
����������
�������

Citation: Jung, P.; Kang, S.; Lee, J.

Reducing Redundant Test Executions

in Software Product Line Testing—A

Case Study. Electronics 2022, 11, 1165.

https://doi.org/10.3390/

electronics11071165

Academic Editors: George Angelos

Papadopoulos and Claus Pahl

Received: 9 February 2022

Accepted: 5 April 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Reducing Redundant Test Executions in Software Product Line
Testing—A Case Study
Pilsu Jung 1 , Sungwon Kang 1 and Jihyun Lee 2,*

1 School of Computing, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
psjung416@gmail.com (P.J.); sungwon.kang@kaist.ac.kr (S.K.)

2 Department of Software Engineering, Jeonbuk National University, Jeonju 54896, Korea
* Correspondence: jihyun30@jbnu.ac.kr; Tel.: +82-63-270-4860

Abstract: In the context of software product line (SPL) engineering, test cases can be reused for testing
a family of products that share common parts of source code. An approach to test the products of
a product family is to exhaustively execute each test case on all the products. However, such an
approach would be very inefficient because the common parts of source code will be tested multiple
times unnecessarily. To reduce unnecessary repetition of testing, we previously proposed a method
to avoid equivalent test executions of a product line in the context of regression testing. However,
it turns out that the same approach can be used in a broader context than just regression testing of
product families. In this paper, we argue the generality of the method in the sense that it can be
used for testing of the first version of a product family as well as regression testing of its subsequent
versions. In addition, in this paper, in order to make the method practically usable for users, we
propose a process for applying it to SPL testing. We demonstrate the generality of our method and
the practical applicability of the proposed process for the method by conducting a case study.

Keywords: software product line; software testing; test redundancy; test case execution

1. Introduction

Software product line (SPL) engineering is a paradigm of software development for
reusing managed artifacts to produce a product family that shares common artifacts [1]
(pp. 14–15). In a product family, products are different, yet similar to each other. Due to the
commonality shared between products, exhaustively testing all the products of a product
family would have much redundancy and result in an unnecessarily high testing cost.

To reduce such redundancy, combinatorial techniques [2–6] have been proposed. They
reduce the number of products to test by selecting only a subset of products to increase
the coverage of combinatorial feature interactions. However, the redundancy problem still
remains with the techniques because the selected products of a product family would have
to be individually tested as they do not provide ways of exploiting commonality between
selected products. To overcome this drawback, delta-oriented techniques [7–11] have been
proposed. They reduce unnecessary testing by reusing test cases of one product of a product
family for the other products of the family that share common artifacts. However, when
test cases are executed on the products that reuse them, these test executions can include
redundant test executions that traverse the same sequence of code statements and produce
the same test results (i.e., pass or fail). For this reason, in the context of SPL testing, there is
a possibility of reducing test redundancy at the level of test executions, in addition to the
levels of products or test cases.

Given a set of test cases T, let ET be the set of test executions obtained by applying the
test cases in T and Faults(ET) be the set of the faults that are detected by ET. A test execution
e in ET is said to be a redundant test execution of T if Faults(ET − {e}) = Faults(ET) (i.e., e
does not help finding faults). Redundant test executions can occur when two products

Electronics 2022, 11, 1165. https://doi.org/10.3390/electronics11071165 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11071165
https://doi.org/10.3390/electronics11071165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4035-5941
https://orcid.org/0000-0001-7947-8741
https://orcid.org/0000-0003-4512-806X
https://doi.org/10.3390/electronics11071165
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11071165?type=check_update&version=2

Electronics 2022, 11, 1165 2 of 18

have common source code [12]. For example, when products of a product family, say P1, P2
and P3, have the same feature that is independent of other features, if the feature has been
tested in P1, then testing it again in P2 would be redundant because it does not increase
the chance of detecting defects in the feature. The existing variability-aware test execution
methods [13–15] reduce redundant test executions for a configurable system by executing
it so that the source code common to multiple configurations is covered only once. With
some adjustments, the methods can be applied to testing of a product line that produces a
set of products which are obtained by assembling a set of code fragments of the product
line. However, their methods do not address the execution of existing test cases and thus
cannot be applied to regression testing of a product line.

In our previous work [16], we proposed a method of reducing redundant test execu-
tions of a product line in the context of regression testing. Given a modified product family
and a set of test cases selected for a retest through an existing regression test selection
method, our previously proposed method (to be abbreviated as our method in this paper)
builds the checksum matrix for the modified product family, which contains checksum
values of every code unit (i.e., a section of code written in a programming language that
can be executed [16]) of the family. The checksum value of a code unit is computed by
applying a hash function to the statements of the code unit. Using the checksum matrix,
our method avoids repetitions of equivalent test executions by identifying products where
a test case covers the same sequence of identical code units. Through these steps, it reduces
the total number of test executions by avoiding test executions that will produce the same
execution traces and test results. However, the method focused only on the context of
regression testing.

The products of a product family can be viewed as different versions of one product of
the family. Then, differences between two products of a family can be viewed as regression
deltas. Thus, a regression testing strategy can be applied for testing of a (single version
of) software product line [7]. Several techniques [7–11] on SPL testing applied regression
testing strategies for SPL testing and reported its validity and effectiveness. Along this
direction, our method, which was originally proposed for SPL regression testing in [16],
can also be applied for the testing of the initial version of a software product line, not just
for its subsequent versions.

In this paper, we argue the generality of our method in the sense that it can be used for
the testing of the first version of a software product line as well as the regression testing of
its subsequent versions. Also in this paper, we propose an SPL testing process for applying
our method and provide an algorithm for reducing redundant test executions, which
improves the algorithm of our previous work [16]. Based on the process and the algorithm,
we conduct a case study. As the SPL of our case study, we use the VendingMachine SPL
because it has been well documented [17] and served as benchmarks in the literature [18].

This paper makes the following contributions:

• We extend our previous method [16] to make it more practicable by providing an im-
proved algorithm that avoids equivalent test executions in order to reduce unnecessary
repetition of test executions and unnecessary collection of test execution traces.

• We propose a practical process for applying our method to testing of the first version
of a product family as well as regression testing of its subsequent versions.

• Through a case study based on the proposed process, we demonstrate the generality
of our method and how it can be used for efficient testing of software product lines.
The case study shows that, for the first version and its two subsequent versions of the
VendingMachine SPL, our method reduces 42.3% of test executions compared to the
exhaustive execution.

The rest of the paper is organized as follows: Section 2 describes how to identify equiv-
alent test executions; Section 3 presents an SPL testing process and an improved version
of our previous algorithm for avoiding equivalent test executions; Section 4 demonstrates
the generality of our method through a case study; in Section 5, we discuss related work
regarding SPL testing; finally, in Section 6, we conclude the paper.

Electronics 2022, 11, 1165 3 of 18

2. Equivalence of Test Executions in SPL

This section provides an example with code snippets to illustrate the notion of equiva-
lence of test executions in SPL that was defined in our previous paper [16]. Figure 1 shows
the Lock module of the DoorLock SPL, which has one variation point (i.e., Lock) and three
variants (i.e., Fingerprint Scanner, Keypad and Magnetic Card). The Lock variation point
has an alternative relationship with its variants, which requires that only one variant among
its variants can be selected to produce a product. When a variant is selected to produce a
product, the corresponding code is enabled and the code for the other variants is disabled.
For example, if the Fingerprint Scanner is selected, line 5 of the Lock class and the code of
the FingerPrintAccess class are enabled and lines 6 and 7 of the Lock class and the code
of the PINAccess and MagneticAccess classes are disabled. It is assumed that none of the
classes in the Lock module contain non-deterministic functions (e.g., the random function).
Based on this principle, the DoorLock SPL can produce a set of products as a product family
by selecting, for each product, variants of variation points for all the modules (including the
modules omitted in this example). We denote the set of products containing the Fingerprint
Scanner variant as PFS, the set of products containing the Keypad variant as PK, the set
of products containing the Magnetic Card as PMC and the set of all products that can be
produced from the DoorLock SPL as PALL. Then, PALL is equal to PFS ∪ PK ∪ PMC.

Electronics 2022, 11, 1165 3 of 19

The rest of the paper is organized as follows: Section 2 describes how to identify

equivalent test executions; Section 3 presents an SPL testing process and an improved

version of our previous algorithm for avoiding equivalent test executions; Section 4

demonstrates the generality of our method through a case study; in Section 5, we discuss

related work regarding SPL testing; finally, in Section 6, we conclude the paper.

2. Equivalence of Test Executions in SPL

This section provides an example with code snippets to illustrate the notion of equiv-

alence of test executions in SPL that was defined in our previous paper [16]. Figure 1

shows the Lock module of the DoorLock SPL, which has one variation point (i.e., Lock)

and three variants (i.e., Fingerprint Scanner, Keypad and Magnetic Card). The Lock vari-

ation point has an alternative relationship with its variants, which requires that only one

variant among its variants can be selected to produce a product. When a variant is selected

to produce a product, the corresponding code is enabled and the code for the other vari-

ants is disabled. For example, if the Fingerprint Scanner is selected, line 5 of the Lock class

and the code of the FingerPrintAccess class are enabled and lines 6 and 7 of the Lock class

and the code of the PINAccess and MagneticAccess classes are disabled. It is assumed that

none of the classes in the Lock module contain non-deterministic functions (e.g., the ran-

dom function). Based on this principle, the DoorLock SPL can produce a set of products

as a product family by selecting, for each product, variants of variation points for all the

modules (including the modules omitted in this example). We denote the set of products

containing the Fingerprint Scanner variant as PFS, the set of products containing the Key-

pad variant as PK, the set of products containing the Magnetic Card as PMC and the set of

all products that can be produced from the DoorLock SPL as PALL. Then, PALL is equal to

PFS ∪ PK ∪ PMC.

