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Abstract: Capacitive power transfer (CPT) uses an electric field as the transfer medium to achieve
wireless power transfer (WPT). Benefitting from the low eddy current loss, simple system structure
and strong plasticity of the coupling coupler, the CPT system has recently gained much attention.
The CPT system has significantly improved transfer power, system efficiency, and transfer distance
due to continuous research and discussion worldwide. This review briefly presents the basic working
principle of the CPT system and summarizes the theoretical research in four aspects, including
coupling coupler and high-frequency power converter. Following this, the review focuses on research
in six key directions, including system modelling and efficiency optimization. The application of CPT
technology in five fields, including medical devices and transportation, is also discussed. This review
introduces the progress of CPT research in recent years, hoping to serve as a reference for researchers,
to promote the further research and application of the CPT system.

Keywords: capacitive power transfer; wireless power transfer; applications; capacitive coupling

1. Introduction

Wireless power transfer (WPT) technology uses a magnetic field, electric field or
microwave as the medium to transfer electric energy from the power supply source to the
electrical equipment by non-electrical contact [1–5]. The emergence of WPT technology
solves the bondage of a wired power supply connected by traditional transmission cable to
electrical equipment, and fundamentally eliminates problems such as metal contact ignition
and wear. Therefore, WPT is widely used in implantable medical devices, underwater,
and in mine equipment, where it is not convenient to establish direct electrical connection.
With the continuous improvement of power electronic technology, semiconductor devices
and magnetic components, and the continued research of WPT systems, the transmission
power and efficiency of WPT systems have been significantly improved. WPT is gradually
replacing the method of traditional cable-connect power supply in many fields.

WPT can be divided into several aspects according to different transmission media,
such as inductive power transfer (IPT), capacitive power transfer (CPT), optical (laser)
power transfer (OPT), microwave power transfer (MPT), ultrasonic power transfer (UPT),
etc., [6–11]. Due to the advantages of good plasticity of the coupling coupler, small eddy
current loss, simple system structure and low cost, CPT has attracted the extensive attention
of many scholars all over the world.

As early as 1891, Nikola Tesla, the pioneer of wireless power transfer, successfully
demonstrated the electric field coupled wireless power transfer at Columbia University
in New York. However, due to many restrictions such as power electronics, electrical
materials and control technology at that time, CPT was developed and applied slowly.
Since the 1960s, scholars from the United States, France, Singapore and other countries
began to study the CPT system sporadically and achieved some research results, but the
development has been relatively slow. In recent years, thanks to the rapid development of
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power electronics, the research and application of CPT are also increasing sharply. After
decades of development, the CPT system has greatly improved in transfer power, system
efficiency and transfer distance. At present, the CPT system can meet some charging needs
for many WPT applications.

This review firstly introduces the basic principle of the CPT system and compares it
with the main characteristics of the IPT system, and then comprehensively expounds on
the research progress of the CPT system in four aspects: system coupler, high-frequency
power converter, compensation topology and control method. Then this review presents
the research results in six key research directions, namely, system modelling, efficiency
optimization, single-capacitor CPT system, hybrid WPT system, charging method and
system safety. Finally, the application of the CPT system in medical devices, transportation,
online monitoring equipment power supply, underwater charging and rotating mechanism
are introduced. The development and application of CPT technology in the future are
also prospected.

This review not only combines the past achievements of CPT system, but also presents
the newest results in basic research and applications, hoping to give a comprehensive
summary of the research and development of the CPT system.

2. Basic Principle of CPT System

Research on the CPT system started relatively late compared with that of the IPT
system. Unlike IPT, which uses a magnetic field as the transmission medium, CPT adopts
an electric field to achieve power transfer [12,13]. IPT and CPT are dual relationships. The
basic principle of the CPT system is similar to IPT. A general circuit of the CPT system
is shown in Figure 1, where two pairs of metal plates are connected in series, forming a
CPT coupler.
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Figure 1. General CPT circuit with a simplified coupling coupler.

The coupling coupler is generally composed of the aluminum plate or copper plate as
a channel for wireless power transfer. According to Maxwell’s full current theorem:∫

l
Hdl =

∫
S

JdS +
∫

S

∂D
∂t

dS (1)

The line integral of the magnetic field intensity H along any closed curve l is equal
to the total current passing through the area S surrounded by the path. The first term on
the right of Equation (1) is the conduction current flowing through the conductor, and J
is the conduction current density. The second term of Equation (1) is the displacement
current, which is equal to the conduction current of the simultaneous circuit. ∂D

∂t is the
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displacement current density, which is equal to the change rate of the electric flux density D.
The differential form of the full current theorem is:

∇× H = J +
∂D
∂t

(2)

Equations (1) and (2) not only explain the problem of discontinuous capacitive current
from the micro perspective, but also provide an effective functional equation for the CPT
system to quantitatively describe how power is transmitted from plate P1 to P3. When the
alternating voltage excitation is stressed on the electrode plates, the electric flux density
between the electrode plates changes to form a displacement current and achieves a wireless
power transfer based on the CPT system.

Figure 2 shows a typical structure of a CPT system, which is composed of a DC power
supply, high-frequency inverter, transmitter compensation topology, coupling coupler,
receiver compensation topology, rectifier and load. The DC power supply provides energy
for the CPT system. The inverter inverts the DC source into high-frequency AC of hundreds
of kHz to MHz. Then, under the action of compensation topology, the output voltage level
of high-frequency AC becomes suitable without high-order harmonic voltage excitation.
The coupling mechanism is a channel for wireless energy transmission. Similar to the
transmitter compensation topology, the receiver compensation topology also plays the role
of voltage regulation and tuning. The rectifier forms a dual relationship with the inverter
to convert AC into DC and provide DC source for the load.
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Figure 2. Structure diagram of CPT system.

