According to the multicast ID and packet type, the time when
the DR sends data and the time when the DR receives data can be counted, and then
the end-to-end transmission delay can be calculated.

In this form, most of the user’s statistical needs can be satisfied. Users can add some
specific information to the existing package information to meet their personalized needs.

3.4. Statement of Main Interfaces

M-Emu is still under development. The main interfaces that we currently open include:

• DR and cRP deployment function. The location of the DR determines the distribution
of data sources and receivers in the network. The number and position of cRPs
determine the position of multicast root nodes [1–3].

• RP-selection algorithm. This algorithm determines how the source-side DR selects the
RP from the cRPs set [16–20,33].

• GP-selection algorithm. The algorithm determines how the receiver-side DR selects a
node from the multicast tree to join [21–23].

• State reduction algorithm. The algorithm determines which nodes on the multicast
path can create MFT entries [24,34–36].

• Statistical tools. These are used to calculate the network status and evaluate the
advantages and disadvantages of each algorithm.

We elaborate on how these interfaces are used in Section 4, using the deployment of
PIM-SM as an example.
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4. Validation

In this part, we explore the effectiveness and efficiency of M-Emu. First, we take PIM-
SM emulation as an example to introduce how M-Emu can effectively support the emulation
of various multicast technologies. Secondly, we compare the differences between M-Emu
and the original NS4 in terms of CPU usage and memory usage, etc., when deploying the
PIM-SM emulation.

4.1. Case Study

We take the emulation of PIM-SM as an example to explain in detail how the various
parts of M-Emu cooperate to complete the multicast emulation. We emulate PIM-SM in a
fat tree topology, which is shown in Figure 4.

Figure 4. PIM-SM Emulation.

PIM-SM is the most popular IP multicast at present. The multicast tree of PIM-SM is a
Shared Tree. Each source DR selects a node from the cRPs set as the RP. Each receiver-side
DR then selects this RP as GP. First, we need to deploy the DRs. M-Emu provides the DR
deployment interface, which is

void SetDR (
std : : map<std : : s t r i n g , Ptr >nodeMap ,
const NodeContainer nodes ,
NodeContainer * senderDR ,
NodeContainer * receiverDR )

Among the parameters of this interface, std::map<std::string, Ptr>nodeMap maintains the
mapping between the node ID in the topology file and the node ID in the emulated network.
A topology file is a file provided by users that describes the topology. The emulators or
simulators can build a topology based on this file. The nodeMap is adopted because these
two IDs are often inconsistent. const NodeContainer nodes contains all nodes in the topology.
NodeContainer* senderDR and NodeContainer* receiverDR, respectively, store the pointers of
the source-side DRs and receiver-side DRs. In this example, we add A1 to senderDR and A2
to receiverDR. The simplest way to do this is to find the IDs of A1 and A2 from the topology
file, then use the nodeMap to find the node pointers of A1 and A2, and finally add them to
the corresponding nodeContainer.

Second, we deploy the cRPs. M-Emu provides the RP deployment interface on the
control plane, which is
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void SetRP (
std : : Map<std : : s t r i n g , Ptr >nodeMap ,
const NodeContainer Nodes ,
NodeContainer * cRPs )

NodeContainer *RP contains pointers to all cRPs. In this example, we add R1, R2, R3
and R4 to this nodeContainer.

When A1 receives data from U1 or U2, A1 runs the RP-selection method to select a
node from the cRP set as the RP. M-Emu provides the RP-selection method interface on
both the control plane and data plane, which is

uint32 _ t GetRootNode (
const NodeContainer cRPs ,
uint8 _ t * buffer , void * i n f o )

The return value of this interface is the ID of the RP we selected. uint8_t* buffer holds
the multicast data. void* info contains external information on which the algorithm depends.
The control plane can add some global information to info, while the data plane can add
only local information to info. We approximate that PIM-SM selects the RP using the hash
of the multicast ID, which is provided in uint8_t* buffer. In this example, we assume that
A1 selects R1 as RP for the current multicast group.

After receiving the multicast data, R1 will register the mapping between its NA and
multicast ID with NRS, as described in the previous section. At some point, A2 will receive
a data request from U3. A2 runs the GP-selection method to select a node from the multicast
tree as GP. M-Emu provides a GP-selection algorithm interface on both the control plane
and data plane, which is

uint32 _ t GetGraftNode (
uint8 _ t * buffer , void * i n f o )

The return value of this interface is the ID of GP. The difference between the control
plane and the data plane of the interface is still reflected in the content of the info. In this
example, the DR on the receiver side selects the root node as GP each time. To find the
address of the root node, the DR queries the address list of nodes in the multicast tree from
the NRS based on the multicast ID in uint8_t * buffer. The first node in the list is the root
node, because in every multicast tree, the first node to register with the NRS must be the
root node.