Figure 1. An illustrative example using the DoorLock SPL. (a) product line code base. (b) test cases

Let us suppose that test cases t1, t2, t3 and t4 are used to test products in PALL. In this

case, the executions of t1 applied to the products in PFS are equivalent because, for each

product p∈PFS, t1 traverses only FingerPrintAccess on any p∈PFS and the source code of

the FingerPrintAccess class is the same for all the products in PFS. Likewise, the executions

of t2 applied to the products in PK are equivalent and the executions of t3 applied to the

products in PMC are equivalent. Therefore, executing each test case on all the relevant prod-

ucts is redundant [16].

Figure 1. An illustrative example using the DoorLock SPL. (a) product line code base. (b) test cases.

Let us suppose that test cases t1, t2, t3 and t4 are used to test products in PALL. In this
case, the executions of t1 applied to the products in PFS are equivalent because, for each
product p ∈ PFS, t1 traverses only FingerPrintAccess on any p ∈ PFS and the source code of
the FingerPrintAccess class is the same for all the products in PFS. Likewise, the executions
of t2 applied to the products in PK are equivalent and the executions of t3 applied to the
products in PMC are equivalent. Therefore, executing each test case on all the relevant
products is redundant [16].

3. SPL Testing Process for Avoiding Equivalent Test Executions

In this section, we argue the generality of our method and present a practical process
for applying our method to SPL testing in general including regression testing.

In our previous work [16], our method was presented in the context of regression
testing where the regression testing is performed by executing only a subset of the existing
test cases that is affected by changes. That is, in our method, regression testing is performed
by executing a subset of the previous version of test cases on the current version of product
family. A special case of this “current version” is the first version. If a testing method
requires artifacts (e.g., fault detection history, change information, code dependencies, etc.)
from the previous version of product family, the method cannot be used for testing of the
first version. However, our method uses only the artifacts for the current version of product
family, without relying on the artifacts from the previous version of product family. For this

Electronics 2022, 11, 1165 4 of 18

reason, our method of avoiding redundant test executions for regression testing, which is a
testing of the second and later versions, can be used for testing of the very first version of
the product family by using the full set of test cases as input. This implies that our method
is general enough for testing of any version of a product family including the first version.

Figure 2 shows a process for avoiding equivalent test executions that can be used
in the general cases (i.e., the testing of one SPL version and the regression testing of its
subsequent versions). The inputs are (1) the code base of a product line and (2) the test cases
of the product line. The process first obtains a product family (in Step 1) and constructs
its checksum matrix (in Step 2). Then, it selects test cases to run (in Step 3) and executes
them (in Step 4). Generation of new test cases and deletion of obsolete test cases are not
the scope of this paper. Therefore, we assume that the initial set of test cases is given and
that new test cases are generated and obsolete test cases are deleted when a product line is
modified. The resulting set of test cases is used as the input, i.e., ‘Test cases of a product
family’ shown in the bottom part of Figure 2.

Electronics 2022, 11, 1165 4 of 19

3. SPL Testing Process for Avoiding Equivalent Test Executions

In this section, we argue the generality of our method and present a practical process

for applying our method to SPL testing in general including regression testing.

In our previous work [16], our method was presented in the context of regression

testing where the regression testing is performed by executing only a subset of the existing

test cases that is affected by changes. That is, in our method, regression testing is per-

formed by executing a subset of the previous version of test cases on the current version

of product family. A special case of this “current version” is the first version. If a testing

method requires artifacts (e.g., fault detection history, change information, code depend-

encies, etc.) from the previous version of product family, the method cannot be used for

testing of the first version. However, our method uses only the artifacts for the current

version of product family, without relying on the artifacts from the previous version of

product family. For this reason, our method of avoiding redundant test executions for

regression testing, which is a testing of the second and later versions, can be used for test-

ing of the very first version of the product family by using the full set of test cases as input.

This implies that our method is general enough for testing of any version of a product

family including the first version.

Figure 2 shows a process for avoiding equivalent test executions that can be used in

the general cases (i.e., the testing of one SPL version and the regression testing of its sub-

sequent versions). The inputs are (1) the code base of a product line and (2) the test cases

of the product line. The process first obtains a product family (in Step 1) and constructs

its checksum matrix (in Step 2). Then, it selects test cases to run (in Step 3) and executes

them (in Step 4). Generation of new test cases and deletion of obsolete test cases are not

the scope of this paper. Therefore, we assume that the initial set of test cases is given and

that new test cases are generated and obsolete test cases are deleted when a product line

is modified. The resulting set of test cases is used as the input, i.e., ‘Test cases of a product

family’ shown in the bottom part of Figure 2.

Figure 2. The process for avoiding equivalent test executions.

The proposed application process includes a minimal set of steps necessary to apply

our method to SPL testing. Thus, for the full testing of a product line, additional steps for

minimization and prioritization of test cases, change impact analysis, etc. can be added to

the process.

3.1. Step 1: Obtain a Product Family

This step obtains a product family from the code base of a product line. At the time

of testing the first version, all the products of a product family are instantiated from the

code base. However, when changes are made to a product line code base, a new version

Figure 2. The process for avoiding equivalent test executions.

The proposed application process includes a minimal set of steps necessary to apply
our method to SPL testing. Thus, for the full testing of a product line, additional steps for
minimization and prioritization of test cases, change impact analysis, etc. can be added to
the process.

3.1. Step 1: Obtain a Product Family

This step obtains a product family from the code base of a product line. At the time
of testing the first version, all the products of a product family are instantiated from the
code base. However, when changes are made to a product line code base, a new version of
product family is obtained in this step by propagating changes to the products instantiated
from the modified code base. The change propagation technique [19] can be used for
this step.

3.2. Step 2: Build/Update Checksum Matrix

To check whether two code units are identical, our method compares their checksums.
If the checksums of the two code units are the same, then they are identical, and otherwise,
they are not identical. To store the checksum values of code units, this step builds the
checksum matrix for a product family. For each product of a product family, it obtains a set
of code units from the product. Then, for each code unit, it computes its checksum value
and stores it to the checksum matrix. Table 1 shows an example of the checksum matrix
for a product family consisting of P1, P2 and P3 implemented in the Java language. In
this example, 8-bit checksum is used. This example checksum matrix shows that P1 and
P3 contain Foo.class and Bar.class and P2 contains Foo.class and Baz.class. It also shows
that Foo.class for P1 is identical to that for P2 as their checksum values are the same. The
checksum matrix of a product family is built only once at the time of testing the first version
of the family. From the next version of the family, this step updates the existing checksum
matrix by modifying only the checksum values of changed classes.

Electronics 2022, 11, 1165 5 of 18

Table 1. An example of checksum matrix.

Class
Product Foo.class Bar.class Baz.class

P1 9da53bba 8a841cc2 -
P2 9da53bba - 30cea121
P3 f253ab1c 83523abb -

3.3. Step 3: Select Test Cases to Execute

This step selects test cases to be executed on the products of a product family. At
the time of testing the first version of a product line, the full set of test cases is selected.
However, at the time of regression testing of its subsequent versions, this step selects a
subset of the existing test cases that is affected by changes. The existing regression test
selection approach can be used to select regression test cases. In our case study to be
presented in Section 4, we apply the approach of Lity et al. [7], which selects test cases
that traverse changes. For example, if a class of a product line has changed and a test case
traverses the class, the test case is selected for regression testing of the product line.

3.4. Step 4: Execute Test Cases and Collect Execution Traces

This step executes test cases selected in Step 3 on the products of a product family
and collects their test execution traces. For collection of test execution traces, the bytecode
instrumentation library such as ASM [20] and BCEL [21] can be used. To reduce redun-
dant test executions, this step uses the testExecution function of Algorithm 1, which is a
generalized version of our previous algorithm [16]. Like its previous version, Algorithm 1
avoids unnecessary execution of test cases and unnecessary collection of test execution
traces. However, unlike our previous algorithm, Algorithm 1 allows the testing of the first
version as well as the testing of its subsequent versions, which makes our method a general
SPL testing method.