In order to intuitively describe the working principle of the CPT coupler, a coupler
model with two capacitors connected in series, as shown in Figure 3, is used to analyze
the transfer capability. The cross-coupling effect between the plates in Figure 2 is ignored.
C1 and C2 denote the coupling capacitance of the coupler. Voltage V1 and V2 are the input
and output voltage on the transmitter and receiver sides, respectively. I is the current
flowing through the CPT coupler. ω is the switching angular frequency. Assuming that V1
is the reference voltage, V2 and V1 are out of phase by θ.
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According to the fundamental theorem of KCL and KVL, the current I can be presented as:

I = jω
(

C1C2

C1 + C2

)
(V1 −V2 ) (3)

To simplify the system analysis, the active power consumed on the coupler is ignored.
Therefore, the active power transmitted by the transmitter is equal to the active power
received by the receiver and equal to the transfer power PC.

PC = Re
(
V1(I)∗

)
= Re

(
V2(−I)∗

)
= Re(V1(−jωCMV1 − jωCMV2(− cos(θ) + jω sin(θ))))

= Re(V2(cos(θ) + jω sin(θ)(jωCMV1 − jωCMV2(cos(θ)− jω sin(θ))))) = ωCMV1V2 sin(θ)
(4)

As shown in Equation (4), the active power PC transmitted through the coupling
mechanism is positively related to the mutual capacitance, system operating angular
frequency, coupler excitation voltage and voltage phase angle. As the mutual capacitance of
the coupling mechanism is generally in pF to nF, the working frequency of the CPT system
is higher than that of the IPT system, which can usually be up to several hundred kHz or
even MHz. For the kW CPT system, the coupler voltages are also improved to kV level,
which is required to consider the components’ masteries and system design, in order to
avoid break down risks [14].

3. Theoretical Research on CPT System

Throughout the theoretical research of the CPT system, scholars have mainly focused
on the coupler design, high-frequency converter, compensation network, control method,
etc. The following section will present the theoretical research results of the CPT system
from these aspects.

3.1. CPT Coupler Design

The coupling mechanism of the CPT system is usually composed of multiple metal
plates. The transferability of the CPT system largely depends on the value of the coupling
capacitor. The coupling capacitor is closely related to the structure of the coupling mech-
anism, transfer distance, dielectric constant of the transfer medium and other factors. In
this review, the coupling mechanism of the CPT system is classified according to three
criteria: the number of metal plates, the space layout of the plates, and the shape of the
plates. Regarding the number of metal plates, the coupling mechanism can be divided
into a two-plate structure [15], four-plate structure [16–21], six-plate structure [22,23], etc.
The four-plate structure is most commonly used to form a current loop for the capacitive
power transfer.

In addition, according to the different distribution positions of the coupler plates in
space, the coupling mechanism can also be divided into a parallel coupler structure and
a stacked coupler structure. Because the capacitive coupling coupler has good plasticity,
a CPT coupler can be designed in different shapes such as a rectangular structure [24],
circular structure [25], strip coupler [26], three-dimensional coupler [27], disc coupler [28],
etc. The commonly used coupling mechanisms of the CPT system are shown in Figure 4.

When performing theoretical analysis, an equivalent circuit model of the electric field
coupler of the CPT system is usually constructed. For an IPT system, a T-model with three
inductors is usually used to simplify the system analysis. Due to the dual relationship
between the IPT and the CPT system, some scholars have proposed the equivalent π-model
for the four-plate CPT system in recent years [16].

There will be a coupling capacitor between every two plates of the CPT coupler. For
a typical four-plate coupler, as shown in Figure 5a, it is a total of six coupling capacitors,
as shown in Figure 5b. The π-model can be used to simplify this structure, as shown in
Figure 5c. C1, C2, CM in the equivalent π model can be represented as Equation (5).
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C1 = C12 +
(C13+C14)(C23+C24)
(C13+C14)(C23+C24)

C2 = C34 +
(C13+C24)(C14+C24)
(C13+C14)(C23+C24)

C1 = C13C24−C14C23
C13+C14+C23+C24

KC = CM√
C1C2

(5)
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Further, the π-model can be transferred to the voltage- or current-controlled model,
as shown in Table 1. The equivalent model for the four plate CPT system coupler can be
expanded to and used to analyze couplers with other numbers of plates [17,18].

3.2. High-Frequency Converter

Because the CPT system is based on a high-frequency alternating electric field to
achieve the wireless power transfer from a power source to the load, high-frequency power
converters are essential parts of the CPT system, in order to convert a low-frequency or DC
input into a high-frequency source on the sending side, and vice versa on the receiving side.

High-frequency inverters can be divided into full-bridge inverters [31] and half-bridge
inverters [32]. Due to their easy control and high-power density, full-bridge inverters
have become the most widely used power converters in CPT systems for medium and
high-power applications. Full-bridge inverters can be further divided into voltage-type
full-bridge inverters [33–36] and current-type full-bridge inverters [37,38] according to
whether a large inductive element is used between the inverter and the DC voltage source.
The voltage-type full-bridge inverter is composed of four identical MOSFETs in series and
then in parallel. The output voltage of the voltage-type inverter is a rectangular wave that
is independent of the load. Reference [39] designed a voltage-type full-bridge inverter CPT
system based on CLLC compensation topology for electric vehicle charging. The system
can achieve a power transmission of 2.57 kW with an efficiency of 89.3% under a 150 mm
air gap. The structure of the current-type full-bridge inverter is equivalent to connecting a
large-value inductance element in series between the voltage-type full-bridge inverter and
the DC voltage source. The output current is a rectangular waveform.
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Table 1. Voltage or current controlled source model.

Equivalent Model Parameter Relationships

Voltage–voltage model

Electronics 2022, 11, x FOR PEER REVIEW 7 of 23 
 

 

Table 1. Voltage or current controlled source model. 