When R1 receives a joining request from A2, it sends multicast data back to A2. When
the multicast data passes through C1, C1 determines whether to create the MFT entry based
on the State Reduction method. M-Emu provides the interface on both the control plane
and data plane, which is

bool StateReduct ion (
uint8 _ t * buffer , void * i n f o )

If the return value of this interface is 0, the node should not register MFT entries.
In this example, each node should register the MFT entry; therefore, when a node runs this
interface, the return value is 1. The whole process of the emulation is shown in Figure 5.

Figure 5. The process of emulation of PIM-SM.

After the above process, a multicast tree can be established in PIM-SM mode. Accord-
ing to Section 3.3, the Statistical tools provided by M-Emu records data packet information
in a certain format. Next, we give an example of how M-Emu records packet information.

After A1 selects R1 as its RP, it sends data to R1 by unicast. When R1 receives multicast
data from A1, it records the data as Figure 6. The meaning of the data in Packet Type
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can be found in Section 3.2. When C1 forwards the multicast data sent from R1 to A2,
the multicast data is recorded as shown in Figure 7. When A2 receives multicast data from
R1, it records the data as shown in Figure 8. It can be seen that Statistical tools can accurately
and comprehensively record the forwarding status of multicast packets on the network.

Figure 6. Packet-Information 1.

Figure 7. Packet-Information 2.

Figure 8. Packet-Information 3.

According to the data packets recorded by all nodes, we can find the following
key information:

• MFT load: R1, C1, A1 and A2 all need to maintain the multicast forwarding state for
this multicast group, and thus their MFT load is +1.

• Link Load: Links R1-C1, C1-A1 and C1-A2 all need to forward the multicast stream,
and their load is 100 Kb/s.

• Multicast tree cost: The multicast tree forwards 100 bits of data through three links.
Therefore, the Multicast tree cost is 300 bits.

• End-to-end delay: According to the time stamp of each data packet, the time of sending
data from A1 to A2 is 5 ms.

In many cases, users want to emulate SBT rather than ST. At this point, the user simply
adds each DR to the cRPs set and forces the DR to select itself as the root node. In addition,
users can also adjust the RP-selection method and GP-selection method to build a more
complex multicast tree.

4.2. Emulation Performance

In this part, we test the performance of M-Emu and original NS4 in various aspects
when deploying the experiments in Section 4.1. We require the data plane to execute
multicast algorithms independently without interaction with the control plane. The reason
for such a setting is that many researches require the data plane to have the ability to
independently formulate and execute various algorithms [12,13,15].

For NS4, to enable the data plane to handle multicast protocols and algorithms inde-
pendently, a natural thought would be to add a host, which we can call a service node,
directly connected to each switch. The service nodes of NS4 operate as the service module
of M-Emu, while the switch nodes of NS4 operate as the forwarding module of M-Emu.
This approach is a degradation of M-Emu because it requires the deployment of additional
nodes, resulting in increased system resource usage. Our experiments are conducted on a
Dell R740xd PowerEdge server with two Xeon(R) Gold 5218R CPUs and 300 GB RAM.

The evaluation metrics include:

• Memory Consumption. This metric indicates the memory size required by the emula-
tion platform to process a certain number of multicast flows.

• CPU utilization. This metric indicates the CPU utilization by the emulation platform
to process a certain number of multicast flows.
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• Traffic of Management Message. This metric indicates the traffic of various manage-
ment messages when the same number of multicast flows (1000) are completed.

• Packet Process time of Emu-Node. This metric indicates the time required for the
emulation platform to interact with the real network.

• Execution Time. This metric indicates the time required by the emulation platform to
process a certain number of multicast flows.

4.2.1. Memory Consumption

We compare the memory consumption of each architecture in fat tree topologies when
processing 1000 multicast flows. The results are shown in Figure 9. It can be seen that, with
the increase of K, which indicates the size of fat trees, the memory consumption of both
architectures increases gradually. This is because both M-Emu and NS4 need to populate
routing entries in every switch. The larger the topology is, the more memory the flow
tables occupy. Furthermore, the memory consumption of M-Emu is about 60% of that of
NS4, Thus, compared to NS4, M-Emu can save more memory. This is because NS4 requires
service nodes, which makes the topology of NS4 larger and the memory consumption of
the flow tables higher.

Figure 9. Memory consumption.