Algorithm 1 An algorithm for avoiding equivalent test executions

Input: TP: target products
Input: SelectedTCs: set of test cases selected from Step 3
Input: chksumMatrix: checksum matrix for a product family
Use: execute(t, p): execute a test case t on a product p
and collect the execution trace of t on p
1. function testExecution(TP, chksumMatrix)
2. Map ETrace← ∅ // key: test case, value: set of traces
3. for each p ∈ TP do:
4. T← SelectedTCs.for(p)
5. CandidateTCs.addAll(T)
6. for each t ∈ T do:
7. TR← ETrace.getTracesOf(t)
8. for each tr ∈ TR do: // tr: classes covered by t on products
9. chksumListA← chksumMatrix.lookup(p, tr.classes)
10. chksumListB← chksumMatrix.lookup(tr.product, tr.classes)
11. if chksumListA equals chksumListB then:
12. CandidateTCs.delete(t)
13. end if
14. end for
15. end for
16. pairs <TestCase, Trace>← execute(CandidateTCs, p)
17. ETrace.appendAll(pairs)
18. CandidateTCs← ∅
19. end for
20. end function

Electronics 2022, 11, 1165 6 of 18

For each product (p) of target products (TP), it obtains the test cases for p (lines 3–4)
and adds these test cases to a set of the candidate test cases (CandidateTCs) (line 5). At the
time of testing the first version of a product family, all products of the family are used as
TP and at the time of regression testing of a product family, the changed products of the
family are used as TP. Then, for each test case (t) for p, if p has classes that are identical
to classes that t traversed on the previously tested one product, then the execution of t
on p is excluded from CandidateTCs (lines 6–15) because the executions of t on the two
products would be equivalent (Cf. Section 2). In this step, the order of selecting products
and test cases does not affect the number of repetitions of test case execution. Finally, all
the test cases in CandidateTCs are executed on p and their execution traces are collected
for the testing of the next product (lines 16–18). This algorithm executes all the test cases
of a product if it is the first chosen product of a product family. However, from the next
product, the algorithm selectively executes test cases for the product, avoiding equivalent
test executions. To identify the code units that are covered by each test case, this algorithm
executes all the test cases at least once on a product of the family.

4. Case Study Using the VendingMachine SPL

In this section, we conduct a case study that applies the process for SPL testing pre-
sented in Section 3 (Figure 2). We use the VendingMachine SPL for this case study because
its behavioral specifications and evolving scenarios have been well documented [17]. We
apply the process to the testing of the first version of the VendingMachine SPL, SPLV0,
(in Section 4.1) and the regression testing of its subsequent versions, SPLV1 and SPLV2 (in
Sections 4.2 and 4.3). Then, we discuss the results (in Section 4.4).

Figure 3 shows the feature model for SPLV0. We first implemented features of the fea-
ture model using Java language, based on the behavioral specifications of the document [17].
These features were implemented using classes with the same name as the feature name
except the VendingMachine feature. The VendingMachine feature was implemented using
three classes whose names are VMachine, DrinkOrder and Display. Then, we generated
the nine test cases for the first version of the product line, as specified in Table 2. Each test
case validates the expected output for a given input, executing a subset of classes. Finally,
we defined a product family consisting of four products. Table 3 lists the identifier of each
product with the lines of code (LOC) in parentheses, test cases, feature configuration, and
class set. Because each product contains a different set of classes, a different set of test cases
is assigned to each product.

Electronics 2022, 11, 1165 7 of 19

Figure 3 shows the feature model for SPLV0. We first implemented features of the

feature model using Java language, based on the behavioral specifications of the docu-

ment [17]. These features were implemented using classes with the same name as the fea-

ture name except the VendingMachine feature. The VendingMachine feature was imple-

mented using three classes whose names are VMachine, DrinkOrder and Display. Then,

we generated the nine test cases for the first version of the product line, as specified in

Table 2. Each test case validates the expected output for a given input, executing a subset

of classes. Finally, we defined a product family consisting of four products. Table 3 lists

the identifier of each product with the lines of code (LOC) in parentheses, test cases, fea-

ture configuration, and class set. Because each product contains a different set of classes,

a different set of test cases is assigned to each product.

Figure 3. The feature model for SPLV0.

Table 2. Test cases for SPLV0.

Test Case Input Expected Output Description

t1 1 True Checks whether a cup of tea is provided when 1 is inputted.

t2 2 True Checks whether a cup of coffee is provided when 2 is inputted.

t3 3 True Checks whether a cup of cappuccino is provided when 3 is inputted.

t4 “Coffee” True Checks whether sugar is poured when a cup of coffee is made.

t5 1 “1 Euro” Checks whether “1 euro” is displayed when 1 euro is inserted.

t6 5 “5 Dollars” Checks whether “5 dollars” is displayed when 5 dollars is inserted.

t7 BeberageDelevered(=True) True Checks whether a tone is emitted when a beverage has been delivered.

t8 Ring-Off(=False) False Checks whether the turn-off switch of the ring correctly works.

t9 ErrNotEnough Sugar(=1)
“not enough

sugar”
Checks whether an error message is displayed.

Table 3. A product family SPLV0.

Product

(LOC)
Test Case Feature Configuration Class Set

P1

(167)
t1, t5, t7, t8, t9

VendingMachine, Beverages, Tea, RingTone, Cur-

rency, Euro

VMachine, DrinkOrder, Display, Beverages,

Tea, RingTone, Currency

P2

(167)
t3, t6, t7, t8, t9

VendingMachine, Beverages, Cappuccino,

RingTone, Currency, Dollar

VMachine, DrinkOrder, Display, Beverages,

Cappuccino, RingTone, Currency

P3

(182)

t2, t3, t4, t6, t7, t8,

t9

VendingMachine, Beverages, Coffee, Cappuccino,

RingTone, Currency, Dollar

VMachine, DrinkOrder, Display, Beverages,

Coffee, Cappuccino, RingTone, Currency

P4

(140)
t1, t5, t9 VendingMachine, Beverages, Tea, Currency, Euro

VMachine, DrinkOrder, Display, Beverages,

Tea, Currency

4.1. Testing of the Initial Version of a Product Line (Testing of SPLV0)

In this section, we present a testing of the first version of the VendingMachine SPL.

Figure 3. The feature model for SPLV0.

Electronics 2022, 11, 1165 7 of 18

Table 2. Test cases for SPLV0.

Test Case Input Expected Output Description

t1 1 True Checks whether a cup of tea is provided when 1
is inputted.

t2 2 True Checks whether a cup of coffee is provided
when 2 is inputted.

t3 3 True Checks whether a cup of cappuccino is provided
when 3 is inputted.

t4 “Coffee” True Checks whether sugar is poured when a cup of
coffee is made.

t5 1 “1 Euro” Checks whether “1 euro” is displayed when
1 euro is inserted.

t6 5 “5 Dollars” Checks whether “5 dollars” is displayed when
5 dollars is inserted.

t7 BeberageDelevered(=True) True Checks whether a tone is emitted when a
beverage has been delivered.

t8 Ring-Off(=False) False Checks whether the turn-off switch of the ring
correctly works.

t9 ErrNotEnough Sugar(=1) “not enough sugar” Checks whether an error message is displayed.

Table 3. A product family SPLV0.

Product
(LOC) Test Case Feature Configuration Class Set

P1
(167) t1, t5, t7, t8, t9 VendingMachine, Beverages, Tea,

RingTone, Currency, Euro
VMachine, DrinkOrder, Display, Beverages,

Tea, RingTone, Currency
P2

(167) t3, t6, t7, t8, t9 VendingMachine, Beverages, Cappuccino,
RingTone, Currency, Dollar

VMachine, DrinkOrder, Display, Beverages,
Cappuccino, RingTone, Currency

P3
(182) t2, t3, t4, t6, t7, t8, t9 VendingMachine, Beverages, Coffee,

Cappuccino, RingTone, Currency, Dollar
VMachine, DrinkOrder, Display, Beverages,

Coffee, Cappuccino, RingTone, Currency
P4

(140) t1, t5, t9 VendingMachine, Beverages, Tea,
Currency, Euro

VMachine, DrinkOrder, Display, Beverages,
Tea, Currency

4.1. Testing of the Initial Version of a Product Line (Testing of SPLV0)

In this section, we present a testing of the first version of the VendingMachine SPL.
Step 1. Obtain a product family. Because this is the first testing of a product family, all

the products of the family, i.e., P1, P2, P3 and P4, are instantiated from the code base. Then,
the corresponding classes are assembled for each product as presented in Table 3.

Step 2. Build/update checksum matrix. The checksum matrix for the VendingMachine
product family is constructed. Table 4 presents the checksum matrix of the family. To
simplify the example, we present the checksum value as a single character (e.g., a, b, c
and d). Two classes with the same character indicate that their checksum values are the
same and so they have an identical source code. The checksum values (i.e., a, b, c and d)
of the VMachine class are different for the products of the family because each product
provides a different set of beverages and so the source code of the VMachine classes are
different for the products. In addition, the checksum value (i.e., i) of the DrinkOrder class
for P1 and P4 is different from that for P2 and P3 (i.e., j) because P1 and P4 provide only
sugar for serving beverages but P2 and P3 provide milk in addition to sugar. The checksum
value (i.e., l) of the Currency class for P1 and P4 is different from that (i.e., m) for P2 and P3
because P1 and P4 use euro for payment while P2 and P3 use dollar.

Step 3. Select test cases to execute. Because this is the testing of the first version of a
product family, all the test cases, i.e., 9 test cases, are selected.