Equivalent Model Parameter Relationships 

Voltage–voltage model 

+ +
- -

 

𝑉1 =
𝐼1

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

+
𝐼2

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

 

 

𝑉2 =
𝐼1

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

+
𝐼2

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

 

Voltage–current model 

+
-

 

𝑉1 =
𝐼1

j𝜔𝐶1
+ 𝑉2 ∗

𝐶𝑀

𝐶1
 

 

𝐼2 =
−𝐼1𝐶𝑀

𝐶1
+ 𝑉2 ∗ j𝜔𝐶2(1 − 𝐾𝐶

2) 

Current–voltage model 

+
-

 

𝐼1 = 𝑉1 ∗ j𝜔𝐶1(1 − 𝐾𝐶
2) − 𝐼2 ∗

𝐶𝑀

𝐶2

 

 

𝑉2 = 𝑉1 ∗
𝐶𝑀

𝐶2
+

𝐼2

j𝜔𝐶2
 

Current–current model 

 

𝐼1 = j𝜔𝐶1𝑉1 − j𝜔𝐶𝑀𝑉2 
 

𝐼2 = −j𝜔𝐶𝑀𝑉1 − j𝜔𝐶2𝑉2 

3.2. High-Frequency Converter 

Because the CPT system is based on a high-frequency alternating electric field to 

achieve the wireless power transfer from a power source to the load, high-frequency 

power converters are essential parts of the CPT system, in order to convert a low-fre-

quency or DC input into a high-frequency source on the sending side, and vice versa on 

the receiving side. 

High-frequency inverters can be divided into full-bridge inverters [31] and half-

bridge inverters [32]. Due to their easy control and high-power density, full-bridge invert-

ers have become the most widely used power converters in CPT systems for medium and 

high-power applications. Full-bridge inverters can be further divided into voltage-type 

full-bridge inverters [33–36] and current-type full-bridge inverters [37,38] according to 

whether a large inductive element is used between the inverter and the DC voltage source. 

The voltage-type full-bridge inverter is composed of four identical MOSFETs in series and 

then in parallel. The output voltage of the voltage-type inverter is a rectangular wave that 

V1 = I1

jωCM

(
1− 1

K2
C

) + I2

jωCM

(
1

K2
C
−1
)

V2 = I1

jωCM

(
1

K2
C
−1
) + I2

jωCM

(
1− 1

K2
C

)

Voltage–current model

Electronics 2022, 11, x FOR PEER REVIEW 7 of 23 
 

 

Table 1. Voltage or current controlled source model. 

Equivalent Model Parameter Relationships 

Voltage–voltage model 

+ +
- -

 

𝑉1 =
𝐼1

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

+
𝐼2

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

 

 

𝑉2 =
𝐼1

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

+
𝐼2

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

 

Voltage–current model 

+
-

 

𝑉1 =
𝐼1

j𝜔𝐶1
+ 𝑉2 ∗

𝐶𝑀

𝐶1
 

 

𝐼2 =
−𝐼1𝐶𝑀

𝐶1
+ 𝑉2 ∗ j𝜔𝐶2(1 − 𝐾𝐶

2) 

Current–voltage model 

+
-

 

𝐼1 = 𝑉1 ∗ j𝜔𝐶1(1 − 𝐾𝐶
2) − 𝐼2 ∗

𝐶𝑀

𝐶2

 

 

𝑉2 = 𝑉1 ∗
𝐶𝑀

𝐶2
+

𝐼2

j𝜔𝐶2
 

Current–current model 

 

𝐼1 = j𝜔𝐶1𝑉1 − j𝜔𝐶𝑀𝑉2 
 

𝐼2 = −j𝜔𝐶𝑀𝑉1 − j𝜔𝐶2𝑉2 

3.2. High-Frequency Converter 

Because the CPT system is based on a high-frequency alternating electric field to 

achieve the wireless power transfer from a power source to the load, high-frequency 

power converters are essential parts of the CPT system, in order to convert a low-fre-

quency or DC input into a high-frequency source on the sending side, and vice versa on 

the receiving side. 

High-frequency inverters can be divided into full-bridge inverters [31] and half-

bridge inverters [32]. Due to their easy control and high-power density, full-bridge invert-

ers have become the most widely used power converters in CPT systems for medium and 

high-power applications. Full-bridge inverters can be further divided into voltage-type 

full-bridge inverters [33–36] and current-type full-bridge inverters [37,38] according to 

whether a large inductive element is used between the inverter and the DC voltage source. 

The voltage-type full-bridge inverter is composed of four identical MOSFETs in series and 

then in parallel. The output voltage of the voltage-type inverter is a rectangular wave that 

V1 = I1
jωC1

+ V2 ∗ CM
C1

I2 = −I1CM
C1

+ V2 ∗ jωC2
(
1− K2

C
)

Current–voltage model

Electronics 2022, 11, x FOR PEER REVIEW 7 of 23 
 

 

Table 1. Voltage or current controlled source model. 

Equivalent Model Parameter Relationships 

Voltage–voltage model 

+ +
- -

 

𝑉1 =
𝐼1

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

+
𝐼2

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

 

 

𝑉2 =
𝐼1

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

+
𝐼2

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

 

Voltage–current model 

+
-

 

𝑉1 =
𝐼1

j𝜔𝐶1
+ 𝑉2 ∗

𝐶𝑀

𝐶1
 

 

𝐼2 =
−𝐼1𝐶𝑀

𝐶1
+ 𝑉2 ∗ j𝜔𝐶2(1 − 𝐾𝐶

2) 

Current–voltage model 

+
-

 

𝐼1 = 𝑉1 ∗ j𝜔𝐶1(1 − 𝐾𝐶
2) − 𝐼2 ∗

𝐶𝑀

𝐶2

 

 

𝑉2 = 𝑉1 ∗
𝐶𝑀

𝐶2
+

𝐼2

j𝜔𝐶2
 

Current–current model 

 

𝐼1 = j𝜔𝐶1𝑉1 − j𝜔𝐶𝑀𝑉2 
 

𝐼2 = −j𝜔𝐶𝑀𝑉1 − j𝜔𝐶2𝑉2 

3.2. High-Frequency Converter 

Because the CPT system is based on a high-frequency alternating electric field to 

achieve the wireless power transfer from a power source to the load, high-frequency 

power converters are essential parts of the CPT system, in order to convert a low-fre-

quency or DC input into a high-frequency source on the sending side, and vice versa on 

the receiving side. 

High-frequency inverters can be divided into full-bridge inverters [31] and half-

bridge inverters [32]. Due to their easy control and high-power density, full-bridge invert-

ers have become the most widely used power converters in CPT systems for medium and 

high-power applications. Full-bridge inverters can be further divided into voltage-type 

full-bridge inverters [33–36] and current-type full-bridge inverters [37,38] according to 

whether a large inductive element is used between the inverter and the DC voltage source. 