4.2.2. CPU Utilization

In this part, we compare the CPU consumption of each architecture in fat tree topolo-
gies when processing 1000 multicast flows. The results are shown in Figure 10. It can be
seen that, with the increase of K, the CPU utilization of M-Emu rises slower than that of NS4.
When K = 4, the CPU utilization of M-Emu was about 30% of that of NS4. This is because
NS4 needs to forward packets from switches to service nodes, and it also needs to parse or
encapsulate packets from the link layer to the application layer on the service nodes.

Both actions can be omitted in M-Emu. The service module and forwarding module
of M-Emu are connected by queues, avoiding the addition of NetDevices and Channels in
the network, which are two basic units of ns-3 or NS4. Furthermore, the service module in
M-Emu can directly check specific fields of data packets according to offsets, which greatly
improves the analysis efficiency. Therefore, the CPU usage of M-Emu is lower than that of
NS4 when processing multicast protocols.
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Figure 10. CPU utilization.

4.2.3. Traffic of Management message

In a fat tree topology with K = 6, we compare the management traffic required by each
architecture when processing the same number of multicast flows. The management traffic
refers to the traffic of multicast tree establishment and maintenance message. As can be
seen from Figure 11, as the number of multicast flows increases, the management traffic of
each architecture increases. The traffic of management messages of M-Emu is about 1/3 of
that of NS4. This is because, for NS4, the traffic between service nodes and switch nodes
accounts for about 2/3 of the total control management traffic, and this part of the traffic
can be omitted in M-Emu.

Figure 11. Traffic of the management message.

4.2.4. Packet Process Time of Emu-Node

Since the protocol conversion module of M-Emu needs to modify the header of each
packet, the packet processing delay will increase slightly on Emu-node compared with
NS4. We ran 1000 packet interactions with the real environment and compared the packet
processing time of M-Emu with that of NS4. The results are shown in Figure 12. It can be
seen that the modification of the packet header does increase the packet processing time
slightly, by about 3% compared with NS4.
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Figure 12. Packet process time.

4.2.5. Execution Time

In this part, we compare the execution time required by each architecture when
processing the same number of multicast flows (1000 multicast flows). The execution time
is related to many factors, such as the memory consumption, CPU utilization and so on;
thus, it is a comprehensive factor to measure each architecture’s performance. The results
are shown in Figure 13. It can be seen that, with the increase of K, the execution time of
these architectures increases gradually. The execution time of M-Emu is about 1/2 of that
of NS4.

This is mainly because: (1) In NS4, the communication delay between service nodes
and switches increases the complete time of a multicast flow, thus increase the total ex-
ecution time. (2) The topology size of NS4 is almost twice as large as that of M-Emu.
The larger the topology is, the more resources the experiment consumes and the slower the
experiment runs. (3) The packet processing logic on the service node is more complex than
that of M-Emu’s service module. Thus, the Execution Time of NS4 is much larger than that
of M-Emu.

Figure 13. Execution time.

4.2.6. Code Complexity

In this section, we make a comparison between M-Emu and NS4 in terms of the code
complexity (number of lines of code). Since M-Emu is an improvement on NS4, M-Emu
has much more code on both the control plane and data plane than does NS4. The results
are shown in Table 3.
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Table 3. Code complexity.

Emulators Control Plane Forwarding Module Service Module

NS4 360 265 0
M-Emu 1210 350 2045

We only counted the amount of code in the source file. It can be seen that the code
quantity of M-Emu is larger than that of NS4 in all modules. In the forwarding module,
because M-Emu only adds ports to the service module, there is not much more code than for
NS4. As NS4 has no service module, the code quantity of its service module is 0. However,
M-Emu has the multicast simulation function deployed in the service module, and thus the
code quantity is much larger than NS4.

5. Conclusions

We designed and implemented a multicast emulation platform M-Emu based on NS4.
M-Emu contains the Service-Forwarding Architecture, which enabled the data plane of
M-Emu to process multicast scheduling tasks and deploy complex protocols and functions.
A Multicast-Emulation Framework was deployed in M-Emu, which had a complete multi-
cast tree construction and maintenance mechanism. The framework constructed all existing
network layer multicast tree structures and flexibly adjusted the position of RPs and GPs to
support more complex tree structures.

M-Emu mainly provides the DR and cRP deployment interface, GP-selection method
interface, RP-selection method interface, state reduction interface, etc., which enable users
to examine the multicast algorithm conveniently. We took the emulation of PIM-SM as an
example to explain in detail how the various parts of M-Emu cooperate to complete the
multicast emulation, and we proved that M-Emu is efficient in CPU utilization , memory
consumption, etc., through a large number of experiments. In the future, we will further
improve the function of the service module to provide support for the experiment of
multicast security and reliability.
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