Step 4. Execute test cases and collect execution traces. If all the test cases are executed
exhaustively on all the products that use the test cases, the total number of test executions
is 20. To reduce redundant executions of the test cases, we use Algorithm 1. Because this is
the first testing of the product family, all the products of the family are used as the input

Electronics 2022, 11, 1165 8 of 18

of the algorithm, ‘TP’. First, all test cases for P1 are executed and their execution traces
are collected as presented in Table 5. For example, t1 is executed on P1 in the sequence of
VMachine, Currency, Beverages, DrinkOrder, Tea, RingTone and Display and is executed
on P4 in the sequence of VMachine, Currency, Beverages, DrinkOrder, Tea and Display.
After that, for each test case of the next product, P2, if P2 has a set of classes identical to
a set of classes that the test case traversed on P1, then the test case is not executed on P2.
In our case study, as Tables 4 and 5 show, t8 traversed the RingTone class on P1 and the
RingTone class for P1 is identical to that for P2 (i.e., the checksum values are the same as
‘k’). Thus, t8 is not executed on P2 because the test executions of t8 on P1 and P2 would be
equivalent. In the same way, t9 is not executed on P2, too. By the same principle, for the
testing of P3, the executions of t6, t7, t8 and t9 are avoided and for the testing of P4, t5 and
t9 are avoided because their executions would be equivalent on previously tested products.
Consequently, 8 test executions are reduced and so the total number of test executions is 12.

Table 4. The checksum matrix for SPLV0.

Class
Product VMachine Beverages Coffee Tea Cappuccino DrinkOrder RingTone Currency Display

P1 a e - g - i k l n
P2 b e - - h j k m n
P3 c e f - h j k m n
P4 d e - g - i - l n

Table 5. Execution traces of test cases and their checksum values for SPLV0.

Test Case Used Products Test Execution Trace Checksum Values

t1 P1, P4

{P1}: [VMachine, Currency, Beverages,
DrinkOrder, Tea,

RingTone, Display]
{P4}: [VMachine, Currency, Beverages,

DrinkOrder, Tea, Display]

P1: aleigkn, P4: dleign

t2 P3 {P3}: [VMachine, Currency, Beverages,
DrinkOrder, Coffee, RingTone, Display] P3: cmejfkn

t3 P2, P3 {P2, P3}: [VMachine, Currency, Beverages,
DrinkOrder, Cappuccino, RingTone, Display]

P2: bmejhkn,
P3: cmejhkn

t4 P3 {P3}: [DrinkOrder] P3: j
t5 P1, P4 {P1, P4}: [Currency, Display] P1: ln, P4: ln
t6 P2, P3 {P2, P3}: [Currency, Display] P2: mn, P3: mn
t7 P1, P2, P3 {P1, P2, P3}: [DrinkOrder, RingTone] P1: ik, P2: jk, P3: jk
t8 P1, P2, P3 {P1, P2, P3}: [RingTone] P1: k, P2: k, P3: k
t9 P1, P2, P3, P4 {P1, P2, P3, P4}: [Display] P1: n, P2: n, P3: n, P4: n

4.2. Modification for Adding New Test Cases (Testing of SPLV1)

When a product line is modified, new features can be added to the product line and
new test cases can be generated to verify these features. As the modified product line in
Figure 4 shows, features for beverage size are added and the Size feature has an ‘exclude’
relationship with the Dollar feature. Thus, only when the Euro feature is selected, different
choices for the beverage size are allowed. We marked the changed parts using a dotted line.
Based on the evolving scenario, we modified the DrinkOrder class of the product line code
base so that choosing features of different beverage sizes is allowed. Then, we generated
new test cases for new features, as specified in Table 6. For test case generation, we used
the method of Lity et al. [7]. Finally, we modified the VendingMachine product family by
adding new features for beverage size, presented as bold type in Table 7. Only the feature
configurations for P1 and P4 have been modified because P2 and P3 have the Dollar feature,
which is mutually exclusive with the Size feature.

Electronics 2022, 11, 1165 9 of 18

Electronics 2022, 11, 1165 9 of 19

t2 P3
{P3}: [VMachine, Currency, Beverages, DrinkOrder, Coffee,

RingTone, Display]
P3: cmejfkn

t3 P2, P3
{P2, P3}: [VMachine, Currency, Beverages, DrinkOrder, Cappuc-

cino, RingTone, Display]

P2: bmejhkn,

P3: cmejhkn

t4 P3 {P3}: [DrinkOrder] P3: j

t5 P1, P4 {P1, P4}: [Currency, Display] P1: ln, P4: ln

t6 P2, P3 {P2, P3}: [Currency, Display] P2: mn, P3: mn

t7 P1, P2, P3 {P1, P2, P3}: [DrinkOrder, RingTone] P1: ik, P2: jk, P3: jk

t8 P1, P2, P3 {P1, P2, P3}: [RingTone] P1: k, P2: k, P3: k

t9 P1, P2, P3, P4 {P1, P2, P3, P4}: [Display] P1: n, P2: n, P3: n, P4: n

4.2. Modification for Adding New Test Cases (Testing of SPLV1)

When a product line is modified, new features can be added to the product line and

new test cases can be generated to verify these features. As the modified product line in

Figure 4 shows, features for beverage size are added and the Size feature has an ‘exclude’

relationship with the Dollar feature. Thus, only when the Euro feature is selected, different

choices for the beverage size are allowed. We marked the changed parts using a dotted

line. Based on the evolving scenario, we modified the DrinkOrder class of the product line

code base so that choosing features of different beverage sizes is allowed. Then, we gen-

erated new test cases for new features, as specified in Table 6. For test case generation, we

used the method of Lity et al. [7]. Finally, we modified the VendingMachine product fam-

ily by adding new features for beverage size, presented as bold type in Table 7. Only the

feature configurations for P1 and P4 have been modified because P2 and P3 have the Dol-

lar feature, which is mutually exclusive with the Size feature.

Figure 4. The feature model for SPLV1.

Table 6. New test cases for SPLV1.

Test Case Input Expected Output Description

t10 1 “Small” Checks whether a small size beverage is chosen.

t11 2 “Regular” Checks whether a regular size beverage is chosen.

t12 3 “Large” Checks whether a large size beverage is chosen.

Table 7. A product family SPLV1. Features or classes changed in SPLV0 are presented as bold type.

Product

(LOC)
Test Case Feature Configuration Class Set

P1

(194)

t1, t5, t7, t8, t9,

t10, t11, t12

VendingMachine, Beverages, Tea, RingTone,

Currency, Euro, Size, Small, Regular, Large

VMachine, DrinkOrder, Display, Bever-

ages, Tea, RingTone, Currency

P2

(167)
t3, t6, t7, t8, t9

VendingMachine, Beverages, Cappuccino,

RingTone, Currency, Dollar

VMachine, DrinkOrder, Display, Bever-

ages, Cappuccino, RingTone, Currency

Figure 4. The feature model for SPLV1.

Table 6. New test cases for SPLV1.

Test Case Input Expected Output Description

t10 1 “Small” Checks whether a small size beverage is chosen.
t11 2 “Regular” Checks whether a regular size beverage is chosen.
t12 3 “Large” Checks whether a large size beverage is chosen.

Table 7. A product family SPLV1. Features or classes changed in SPLV0 are presented as bold type.

Product
(LOC) Test Case Feature Configuration Class Set

P1
(194) t1, t5, t7, t8, t9, t10, t11, t12

VendingMachine, Beverages, Tea,
RingTone, Currency, Euro, Size, Small,

Regular, Large

VMachine, DrinkOrder, Display,
Beverages, Tea, RingTone, Currency

P2
(167) t3, t6, t7, t8, t9 VendingMachine, Beverages,

Cappuccino, RingTone, Currency, Dollar

VMachine, DrinkOrder, Display,
Beverages, Cappuccino,

RingTone, Currency

P3
(182) t2, t3, t4, t6, t7, t8, t9 VendingMachine, Beverages, Coffee,

Cappuccino, RingTone, Currency, Dollar

VMachine, DrinkOrder, Display,
Beverages, Coffee, Cappuccino,

RingTone, Currency

P4
(167) t1, t5, t9, t10, t11, t12

VendingMachine, Beverages, Tea,
Currency, Euro, Size, Small,

Regular, Large

VMachine, DrinkOrder, Display,
Beverages, Tea, Currency

Step 1. Obtain a product family. Changes of the DrinkOrder class are propagated to
P1 and P4, and P2 and P3 remain the same as their previous versions.

Step 2. Build/update checksum matrix. This step updates the existing checksum
matrix by re-computing the checksum of the modified class (i.e., the DrinkOrder class).
Table 8 presents the updated checksum matrix of the VendingMachine product family.
Because the evolving scenario affects only the DrinkOrder class, only the checksum values
of the DrinkOrder class change and the other values remain the same. We presented the
changed values in bold in Table 7.

Step 3. Select test cases to execute. All the new test cases, t10, t11 and t12, are selected
to test new features relevant to beverage size. Additionally, because the DrinkOrder class
changed according to the evolving scenario, the test cases that traversed the DrinkOrder
class in the previous version are selected. In our case, t1, t2, t3, t4 and t7 are selected since
as presented in Table 5, they traversed the DrinkOrder in the previous version.