The voltage-type full-bridge inverter is composed of four identical MOSFETs in series and 

then in parallel. The output voltage of the voltage-type inverter is a rectangular wave that 

I1 = V1 ∗ jωC1
(
1− K2

C
)
− I2 ∗ CM

C2

V2 = V1 ∗ CM
C2

+ I2
jωC2

Current–current model

Electronics 2022, 11, x FOR PEER REVIEW 7 of 23 
 

 

Table 1. Voltage or current controlled source model. 

Equivalent Model Parameter Relationships 

Voltage–voltage model 

+ +
- -

 

𝑉1 =
𝐼1

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

+
𝐼2

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

 

 

𝑉2 =
𝐼1

j𝜔𝐶𝑀 (
1

𝐾𝐶
2 − 1)

+
𝐼2

j𝜔𝐶𝑀 (1 −
1

𝐾𝐶
2)

 

Voltage–current model 

+
-

 

𝑉1 =
𝐼1

j𝜔𝐶1
+ 𝑉2 ∗

𝐶𝑀

𝐶1
 

 

𝐼2 =
−𝐼1𝐶𝑀

𝐶1
+ 𝑉2 ∗ j𝜔𝐶2(1 − 𝐾𝐶

2) 

Current–voltage model 

+
-

 

𝐼1 = 𝑉1 ∗ j𝜔𝐶1(1 − 𝐾𝐶
2) − 𝐼2 ∗

𝐶𝑀

𝐶2

 

 

𝑉2 = 𝑉1 ∗
𝐶𝑀

𝐶2
+

𝐼2

j𝜔𝐶2
 

Current–current model 

 

𝐼1 = j𝜔𝐶1𝑉1 − j𝜔𝐶𝑀𝑉2 
 

𝐼2 = −j𝜔𝐶𝑀𝑉1 − j𝜔𝐶2𝑉2 

3.2. High-Frequency Converter 

Because the CPT system is based on a high-frequency alternating electric field to 

achieve the wireless power transfer from a power source to the load, high-frequency 

power converters are essential parts of the CPT system, in order to convert a low-fre-

quency or DC input into a high-frequency source on the sending side, and vice versa on 

the receiving side. 

High-frequency inverters can be divided into full-bridge inverters [31] and half-

bridge inverters [32]. Due to their easy control and high-power density, full-bridge invert-

ers have become the most widely used power converters in CPT systems for medium and 

high-power applications. Full-bridge inverters can be further divided into voltage-type 

full-bridge inverters [33–36] and current-type full-bridge inverters [37,38] according to 

whether a large inductive element is used between the inverter and the DC voltage source. 

The voltage-type full-bridge inverter is composed of four identical MOSFETs in series and 

then in parallel. The output voltage of the voltage-type inverter is a rectangular wave that 

I1 = jωC1V1 − jωCMV2

I2 = −jωCMV1 − jωC2V2

A half-bridge inverter is structurally equivalent to replacing the two MOSFETs in a
voltage-source full-bridge inverter with two capacitors or inductors. Half-bridge inverters
can also be further divided into voltage-mode half-bridge inverters [40,41] and current-
mode half-bridge inverters [42], depending on the reactive components included. The
voltage-type half-bridge inverter is structurally equivalent to replacing the two MOSFETs
on the right side of the full-bridge inverter with two capacitive elements, and its output is
only half of the voltage-type full-bridge inverter, so it is generally applicable for small and
medium power applications. In [41], a CPT system based on a voltage-type half-bridge
inverter circuit was designed, which achieved 160 W power transmission, and the efficiency
was as high as 88.2%; the current-type half-bridge inverter is structurally equivalent to using
two inductive elements. Replacing the upper two MOSFETs in the full-bridge inverter
is characterized by soft-switching oscillation that can be achieved through self-excited
oscillation without external control signals.
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In addition to common bridge-type inverters, power amplifiers such as class D, class E,
class E2, and class φ can also achieve a high-frequency conversion [43–50] that also can be
used in CPT systems. Class E amplifiers have remarkable features such as high frequency,
high efficiency, and simple structure, and can be soft-switched to reduce switching losses
and improve system efficiency. However, the conditions for soft switching of class E
amplifiers are very strict, and the switching stress is very high. Reference [43] proposed
a CPT system based on class E. Reference [49] designed a CPT system based on class E2

amplifier. The power transmission of 330 W was achieved, and the efficiency reached 90%.
In general, the CPT system still generally uses the full-bridge inverter circuit, especially in
high-power applications.

At present, uncontrolled rectifiers in the CPT system are usually utilized, and there
is little literature about the controlled rectification of the CPT system. The coupling ca-
pacitance of the CPT system is small, which makes the operating frequency of the CPT
system much higher than that of the IPT system. Therefore, when designing the power
converter for the CPT system, it must consider the influence of parasitic capacitance and
parasitic inductance in semiconductor switching devices on the circuit at high-frequency
working conditions.

3.3. Compensation Network

The CPT system adopts different compensation topologies based on the converters
used. In general, the compensation topology of the CPT system can be divided into two
categories: resonant compensation and non-resonant compensation.

For CPT systems using bridge inverters, resonant compensation topologies are usually
adopted. The resonant compensation topology plays an important role in improving
the system performance by: (1) filtering out the high-order harmonics generated by the
inverter; (2) increasing the coupler voltage to improve the transfer capacity for high power
applications; (3) tuning the capacitive coupler to achieve soft switching for switches and
increase system efficiency; and, (4) matching the system impedance to provide the required
voltage/current for the system load.

Currently, there are many different topologies applied to CPT systems, such as double-
sided LC [51–54], double-sided LCC [55,56], double-sided LCLC [57,58], double-sided
LCL [16,59], double-sided CLLC [39,60,61], LCLC-LC [62], LC-CLC [63], LCL-L [34], double-
T resonant topology [64], multi-resonance topology [65], etc. Among them, LC-type is the
basic form used to form those topologies, and the multi-stage LC structure can be used to
achieve different purposes, such as boosting voltage, improving transmission efficiency, etc.