Step 4. Execute test cases and collect execution traces. If the test cases selected in
Step 3 (i.e., t1, t2, t3, t4, t7, t10, t11 and t12) are executed exhaustively, the total number
of test executions is 15. However, these test executions include redundant test executions,
and our algorithm can reduce them in the context of regression testing as well. Because P1
and P4 have been affected by the changes, only these products are targets for regression

Electronics 2022, 11, 1165 10 of 18

testing and used as the input ‘TP’ of Algorithm 1. The algorithm first executes the test cases
applicable to P1 (i.e., t1, t7, t10, t11 and t12). Table 9 shows the test execution traces and
their checksum values. Checksum values of test execution traces that contain a changed
class (i.e., the DrinkOrder class for P1 and P4) change. We presented the values changed
from the values in the previous version in bold. Then, when the test cases applicable to
P4 (i.e., t1, t10, t11 and t12) are executed, the executions of t10, t11 and t12 are excluded
because P4 has a set of classes identical to a set of classes that these test cases traversed
on P1, which indicates that their test executions would be equivalent. For example, t10
traversed the DrinkOrder class and the Display class on P1 and those classes for P1 are
identical to those for P4 (i.e., the checksum values are the same as ‘on’). For this reason,
the execution of t10 on P4 is redundant. Even though t2, t3 and t4 are selected in Step 3,
they are not executed on any products because they have not been used for the changed
products, P1 or P4. Consequently, 9 test executions are reduced and so the total number of
test executions is 6.

Table 8. The checksum matrix for SPLV1. Checksum values changed in SPLV0 are presented as bold type.

Class
Product

VMachine Beverages Coffee Tea Cappuccino DrinkOrder RingTone Currency Display

P1 a e - g - o k l n
P2 b e - - h j k m n
P3 c e f - h j k m n
P4 d e - g - o - l n

Table 9. Execution traces of test cases and their checksum values for SPLV1. Checksum values
changed in SPLV0 are presented as bold type.

Test Case Used Products Test Execution Trace Checksum Values

t1 P1, P4

{P1}: [VMachine, Currency, Beverages,
DrinkOrder, Tea, RingTone, Display]

{P4}: [VMachine, Currency, Beverages,
DrinkOrder, Tea, Display]

P1: aleogkn, P4: dleogn

t2 P3 {P3}: [VMachine, Currency, Beverages,
DrinkOrder, Coffee, RingTone, Display] P3: cmejfkn

t3 P2, P3 {P2, P3}: [VMachine, Currency, Beverages,
DrinkOrder, Cappuccino, RingTone, Display]

P2: bmejhkn,
P3: cmejhkn

t4 P3 {P3}: [DrinkOrder] P3: j
t5 P1, P4 {P1, P4}: [Currency, Display] P1: ln, P4: ln
t6 P2, P3 {P2, P3}: [Currency, Display] P2: mn, P3: mn
t7 P1, P2, P3 {P1, P2, P3}: [DrinkOrder, RingTone] P1: ok, P2: jk, P3: jk
t8 P1, P2, P3 {P1, P2, P3}: [RingTone] P1: k, P2: k, P3: k
t9 P1, P2, P3, P4 {P1, P2, P3, P4}: [Display] P1: n, P2: n, P3: n, P4: n

t10 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: on, P4: on
t11 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: on, P4: on
t12 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: on, P4: on

4.3. Modification Affecting Existing Test Cases (Testing of SPLV2)

Some modifications in a product line can affect the existing test cases by causing them
to traverse different classes depending on the products to be tested. As the modified product
line in Figure 5 shows, the feature for small beverage size is deleted and the Milk feature is
newly added. The Milk feature has the ‘require’ relationships with the ‘Cappuccino’ feature.
So only a product that offers cappuccino has the Milk feature. According to this evolving
scenario, we first added the Milk class to the product line code base and implemented its
functions that when a cup of cappuccino is made, a cup of milk is supplied and when the
amount of milk is not enough, the VendingMachine displays an error message. Next, to
support the milk supply and stop serving the small size of beverages, we modified the
DrinkOrder class. Due to this modification, the code coverages of the existing test cases are

Electronics 2022, 11, 1165 11 of 18

changed. Then, as specified in Table 10, we generated new test cases for the Milk feature.
Finally, as presented in Table 11, we modified the feature configurations for all the products
of the VendingMachine product family by adding the Milk feature or deleting the Small
feature for the relevant products.

Electronics 2022, 11, 1165 11 of 19

t1 P1, P4

{P1}: [VMachine, Currency, Beverages, DrinkOrder, Tea, Ring-

Tone, Display]

{P4}: [VMachine, Currency, Beverages, DrinkOrder, Tea, Dis-

play]

P1: aleogkn, P4: dleogn

t2 P3
{P3}: [VMachine, Currency, Beverages, DrinkOrder, Coffee,

RingTone, Display]
P3: cmejfkn

t3 P2, P3
{P2, P3}: [VMachine, Currency, Beverages, DrinkOrder, Cap-

puccino, RingTone, Display]

P2: bmejhkn,

P3: cmejhkn

t4 P3 {P3}: [DrinkOrder] P3: j

t5 P1, P4 {P1, P4}: [Currency, Display] P1: ln, P4: ln

t6 P2, P3 {P2, P3}: [Currency, Display] P2: mn, P3: mn

t7 P1, P2, P3 {P1, P2, P3}: [DrinkOrder, RingTone] P1: ok, P2: jk, P3: jk

t8 P1, P2, P3 {P1, P2, P3}: [RingTone] P1: k, P2: k, P3: k

t9 P1, P2, P3, P4 {P1, P2, P3, P4}: [Display] P1: n, P2: n, P3: n, P4: n

t10 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: on, P4: on

t11 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: on, P4: on

t12 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: on, P4: on

4.3. Modification Affecting Existing Test Cases (Testing of SPLV2)

Some modifications in a product line can affect the existing test cases by causing them

to traverse different classes depending on the products to be tested. As the modified prod-

uct line in Figure 5 shows, the feature for small beverage size is deleted and the Milk

feature is newly added. The Milk feature has the ‘require’ relationships with the ‘Cappuc-

cino’ feature. So only a product that offers cappuccino has the Milk feature. According to

this evolving scenario, we first added the Milk class to the product line code base and

implemented its functions that when a cup of cappuccino is made, a cup of milk is sup-

plied and when the amount of milk is not enough, the VendingMachine displays an error

message. Next, to support the milk supply and stop serving the small size of beverages,

we modified the DrinkOrder class. Due to this modification, the code coverages of the

existing test cases are changed. Then, as specified in Table 10, we generated new test cases

for the Milk feature. Finally, as presented in Table 11, we modified the feature configura-

tions for all the products of the VendingMachine product family by adding the Milk fea-

ture or deleting the Small feature for the relevant products.

Figure 5. The feature model for SPLV2.

Table 10. New test cases for SPLV2.

Test Case Input Expected Output Description

t13 0
ErrNotE-

noughMilk

Checks whether the ErrNotEnoughMilk event is

created when the amount of milk is not enough.

Figure 5. The feature model for SPLV2.

Table 10. New test cases for SPLV2.

Test Case Input Expected Output Description

t13 0 ErrNotEnoughMilk
Checks whether the ErrNotEnoughMilk

event is created when the amount of
milk is not enough.

Table 11. A product family SPLV2. Features or classes changed in SPLV1 are presented as bold type.

Product
(LOC) Test Case Feature Configuration Class Set

P1
(189) t1, t5, t7, t8, t9, t10, t11, t12

VendingMachine, Beverages, Tea,
RingTone, Currency, Euro, Size,

Regular, Large

VMachine, DrinkOrder, Display,
Beverages, Tea, RingTone, Currency

P2
(185) t3, t6, t7, t8, t9, t13 VendingMachine, Beverages, Cappuccino,

RingTone, Currency, Dollar, Milk

VMachine, DrinkOrder, Display,
Beverages, Cappuccino, RingTone,

Currency, Milk

P3
(200) t2, t3, t4, t6, t7, t8, t9, t13

VendingMachine, Beverages, Coffee,
Cappuccino, RingTone, Currency,

Dollar, Milk

VMachine, DrinkOrder, Display,
Beverages, Coffee, Cappuccino,

RingTone, Currency, Milk
P4

(162) t1, t5, t9, t10, t11, t12 VendingMachine, Beverages, Tea,
Currency, Euro, Size, Regular, Large

VMachine, DrinkOrder, Display,
Beverages, Tea, Currency

Step 1. Obtain a product family. Changes of the DrinkOrder class are propagated to all
the products and addition of the Milk feature is propagated to P2 and P3.

Step 2. Build/update checksum matrix. This step updates again the previous version
of the checksum matrix by computing the checksum value of the DrinkOrder class and
the Milk class, as presented in Table 12. Thus, the checksum values of the DrinkOrder
class change for all the products and the checksum values for the Milk class are added to
columns for P2 and P3. The other values remain the same.

Step 3. Select test cases to execute. t13 is selected for retest because it is a new test case.
Additionally, t1, t2, t3, t4, t7, t10, t11 and t12 are selected since they traversed the changed
class (i.e., DrinkOrder class) in the previous version, as presented in Table 9.

Step 4. Execute test cases and collect execution traces. Because all the products have been
affected by the changes, all the products of the family are targets for regression testing. The
algorithm first executes the test cases applicable to P1 (i.e., t1, t7, t10, t11 and t12). Table 13
shows the test execution traces and their checksum values. Next, the test cases applicable
to P2 (i.e., t3, t7 and t13) are executed. At this time, no test execution is avoided because

Electronics 2022, 11, 1165 12 of 18

t3 and t13 were not previously executed on any products and t7 were executed on P1 but
P2 does not have the identical set of classes that t7 traversed on P1. In the same way, for
the test cases applicable to P3 (i.e., t2, t3, t4, t7 and t13), the algorithm does not execute t7
and t13 on P3, and for the test cases applicable to P4 (i.e., t1, t10, t11 and t12), the algorithm
does not execute t10, t11 and t12 on P4. In summary, 5 test executions are reduced and so
the total number of test executions is 12.

Table 12. The checksum matrix for SPLV2. Checksum values changed in SPLV1 are presented as
bold type.

Class
Product

VMachine Beverages Coffee Tea Cappuccino DrinkOrder RingTone Currency Display Milk

P1 a e - g - p k l n -
P2 b e - - h q k m n r
P3 c e f - h q k m n r
P4 d e - g - p - l n -

Table 13. Execution traces of test cases and their checksum values for SPLV2. Checksum values
changed in SPLV1 are presented as bold type.

Test Case Used Products Test Execution Trace Checksum Values

t1 P1, P4

{P1}: [VMachine, Currency, Beverages,
DrinkOrder, Tea,

RingTone, Display]
{P4}: [VMachine, Currency, Beverages,

DrinkOrder, Tea, Display]

P1: alepgkn, P4: dlepgn

t2 P3 {P3}: [VMachine, Currency, Beverages,
DrinkOrder, Coffee, RingTone, Display] P3: cmeqfkn

t3 P2, P3 {P2, P3}: [VMachine, Currency, Beverages,
DrinkOrder, Cappuccino, RingTone, Display]

P2: bmeqhkn,
P3: cmeqhkn

t4 P3 {P3}: [DrinkOrder] P3: q
t5 P1, P4 {P1, P4}: [Currency, Display] P1: ln, P4: ln
t6 P2, P3 {P2, P3}: [Currency, Display] P2: mn, P3: mn
t7 P1, P2, P3 {P1, P2, P3}: [DrinkOrder, RingTone] P1: pk, P2: qk, P3: qk
t8 P1, P2, P3 {P1, P2, P3}: [RingTone] P1: k, P2: k, P3: k
t9 P1, P2, P3, P4 {P1, P2, P3, P4}: [Display] P1: n, P2: n, P3: n, P4: n

t10 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: pn, P4: pn
t11 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: pn, P4: pn
t12 P1, P4 {P1, P4}: [DrinkOrder, Display] P1: pn, P4: pn
t13 P2, P3 {P2, P3}: [DrinkOrder, Milk, Display] P2: qrn, P3: qrn

4.4. Threats to Validity

In the case study, the reliability of the target product line can be a threat to the validity
of the case study. To mitigate this problem, we selected the vending machine product line,
which has been well documented [17] and evaluated [7]. Moreover, we chose from the
document evolving scenarios that can show various application cases of our method.

The overhead of our method more or less depends on the programming language. In
the case of the Java language, even though multiple classes are implemented in a single file,
separate class files are produced. In this case, checksum comparison between two classes is
not costly. However, in the case of the C++ language, the overhead in parsing each class
from a file occurs in order to conduct checksum comparison between two classes. This
overhead can be reduced by using a code unit of a coarser level of granularity. However,
the effect in reducing repetitions of test execution may decrease.

4.5. Result and Discussion

Scope of this work. In our previous paper [16], we proposed a method of reducing
redundant test executions of a product line. However, it focused on constructing technical

Electronics 2022, 11, 1165 13 of 18

theory for our method and it did not provide a practical guidance on how to apply our
method. Moreover, the previous paper focused only on the context of regression testing
even if with some adjustments it can be generalized to the initial version of a product
line. For these reasons, as a follow-up work of our previous paper, this paper proposed a
generalized process for applying our method to testing of the initial version of a product
family as well as regression testing of its subsequent versions, an improved algorithm that
avoids equivalent test executions, and demonstrated the generality under the proposed
process. Scalable evaluation is not the scope of this work, and we will perform such
extended evaluation in future work.

Result of the case study. In this case study, we tested three versions of the Vending-
Machine SPL under the application process presented in Figure 2. For the first version,
SPLV0, and its two subsequent versions, SPLV1 and SPLV2, overall, our method reduced test
executions by 42.3% (={12 + 6 + 12}/{20 + 15 + 17}) compared to the exhaustive execution.
This case study shows how our method works to reduce repetitions of equivalent test
executions, and its result demonstrates the practical applicability of the proposed process
for the method and the generality of our method.

Impacts of commonality and size of a product family. This effect can increase when a
product family with a lot of commonality is used, because the more commonality a product
family has, the more the products of a product family will reuse test cases and so the
more our method will reduce (equivalent) test executions. Moreover, our method is more
effective when it is applied to a product family that contains many products because, as test
cases are reused for more products, our method reduces equivalent test executions more.

Cost reduction and fault detection effect. Our method can be used when the first
version of a product family has been developed and whenever the product family has
changed. Thus, it can reduce the significant amount of SPL testing cost during the testing
phase and the maintenance phase of the software development lifecycle. Nonetheless, our
method does not miss faults that would be detected by the exhaustive execution of test cases
because it avoids only equivalent test executions that do not contribute to detecting faults.

Overhead of our method. To avoid equivalent test executions, our method builds
the checksum matrix in Step 2 and determines the equivalence of test executions in Step
4. However, as shown in Sections 4.2 and 4.4, because these activities do not include any
in-depth analysis of source code and test cases, the overhead incurred in avoiding test
execution equivalence is small. To measure the overhead incurred in our method, we
obtained the BerkeleyDB SPL from the SPL2go repository [22] and produced a product
family that contains 10 products, which are implemented by, on average, 263 files and
40,078 lines. Then, we measured the time required for avoiding equivalent test executions.
As a result, it took 2.64 s on Windows 7 with an Intel Core i7 CPU (3.40 GHz) and 12 GB
RAM and this accounts only for 7.7% of the end-to-end time (i.e., Steps 1~4) for SPL testing.

Impacts of N-to-1 relationships between features and source code. Our method
requires additional work in the case that multiple features are implemented in a single
class. For example, when features A and B are implemented in a different part of class C,
executions of the two test cases t1 and t2 for features A and B, respectively, produce the
same checksum value because they commonly traverse class C. In this case, our method
selects only one test case for testing of two features because the execution trace of t1 is the
same as that of t2. To avoid this problem, class C should be separated into two different
classes that implement features A and B, respectively. This practice is reasonable because it
makes loose coupling between features.

5. Related Work

This section discusses related work regarding testing of a single SPL version (in
Section 5.1), regression testing of its subsequent versions (in Section 5.2) and reduction of
test redundancy at the level of test executions (in Section 5.3).

Electronics 2022, 11, 1165 14 of 18

5.1. Studies on Testing of a Single SPL Version

In the product line testing community, two different interests have gained main
attention: selection of products to test and actual testing of products [23].

The first one is the problem of selecting a representative set of products to test in
order to verify a product line. To address this problem, combinatorial interaction testing
techniques select a minimal set of products in which at least one product covers t-wise
interaction, based on feature model [2–6,24–27], source code [25,26], dependency graph [27],
etc. Their common insight is that most faults are caused by interactions among a fixed
number of at most t features. Even though they do not verify all the products that can
be produced from a product line, they are promising in maximizing the fault detection
capability under limited resources. As another solution, search-based techniques randomly
select an initial set of products and then gradually optimize the product set under a certain
set of constraints [28]. To find the optimized set of products, they use an evolutionary
algorithm that optimizes coverage [29–31], number of products [30,31], similarity [30,32],
mutation score [30,33], complexity [29], etc. The other approaches include the greedy
approach and the manual approach [28]. The techniques discussed above reduce test
redundancy at the level of products. However, they still have test redundancy because
they do not avoid the duplicate testing of common parts between products. To avoid this
redundancy, these techniques should be used together with a technique like our method
that reduces unnecessary test repetition by exploiting the commonality and variability of a
product family.

The second one is the problem of how to check the correctness of the products that
are produced from a product line. There have been extensive techniques to address this
problem. Incremental delta-oriented techniques [7,8,10,34] incrementally construct test
artifacts for every product by exploiting the commonality and variability between two
consecutive products. Stepping from one product to the next product, they reuse test
artifacts of the previous products for the next product. Search-based techniques [35–38]
address a multi-objective optimization problem for testing a product line using a meta-
heuristic algorithm. These techniques generate a test suite optimized with multi-objective
functions under time constraints. Similarity-based techniques [32,38,39] increase feature
interaction coverage by maximizing the diversity of products to test or test cases to run.
They generate dissimilar test cases [38] or prioritize products [32,39] in the order in which
the next product is dissimilar with the previous products. Other techniques include
the coverage-based technique [40], the fault-history based technique [41], the risk-based
technique [42], etc. These techniques discussed above reduce test redundancy at the level
of test cases. However, they can have test redundancy at the level of test executions. When
a product line test case is executed on the products that reuse it, its executions can be
equivalent on these products. Such test executions should be avoided because they do not
contribute to finding new faults.

The existing SPL testing techniques reduce test redundancy at the level of products
and test cases, but not at the level of test executions. Our technique proposed in this paper
reduces test redundancy at the level of test executions by avoiding equivalent executions
of a given set of test cases. For this reason, it can be used with the existing techniques
discussed above in a complementary way and can further save cost in addition to the cost
saved by using them.