In addition to the above resonant compensation topology, some non-resonant com-
pensation topologies, such as PWM converter, are also used to achieve capacitive power
transfer. The coupler for those topologies can be regarded as an energy storage capaci-
tor. Such common structures include Buck-Boost, Cuk, Sepic, and Zeta. By controlling
the switching duty cycle, the desired output power can be achieved through capacitive
power transfer. Reference [66] proposed a single active switch CPT topology based on a
DC chopper circuit, which achieved a power transmission of 1 kW with a transmission
efficiency greater than 90%. This kind of CPT system based on a DC chopper circuit has the
advantages of simple structure and low parameter sensitivity, but requires a large mutual
capacitor which is usually at nF level, which limits the application scenarios.

Table 2 summarizes common resonant compensation topologies in CPT systems and
their related performances. Different compensation topologies can be chosen and designed
based on the needs of actual application scenarios.

When designing and selecting the compensation topology for the specified CPT system,
it is usually necessary to use circuit software such as MATLAB Simulink, Proteus, and
Multisim, to simulate the overall circuit topology to calculate the system performance of
transmission power and system efficiency under the used compensation topology.
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Table 2. Common resonant compensation topologies in CPT systems.

Topologies Frequency Power Efficiency Distance Year References

LC-LC 1 MHz 216.5 W 52.2% 2000 mm 2019 [59]
LCL-LCL 1 MHz 1880 W 85.87% 150 mm 2016 [13]

LCLC-LCLC 1 MHz 2400 W 90.8% 150 mm 2015 [49]
CLLC-CLLC 1 MHz 2570 W 89.3% 150 mm 2021 [32]

LCLC-LC 893 kHz 96 W 84.636% 4 mm 2021 [54]
LC-CLC 800 kHz 2000 W 90.29% 150 mm 2020 [55]
LCL-L 1 MHz 1500 W 85.5% 150 mm 2020 [27]

3.4. Control Method

In the practical application of the CPT system, it is inevitable to encounter the situation
of coupler misalignment or load variation, which may affect the system resonance condition
and further reduce system output power or the transmission efficiency. To counter the
several undesirable situations mentioned above, a control method can be used, such as
tracking the maximum efficiency power of the system, controlling power flow, or frequency
tracking. Reference [67] proposed a disturbance and observation algorithm to control the
duty cycle to track the maximum power when the load changes. The proposed system could
maintain a maximum power transmission operation of 10 W within a large load variation
range of 5–500 Ω, and the power efficiency reached about 70%. This control method
required additional DC–DC circuits and communication sampling circuits to be added
to the original system circuit, which increased the system complexity and system losses.
Reference [68] introduced a bidirectional power flow closed-loop control method based
on the phase-shift control method, which was mainly aimed at electric vehicle charging
applications with G2V and V2G power flow capabilities. The biggest disadvantage of this
method was that when the phase angle was very small, it would induce certain high-order
harmonics, and then the resonance state of the system would be destroyed. Based on the
obtained system space state model, ref. [69] designed a linear quadratic Gaussian (LQG)
controller to perform the automatic adjustment of the system frequency, so that the system
always works in the resonance state. Reference [70] proposed an adaptive multi-loop
controller for CPT systems, which combined continuous frequency tracking and matching
network tuning at the primary and secondary ends to adjust the target under optimal
power transfer conditions current/power to the receiver. In addition to the above methods,
PWM control [71], PFM control [72] and other methods can also be used to control the target
parameters of the system. In general, there are few studies on CPT system control at present,
and of those, most are focused on single-target control for static power supply systems.

4. Key Technology Research
4.1. System Modeling

The CPT system mainly adopts the approximate linear equivalent method to obtain
the linear time-invariant model. The fundamental harmonic approximation (FHA) method
is the most widely used modelling method [73]. The FHA is a simple analysis method that
only uses the fundamental components of the voltage or current to analyze the system
characteristics. It is based on the AC impedance model of the system and can calculate
the steady-state response of the system under the excitation of the fundamental wave.
However, this method ignores the influence of higher harmonics in modeling and analysis,
so it has a large deviation in analyzing the soft switching frequency. In addition to the
FHA analysis method, ref. [74] uses filtering theory to analyze the relationship of the CPT
coupler, matching network and the termination resistance. This method enables designers
to quickly determine the coupling coupler parameters and system matching network under
the optimal frequency response.
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In addition to the above mentioned methods, the generalized space average method [75],
the coupled mode theory [76], the vibration theory [77], and the fractional order theory [78]
can also be used to model and analyze the CPT system.

4.2. System Efficiency Optimization

System efficiency is an important factor in designing and applying the CPT system, and
how to optimize system transmission efficiency is important to research work. Although
researchers have conducted a large amount of work to improve system performance,
optimization of the transmission efficiency of the CPT system has just begun. At present,
most of the efficiency optimization methods in CPT systems can be concluded as: (1) To
optimize the design of system parameters, ref. [79] considered the ratio of reactive power
in the compensation network to the transmission power as the optimization goal, and
proposed a two-stage optimization method. A CPT system with a coupling capacitance of
16 pF was built under an operating frequency of 1 MHz. The built system could achieve a
3 kW power transmission with an efficiency of 95.7% under the gap distance of 100 mm;
(2) Tracking the optimal load. Reference [80] verified the existence of the optimal load of
the CPT system by both experiment and theory. In the case of the optimal load, when the
system transmission power was 10 W, the efficiency was up to 89.3%. When the system
transmission power was 100 W, the efficiency was 93.02%. To keep high efficiency under
the variation of the load, ref. [81] proposed a state feedback control model using a linear
quadratic regulator (LQR) and sum-pole configuration method.

In general, the optimization of CPT system efficiency is a hot research topic, which
has attracted the attention of scholars in recent years, and the research results are relatively
rich. However, a much work is needed to improve the system efficiency. It is generally
believed that the system loss mainly derives from the parasitic resistance of compensation
components in the system network, including compensation inductors, capacitors and
switch devices, while ignoring the loss of the coupling mechanism. Research on the loss
model of the coupling mechanism will be a direction worthy of attention in the future.