5.2. Studies on SPL Regression Testing

Techniques on SPL regression testing have been proposed for three research topics:
selection, test prioritization and minimization of test cases.

Lity et al. [7] proposed a model-based test case selection technique for delta-oriented
SPLs. They applied incremental model slicing to capture changes between the products of
a product family and between different versions of the family. When changes are made to a
product family, regression test suites are selected by applying retest coverage criteria to
model slices, which consist of states and transitions affected by the change. We previously

Electronics 2022, 11, 1165 15 of 18

proposed a code-based SPL regression test selection technique [43]. To reduce the overall
testing efforts, this technique handles changes to the common parts of source code and
changes to the variable parts of source code, separately. For the changes to the common
parts of code, it minimizes unnecessary collections of test execution traces and unnecessary
executions of test cases based on the commonality between the products of a product family.
For the changes to the variable parts of code, it identifies the test cases that can never be
affected by the changes and filters them out without any in-depth analysis of source code
and test cases.

Al-Hajjaji et al. [39] and Henard et al. [32] proposed techniques which prioritize
products of a product line based on similarity of their selected features. Their common
insight is that two dissimilar products are likely to contain different sets of faults in a
product line and so a diverse set of products should be tested first for early fault detection.
For this reason, the products that have little similarity with the previously tested products
have high priorities. Lachmann et al. [9] proposed an approach that computes regression
deltas, and then ranks test cases in accordance with their capability to cover changes. Ensan
et al. [44] proposed an approach which first assigns priorities to features and their relevant
test cases according to the degree of the stakeholder’s goal satisfaction. Wang et al. [45] and
Arrieta et al. [46] proposed a test prioritization approach that uses search-based algorithms
to address a multi-objective optimization problem for SPL test prioritization.

To minimize the size of test suites and the test execution cost, Baller et al. [47] uses a
multi-objective technique and Wang et al. [48] uses a random-weighted generic algorithm.

When a set of test cases that are selected, prioritized and/or minimized using the
techniques discussed above is executed on the products of a product family, their redundant
executions can be reduced if these techniques are used in conjunction with our method. In
addition, when time constraints exist due to a resource limit, our method allows regression
test cases to be executed more under the time constraints, which makes a product line more
reliable. For this reason, regression testing techniques can also be used with our method in
a complementary way.

5.3. Studies on Reducing Test Redundancy at the Level of Test Executions

The existing techniques presented in Sections 5.1 and 5.2 reduce test redundancy
only at the level of products or test cases. Thus, they still have test redundancy at the
level of test executions. To address this problem, Kim et al. [13], Nguyen et al. [14] and
Wong et al. [15] suggested variability-aware execution methods for testing of a configurable
system. All of these methods execute common code only once, not executing it on each and
every configuration. These methods share the same research direction with our method
in that they reduce redundant test executions without decreasing the chance of detecting
new faults. However, the methods do not address the execution of existing test cases and
therefore cannot be applied to regression testing of a product line.

For testing of a product line system that our method targets, Stricker et al. [12] pro-
posed a data flow-based technique called ScenTED-DF. ScenTED-DF avoids redundant
testing of common parts of a product line using an annotated variable activity diagram.
However, ScenTED-DF requires the intervention of human experts when modeling the
annotated variable activity diagram [12]. In contrast, our technique is an automated one
and requires only source code and test cases of a product line.

Li et al. [49] proposed a method of reusing test execution traces for an SPL by recording
the name, version, inputs and outputs of modules that the executed test case traverses over
a product. If another test case traverses a module with the same name, the same version
and the same inputs, then the recorded output is used without re-executing the test case.
However, this method does not consider that even when two modules of two different
products have the same name, the same version or the same inputs, the two modules can
still produce different outputs when implementations of the modules are not equivalent.
For this reason, some part of source code may not be tested and so, due to the decreased

Electronics 2022, 11, 1165 16 of 18

test coverage, faults that would be detected by the exhaustive test execution can be missed.
In addition, it conducts only a small case study.

In summary, the methods discussed above reduce redundancy at the level of test
execution. However, they either have limitations in fault detection and automation or have
different application scopes.

6. Conclusions

In this paper, we showed that our method proposed in our previous work can be
applied not just to SPL regression testing but to SPL testing in general. To that end, we
first argued that our method is applicable for testing of both the first version of a software
product line and its subsequent versions. Then, we proposed a practical process for
applying the method to SPL testing and an algorithm that improves our previous algorithm
in order to reduce unnecessary repetition of test execution and unnecessary collection of
test execution traces. The case study result that we conducted based on the proposed
process showed that our method reduced test executions by 42.3% (22/52) compared to
those of the exhaustive execution approach.

Our method is easy to apply for most product lines because it requires only source
code and does not require other artifacts such as requirements and architecture that are
often hard to obtain and reducing repetitions of equivalent test executions through check-
sum comparison is fully automated. For this reason, with the use of our method for SPL
testing can be conducted more efficiently.

For future work, we plan to extend our method to make it applicable at a finer
granularity level. Moreover, we considered in this paper test redundancy only at the
test execution level, but we plan to extend our method by applying product sampling
techniques that reduce test redundancy at the product level. Finally, we plan to demonstrate
the scalability of our method by applying it to larger size software product lines from
the industry.

Author Contributions: Conceptualization, P.J. and S.K.; Funding acquisition, J.L.; Supervision, S.K.;
Writing—review and editing, P.J., S.K. and J.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by a grant from the National Research Foundation of Korea
funded by the Korean government (MSIT) (NRF-2020R1F1A1071650).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pohl, K.; Böckle, G.; van Der Linden, F.J. Software Product Line Engineering: Foundations, Principles and Techniques, 1st ed.; Springer

Science & Business Media: Berlin/Heidelberg, Germany, 2005.
2. Johansen, M.F.; Haugen, Ø.; Fleurey, F. An algorithm for generating t-wise covering arrays from large feature models. In

Proceedings of the 16th International Software Product Line Conference, Salvador, Brazil, 2–7 September 2012; Volume 1,
pp. 46–55.

3. Al-Hajjaji, M.; Krieter, S.; Thüm, T.; Lochau, M.; Saake, G. IncLing: Efficient product-line testing using incremental pairwise
sampling. ACM SIGPLAN Not. 2016, 52, 144–155. [CrossRef]

4. Hervieu, A.; Marijan, D.; Gotlieb, A.; Baudry, B. Practical minimization of pairwise-covering test configurations using constraint
programming. Inf. Softw. Technol. 2016, 71, 129–146. [CrossRef]

5. Reuling, D.; Bürdek, J.; Rotärmel, S.; Lochau, M.; Kelter, U. Fault-based product-line testing: Effective sample generation based
on feature-diagram mutation. In Proceedings of the 19th International Conference on Software Product Line, Nashville, TN, USA,
20–24 July 2015; pp. 131–140.

6. Marijan, D.; Gotlieb, A.; Sen, S.; Hervieu, A. Practical pairwise testing for software product lines. In Proceedings of the 17th
International Software Product Line Conference, Tokyo, Japan, 26–30 August 2013; pp. 227–235.

7. Lity, S.; Nieke, M.; Thüm, T.; Schaefer, I. Retest test selection for product-line regression testing of variants and versions of
variants. J. Syst. Softw. 2019, 147, 46–63. [CrossRef]

8. Lochau, M.; Lity, S.; Lachmann, R.; Schaefer, I.; Goltz, U. Delta-oriented model-based integration testing of large-scale systems. J.
Syst. Softw. 2014, 91, 63–84. [CrossRef]

http://doi.org/10.1145/3093335.2993253
http://doi.org/10.1016/j.infsof.2015.11.007
http://doi.org/10.1016/j.jss.2018.09.090
http://doi.org/10.1016/j.jss.2013.11.1096

Electronics 2022, 11, 1165 17 of 18

9. Lachmann, R.; Lity, S.; Lischke, S.; Beddig, S.; Schulze, S.; Schaefer, I. Delta-oriented test case prioritization for integration testing
of software product lines. In Proceedings of the 19th International Conference on Software Product Line, Nashville, TN, USA,
20–24 July 2015; pp. 81–90.

10. Varshosaz, M.; Beohar, H.; Mousavi, M.R. Delta-oriented FSM-based testing. In Formal Methods and Software Engineering,
Proceedings of the International Conference on Formal Engineering Methods, Paris, France, 3–5 November 2015; Springer: Cham,
Switzerland, 2015; pp. 366–381.

11. Xu, Z.; Cohen, M.B.; Motycka, W.; Rothermel, G. Continuous test suite augmentation in software product lines. In Proceedings of
the 17th International Software Product Line Conference, Tokyo, Japan, 26–30 August 2013; pp. 52–61.

12. Stricker, V.; Metzger, A.; Pohl, K. Avoiding redundant testing in application engineering. In Software Product Lines: Going
Beyond, Proceedings of the International Conference on Software Product Lines, Jeju Island, South Korea, 13–17 September 2010; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 226–240.

13. Kim, C.H.P.; Khurshid, S.; Batory, D. Shared execution for efficiently testing product lines. In Proceedings of the 2012 IEEE 23rd
International Symposium on Software Reliability Engineering, Dallas, TX, USA, 27–30 November 2012; pp. 221–230.