4.3. Single-Capacitor CPT System

In essence, CPT technology uses the coupling capacitor formed by the coupling
mechanism to construct a complete electrical circuit to achieve wireless power transfer.
Therefore, a CPT system coupler usually requires four or more plates. When there is more
than one pair of coupling plates in the transfer system, the cross-coupling of multiple
coupling plates will increase the complexity of the system design and affect the power
property. Contrary to the traditional mutual-plates CPT system, the single-capacitor CPT
system, or is named, a two-plates CPT system, uses ground working with one pair of pates
to form a capacitor to form a complete electrical circuit.

The analysis method suitable for the traditional CPT system cannot be directly applied
to model and analyze the single-capacitor CPT system. Reference [15] established a model
of a single-capacitor system CPT system and revealed its power transmission property of
strong coupling to the ground. Reference [82] proposed a new mid-range air-gap single-
capacitor CPT system in which two metal blocks were used to form a virtual capacitor
return route. Therefore, the traditional four-plate structure was simplified to a two-plate
structure. Reference [83] designed and built an experimental circuit of a single-capacitor
CPT system with an achieved power transfer of 3.8 W. Reference [84] proposed a two-plate
CPT system for electric vehicle charging applications. The experimental setup achieved a
power transmission of 350 W with a DC-DC efficiency of 74.1% when the air gap distance
was 110 mm.

For the traditional CPT system, the transmission power and efficiency of the system
will be greatly reduced with the increase in the transfer distance. Therefore, the transmission
distance of current CPT systems is mostly in centimeters. Based on coupled-mode theory,
ref. [85] proposed a nonlinear isochronous symmetric model as shown in Figure 6. A
high-time-symmetric model for the single-capacitor CPT system is achieved and constant
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transmission efficiency was obtained under the condition of variable transfer distance.
Theoretical analysis and circuit simulation showed that when the transmission distance
was about 34 m, the transmission efficiency was kept at 60% under the condition of constant
output power and without any resonant circuit. Reference [86] proposed a robust single-
capacitor CPT system. The simulation results showed that the system could achieve wireless
power transfer within a range of 31 m. The efficiency was constant at 50%. In the future, an
experiment could be conducted to verify the simulation and analysis results. In general, the
research for the single-capacitor CPT system is still in the preliminary exploration stage.
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4.4. IPT and CPT Combined System

The coupling mechanism of the CPT system is composed of metal plates, and coupling
capacitance will be formed between the metal plates. Therefore, the CPT coupler is capaci-
tive and needs to be compensated by the inductor. In contrast, the coupling mechanism
of the IPT system is composed of coils. The IPT coupler is inductive, and the capacitor is
required to resonate the network for the IPT system. Taking into account the condition
mentioned above, the IPT and CPT couplers can be combined into a hybrid WPT system to
achieve mutual compensation [87]. The hybrid WPT system combining the IPT and CPT
systems was first proposed in [88]. Reference [89] proposed a new coupling mechanism
that transferred electrical power by using both magnetic and electric fields. Based on
this coupling mechanism, a combined system could achieve 100 W output power with an
efficiency of 73.6% under an air gap of 18 mm.

In recent years, a variety of combined systems with magnetic field coupling and
electric field coupling were proposed to make full use of the advantages of the IPT system
and the CPT system. The combined system is mainly used to achieve the following goals:
(1) To improve the transmission power [88,90,91]. Reference [90] proposed an inductive and
capacitive hybrid WPT system that could improve the system transfer capability using IPT
and CPT channels. The achieved transmission power was 1.1 kW, and DC–DC efficiency
was 91.9%; (2) Parallel transmission of electric power and signal [92]. A combined WPT
system was proposed in [92]. A signal transmission channel was constructed by using the
parasitic capacitance of the coil and shielding metal plates. A transfer power of 40 W and a
data transmission rate of 230 kbs were achieved; (3) To improve the coupler misalignment
ability [93,94]. An inductance–capacitor hybrid WPT system was constructed in [94], which
improved the coupler anti-misalignment ability. When the change of the coupling plate
spacing was within 0–270 mm, the variation of the output power did not exceed 10% of the
nominal output.

The combined WPT system has a better system performance than the single IPT
or CPT system. However, the coupling mechanism of the hybrid WPT system includes
both the induction coil of the IPT system and the coupling plates of the CPT system, the
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system is more complicated, and the volume of the coupler is larger. To simplify the
coupling mechanism of the combined WPT system, ref. [89] proposed a compact combined
coupling mechanism where the magnetic and electrical fields can be simultaneous to
transfer electrical power.

In general, the combined system has better characteristics. However, there are some
disadvantages that need to be studied and solved: (1) The optimal design of the coupling
mechanism: the magnetic field coupler and the electric field coupler coexist, which increases
the occupied space and the electromagnetic radiation; (2) Parallel and separate control of
transmission channels. The combined WPT system has two power transfer channels which
may present multiple power transfer modes. To meet various application requirements
under different load conditions, an effective control method for parallel and separate energy
transmission channels needs to be developed in the future.

This review summarizes some research of combined WPT systems in recent years
in Table 3.

Table 3. Research results of some hybrid WPT systems in recent years.

Reference System Structure Coupling Mechanism Power/Efficiency
(Signal Speed)

Reprinted with
permission from

ref. [88], 2016 IEEE.
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as power consumers in the proposed system, and each receiver not only supplies power 
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system based on repeaters in which L compensation topology was used to compensate 
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4.5. Constant Current/Voltage Charging

The battery charging process includes two stages of constant current (CC) and constant
voltage (CV) charging. When the CPT system is used to supply power to charge the
battery load, constant voltage/current output should be considered. Much work has been
undertaken to achieve CC or CV output.

For charging a single battery with a single transmitter, ref. [96] proposed a constant
voltage output system. The resonance network was used to convert the current source
input voltage source into a constant current and then to the constant voltage output for
charging the battery, ignoring the variation of coupling capacitance and load. Reference [53]
designed a single-input single-output CPT system based on double-sided LC compensation,
which achieved a constant current output under variable load. Reference [62] proposed
a resonant network for the CPT system. Different resonant frequencies could be adopted
to generate a constant current and constant voltage output. Reference [97] proposed an
impedance matching network to generate a constant voltage output to charge a dynamic
load. Reference [98] summarized different compensation topologies and proposed a specific
design method for a constant current and voltage output with zero-voltage switching.

In the application of multiple load charging, ref. [99] proposed a mixed-resonant
topology for constant-current multiple-pickup applications such as LED drivers, welding
machines and batteries. Reference [100] proposed a multi-load capacitive power transfer
(CPT) system with an SP-CL isolation compensation topology. Receivers function solely as
power consumers in the proposed system, and each receiver not only supplies power to the
connected load but transfers power wirelessly to the next receiver. The proposed system
could achieve constant voltage output. Reference [101] designed a multi-load CPT system
based on repeaters in which L compensation topology was used to compensate input and
output relays, and LCL compensation topology was used to compensate relay relays. The
proposed system could achieve a multi-load constant current output.

Research on the method of generating a constant voltage or current output for CPT
systems has always been a hot topic in the research of CPT systems. Generally speaking,
current research on the method for generating constant voltage or current output of CPT
system mainly focuses on research on the compensation topology for generating constant
voltage or current output.

4.6. System Safety Research

The security of the CPT system has always been a key concern in the field of CPT
research. The CPT system uses metal plates to form a transfer coupler and achieves wireless
transmission of electric energy based on the high-frequency alternating electric field. In kW
level CPT systems, the coupler voltage is often increased to improve transmission power,
resulting in the voltage on the coupling plates reaching thousands of volts or even tens of
thousands of volts, which has significant potential safety hazards.

When the voltage stress on the coupling plates is too high, the air medium between
the plates may be broken down, resulting in overcurrent and endangering the safety of
the coupler itself. Reference [102] proposed a voltage stress optimization method, which
can reallocate the voltage stress of system components by adjusting system parameters;
Reference [103] proposed a voltage control method for the coupling coupler of the CPT
system, which can limit the voltage between the coupling plates to a safe range.

As there is a high-frequency AC electric field between the coupling plates, it is also
necessary to take anti-electric shock and anti-radiation measures to reduce the harm to
the human body. To prevent the harm of electric shock, the coupling plates of the system
can be insulated and encapsulated. The electric field of the coupling coupler will generate
distributed voltage on the surrounding metal body, and the human body may have the risk
of electric shock when touching the metal body. Reference [104] established an equivalent
model of human contact with the metal plates around the coupling coupler based on the
human impedance model, which effectively guides the design of the CPT system from the
perspective of safety.
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In addition, ref. [22] used the external metal plates to shield the electric field from
the harm of electromagnetic radiation, which weakened the electric field radiation to a
certain extent. The schematic diagram of the coupling coupler is shown in Figure 7a, and
the simulated electric field distribution between the coupling coupler is shown in Figure 7b.
However, the additional shielding plate increases the volume of the coupler. In addition, the
additional plate affected the coupling capacitance, making the design of the system coupler
more complex; Ref. [20] proposed a staggered capacitive coupler which not only improved
the system’s mutual capacitance but also significantly reduced the cross-coupling effect
of the system coupling plate. Additionally, this coupler helped to reduce the radioactive
electric field and thus significantly reduced the high radiation area.
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field distribution.

To effectively simulate the electric field distribution, simulation tools such as ANSYSY
Maxwell, FEKO, CST Microwave Studio and COMSOL are usually utilized.

5. Application of CPT System

The continuous development of the CPT system has attracted extensive attention from
research teams around the world because of its simple structure, light weight and low
cost. Research teams have not only focused on transmission distance and transmission
power but have also fully explored the application scenarios with the advantages of
CPT technology. This section will present the current research status of CPT technology
in biomedical implants, transportation applications, line online monitoring equipment
power supply, power supply for underwater equipment, and power supply application for
rotary mechanism.

5.1. Biomedical Implants

Compared with the IPT system, the CPT system has the advantages of a simple
coupling structure, low eddy current loss, and low electromagnetic radiation. It is widely
used to power implantable biomedical devices [105].

Rangarajan Jegadeesan et al. of the National University of Singapore proposed a
wireless power supply system based on electric field coupling using displacement cur-
rent to create subcutaneous sensors. They have established a coupling model of power
transmission and determined the optimal operating frequency of the system [106]. The
coupling model and experimental diagrams are shown in Figure 8. Reza Erfani of Case
Western Reserve University established a comprehensive circuit model of the coupling
mechanism with the human tissue layer as the dielectric material [107,108] and developed
a CPT power supply system suitable for human implantable medical devices in which
a CMOS active rectifier is proposed to achieve dual-loop adaptive delay compensation
and has automatic input frequency adaptation characteristics [109]. At present, the CPT
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system used in implantable biomedical devices is limited to a short-distance subcutaneous
tissue sensor power supply (about 5 mm). There are no reports on the power supply of
medical sensors with longer transmission distance requirements for organs. Reza Sedehi
et al. of the University of Auckland proposed a CPT system for conductive tissue, which is
a safe, efficient and stable energy transfer into the body for deeply implanted biomedical
devices [110]. Under the limitation of IEEE C95.1, the proposed system can deliver 10 mW
power into the deep body.
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5.2. Transportation Applications

Due to the gradual exhaustion of traditional fossil energy in recent years, electric
vehicles (EV) have flourished. Charging of EVs is a big challenge. Wireless power transfer
as a charging technology has attracted much attention for EVs. The IPT system has
gradually matured for charging EVs. By comparison, IPT has the disadvantage of high
electromagnetic radiation, large eddy current loss, and the inability of metal obstacles to
exist near the coupling area. Contrary to IPT of magnetic field coupling, CPT adopts electric
field coupling, which can solve the shortcomings of IPT to a certain extent.

Takashi Ohira et al. from the Toyohashi University of Technology and Science in
Japan proposed a dynamic CPT system for the battery-less EVs through the inter-board
capacitator between the built-in metal of the road concrete and the car tires. The transfer
power was up to 1 kW at a speed of 10 km/h [111]. The schematic diagram of the proposed
system is shown in Figure 9. Reference [112] proposed an optimization method for the CPT
system to reduce the voltage on the car shell during wireless charging for EVs. The car
shell voltage was only 3.88 V when the output power was 1.3 kW. Aiming at the problems
of small coupling capacitance and low transmission power for the CPT system to charge
the EVs, Dai Jiejian et al. used the metal foil on the bumper of the electric vehicle and the
metal foil on the fixed charging pile to achieve static wireless charging. The transfer power
reached 1 kW with a DC–DC efficiency of more than 90% [113]. Reference [114] verified
the possibility of providing 700 W power to a moving locomotive with a 24 pF coupling
capacitance between the metal plates. Reference [115] proposed a dynamic capacitive
power transfer system for an EV. A 150 W dynamic CPT system prototype was designed
and implemented. When the receiver moved along the transmitter track, the output power
changed within ±4.0% of the nominal power.
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5.3. Line Online Monitoring Equipment Power Supply

In order to solve the problem of power supply for line monitoring equipment, pho-
tovoltaic cells and current transformers are mainly used to acquire electricity. However,
due to the environmental and load fluctuations, the stability of the above power supply
methods is relatively low. The CPT system uses electric field coupling to generate power
transmission, which is stable and reliable when the input voltage is specified. Therefore,
the CPT system can provide stable power for monitoring equipment. When the CPT system
is adopted to power the monitoring equipment, the voltage input of the transfer coupler
is provided by the high-voltage transmission line, which simplifies the transfer system
structure, and only the receiver of the CPT system is needed.

Rohit Moghe et al. of Varentec Company first proposed the concept of electric field-
based wireless power supply in [116], and developed a tubular energy pick up mechanism
as shown in Figure 10. The effectiveness of the proposed system was experimentally
verified. In addition to the tubular pick up mechanism, insulator embedded structures
based on circular metal plates, multilayer cylindrical, rectangular and with higher safety,
have also been developed [117–120]. The CPT system can also be applied to a low-voltage
transmission line in addition to high-voltage/medium-voltage power systems. For example,
ref. [120] proposed a transmission system with an output power of 47 µW by using a 60 cm
aluminum foil adhered to a 220 V AC transmission line, which can meet the power supply
requirements of monitoring sensors. Reference [121] also studied the monitoring strategy
using CPT technology.

5.4. Power Supply for Underwater Equipment

In order to solve the problem of power supply for underwater equipment, the research
and application of underwater WPT systems has also been a hot topic in recent years. Since
the medium of water is different from that of air, the coupling capacitance of the CPT
system can be effectively increased in the water medium [122]. Therefore, the transmission
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capacity can be significantly improved. It is of great significance to power equipment
practically in water media such as fresh water and sea water.
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Figure 10. Energy harvesting based on CPT system using power line insulators. Reprinted with
permission from ref. [118], 2014 IEEE.

Reference [123] proposed an underwater CPT system. The coupling coupler of the
proposed system and the underwater test schematic diagram is shown in Figure 11. It
was found that the transmission distance between the plates was the key factor in design-
ing the compensation circuit. The water medium between the coupler plates affects the
transmission characteristics. The stray capacitance between the two plates also affects the
power transfer. Based on the frequency characteristics of the dielectric loss coefficient,
ref. [124] discussed the influence of different factors of underwater electric field coupling
on the transfer efficiency. Using 3D simulation and measurements, the S-parameters of
the parallel-plate galvanic coupler were converted to achieve maximum efficiency. The
maximum transfer efficiency of the CPT system in freshwater was deduced through simula-
tion and measured results. Reference [125] deduced the relationship between the coupling
coefficient and the operating frequency of the system based on the equivalent circuit of the
coupling coupler and explained the key factors to improve the coupling coefficient.
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Figure 11. Schematic diagram of system coupling coupler and underwater test. Reprinted from
ref. [124].

5.5. Power Supply Application for Rotary Mechanism

In order to switch the current direction for DC motors, brushes must be used for
traditional continuous switching, which will cause brush friction, accelerate aging and
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generate sparks. To solve this problem, the CPT system was proposed to power the rotating
mechanisms of the DC motors, which could effectively remove the friction loss, unreliable
contact, sparks and other problems existing in the brush method. The CPT system has also
been used to other rotary applications [126–128].

In the [126], the CPT system was used to generate wireless power transmission be-
tween the static surface and moving surface of an aerodynamic fluid bearing. The pneu-
matic fluid-bearing experimental device diagram and its circuit structure diagram are
shown in Figure 12. Reference [127] designed a CPT power supply system suitable for
three-dimensional space rotation applications. When the receiving plate is within a certain
rotation angle range, the capacitance of the coupler can be constant, to ensure that the load
can still receive power at a stable rate when the load is rotating. Reference [128] proposed
a three-phase resonant capacitor power transfer system, which solved the problem that
the existing rotating CPT plate concentric structure showed unbalance, leading to ground
return common-mode current.
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6. Conclusions and Further Work

With the rapid development of semiconductor switching devices and power electronic
control technology, wireless power transfer technology has become more efficient, safer and
reliable, and will definitely become the mainstream direction in the field of power supply.
CPT technology has also achieved tremendous development. In contrast, some research
should be carried out in these further areas: 1. Design and optimization of switching
devices under high power requirements. Compared with the IPT system, the CPT system
requires a higher switching frequency. The efficiency and thermal stability of the device
are one of the important research directions; 2. The design and optimization of the coupler
suitable for complex environments. The capacitance generated between the metal plates of
the CPT coupler achieve the energy transfer channel. In contrast, the external conductor is
very easy to generate additional parasitic capacitance with the coupler, which may affect
the system characteristics. Therefore, how to shield, reduce or transform the influence of
the external environment on the coupling mechanism is very critical; 3. Efficient and stable
compensation network topology. Although the IPT system has a mature compensation
network analysis, it cannot be directly applied to the CPT system due to the unique working
characteristics of the CPT system. It is necessary to carry out a complete compensation
network analysis based on the system transfer characteristics, electrical safety and system
stability of the CPT system; 4. System efficiency improvement. At present, the efficiency
research of CPT is mainly focused on the analysis and optimization of compensation
topology parameters. At the same time, the system coupler, converter circuit and overall
optimization have not been considered.

Although present research into the CPT system is still in the preliminary stage, it will
definitely be the focus of future research teams due to its advantages in specific applications,
and will certainly promote the wider application of the CPT system.
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