14. Nguyen, H.V.; Kästner, C.; Nguyen, T.N. Exploring variability-aware execution for testing plugin-based web applications. In
Proceedings of the 36th International Conference on Software Engineering, Hyderabad, India, 31 May–7 June 2014; pp. 907–918.

15. Wong, C.P.; Meinicke, J.; Lazarek, L.; Kästner, C. Faster variational execution with transparent bytecode transformation. Proc.
ACM Program. Lang. 2018, 2, 1–30. [CrossRef]

16. Jung, P.; Kang, S.; Lee, J. Efficient Regression Testing of Software Product Lines by Reducing Redundant Test Executions. Appl.
Sci. 2020, 10, 8686. [CrossRef]

17. Nahrendorf, S.; Lity, S.; Schaefer, I. Applying Higher-Order Delta Modeling for the Evolution of Delta-Oriented Software Product
Lines. In TU Braunschweig-Institute of Software Engineering and Automotive Informatics; Technical Report; Institute for Software
Engineering and Automotive Informatics: Braunschweig, Germany, 2018.

18. Classen, A. Modelling with FTS: A Collection of Illustrative Examples; PReCISE Research Center, University of Namur: Namur,
Belgium, 2010.

19. Thao, C. A Configuration Management System for Software Product Lines. Ph.D. Thesis, University of Wisconsin, Milwaukee,
WI, USA, 2012.

20. ASM. Available online: https://asm.ow2.io/ (accessed on 23 March 2022).
21. BCEL. Available online: http://commons.apache.org/proper/commons-bcel/ (accessed on 23 March 2022).
22. SPL2go. Available online: http://spl2go.cs.ovgu.de/projects/ (accessed on 23 March 2022).
23. Do Carmo Machado, I.; McGregor, J.D.; Cavalcanti, Y.C.; De Almeida, E.S. On strategies for testing software product lines: A

systematic literature review. Inf. Softw. Technol. 2014, 56, 1183–1199. [CrossRef]
24. Arcaini, P.; Gargantini, A.; Vavassori, P. Generating tests for detecting faults in feature models. In Proceedings of the 2015 IEEE

8th International Conference on Software Testing, Verification and Validation (ICST), Graz, Austria, 13–17 April 2015; pp. 1–10.
25. Kim, C.H.P.; Batory, D.S.; Khurshid, S. Reducing combinatorics in testing product lines. In Proceedings of the Tenth International

Conference on Aspect-Oriented Software Development, Porto de Galinhas, Brazil, 21–25 March 2011; pp. 57–68.
26. Tartler, R.; Lohmann, D.; Dietrich, C.; Egger, C.; Sincero, J. Configuration coverage in the analysis of large-scale system software.

In Proceedings of the 6th Workshop on Programming Languages and Operating Systems, Cascais, Portugal, 23 October 2011;
pp. 1–5.

27. Shi, J.; Cohen, M.B.; Dwyer, M.B. Integration testing of software product lines using compositional symbolic execution. In
Fundamental Approaches to Software Engineering, Proceedings of the International Conference on Fundamental Approaches to Software
Engineering, Tallinn, Estonia, 24 March–1 April 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 270–284.

28. Varshosaz, M.; Al-Hajjaji, M.; Thüm, T.; Runge, T.; Mousavi, M.R.; Schaefer, I. A classification of product sampling for software
product lines. In Proceedings of the 22nd International Systems and Software Product Line Conference, Gothenburg, Sweden,
10–14 September 2018; Volume 1, pp. 1–13.

29. Ensan, F.; Bagheri, E.; Gašević, D. Evolutionary search-based test generation for software product line feature models. In Advanced
Information Systems Engineering, Proceedings of the International Conference on Advanced Information Systems Engineering, Gdansk,
Poland, 25–29 June 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 613–628.

30. Ferreira, T.N.; Lima, J.A.P.; Strickler, A.; Kuk, J.N.; Vergilio, S.R.; Pozo, A. Hyper-heuristic based product selection for software
product line testing. IEEE Comput. Intell. Mag. 2017, 12, 34–45. [CrossRef]

31. Henard, C.; Papadakis, M.; Perrouin, G.; Klein, J.; Traon, Y.L. Multi-objective test generation for software product lines. In
Proceedings of the 17th International Software Product Line Conference, Tokyo, Japan, 26–30 August 2013; pp. 62–71.

32. Henard, C.; Papadakis, M.; Perrouin, G.; Klein, J.; Heymans, P.; Le Traon, Y. Bypassing the combinatorial explosion: Using
similarity to generate and prioritize t-wise test configurations for software product lines. IEEE Trans. Softw. Eng. 2014, 40, 650–670.
[CrossRef]

33. Gregg, S.P.; Albert, D.M.; Clements, P. Product Line Engineering on the Right Side of the V. In Proceedings of the 21st International
Systems and Software Product Line Conference, Sevilla, Spain, 25–29 September 2017; Volume A, pp. 165–174.

34. Damiani, F.; Faitelson, D.; Gladisch, C.; Tyszberowicz, S. A novel model-based testing approach for software product lines. Softw.
Syst. Modeling 2017, 16, 1223–1251. [CrossRef]

http://doi.org/10.1145/3276487
http://doi.org/10.3390/app10238686
https://asm.ow2.io/
http://commons.apache.org/proper/commons-bcel/
http://spl2go.cs.ovgu.de/projects/
http://doi.org/10.1016/j.infsof.2014.04.002
http://doi.org/10.1109/MCI.2017.2670461
http://doi.org/10.1109/TSE.2014.2327020
http://doi.org/10.1007/s10270-016-0516-2

Electronics 2022, 11, 1165 18 of 18

35. Markiegi, U.; Arrieta, A.; Sagardui, G.; Etxeberria, L. Search-based product line fault detection allocating test cases iteratively.
In Proceedings of the 21st International Systems and Software Product Line Conference, Sevilla, Spain, 25–29 September 2017;
Volume A, pp. 123–132.

36. Li, X.; Wong, W.E.; Gao, R.; Hu, L.; Hosono, S. Genetic algorithm-based test generation for software product line with the
integration of fault localization techniques. Empir. Softw. Eng. 2018, 23, 1–51. [CrossRef]

37. Hierons, R.M.; Li, M.; Liu, X.; Parejo, J.A.; Segura, S.; Yao, X. Many-objective test suite generation for software product lines. ACM
Trans. Softw. Eng. Methodol. (TOSEM) 2020, 29, 1–46. [CrossRef]

38. Devroey, X.; Perrouin, G.; Legay, A.; Schobbens, P.Y.; Heymans, P. Search-based similarity-driven behavioural SPL testing. In
Proceedings of the Tenth International Workshop on Variability Modelling of Software-Intensive Systems, Salvador, Brazil,
27–29 January 2016; pp. 89–96.

39. Al-Hajjaji, M.; Thüm, T.; Lochau, M.; Meinicke, J.; Saake, G. Effective product-line testing using similarity-based product
prioritization. Softw. Syst. Modeling 2019, 18, 499–521. [CrossRef]

40. Markiegi, U.; Arrieta, A.; Etxeberria, L.; Sagardui, G. Test case selection using structural coverage in software product lines for
time-budget constrained scenarios. In Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol,
Cyprus, 8–12 April 2019; pp. 2362–2371.

41. Arrieta, A.; Segura, S.; Markiegi, U.; Sagardui, G.; Etxeberria, L. Spectrum-based fault localization in software product lines. Inf.
Softw. Technol. 2018, 100, 18–31. [CrossRef]

42. Lachmann, R.; Beddig, S.; Lity, S.; Schulze, S.; Schaefer, I. Risk-based integration testing of software product lines. In Proceedings
of the Eleventh International Workshop on Variability Modelling of Software-Intensive Systems, Eindhoven, The Netherlands,
1–3 February 2017; pp. 52–59.

43. Jung, P.; Kang, S.; Lee, J. Automated code-based test selection for software product line regression testing. J. Syst. Softw. 2019,
158, 110419. [CrossRef]

44. Ensan, A.; Bagheri, E.; Asadi, M.; Gasevic, D.; Biletskiy, Y. Goal-oriented test case selection and prioritization for product line
feature models. In Proceedings of the Information Technology: New Generations (ITNG), Las Vegas, NV, USA, 11–13 April 2011;
pp. 291–298.

45. Wang, S.; Buchmann, D.; Ali, S.; Gotlieb, A.; Pradhan, D.; Liaaen, M. Multi-objective test prioritization in software product line
testing: An industrial case study. In Proceedings of the 18th International Software Product Line Conference, Florence, Italy,
15–19 September 2014; Volume 1, pp. 32–41.

46. Arrieta, A.; Wang, S.; Sagardui, G.; Etxeberria, L. Search-Based test case prioritization for simulation-Based testing of cyber-
Physical system product lines. J. Syst. Softw. 2019, 149, 1–34. [CrossRef]

47. Baller, H.; Lity, S.; Lochau, M.; Schaefer, I. Multi-objective test suite optimization for incremental product family testing. In
Proceedings of the 2014 IEEE Seventh International Conference on Software Testing, Verification and Validation, Cleveland, OH,
USA, 31 March–4 April 2014; pp. 303–312.

48. Wang, S.; Ali, S.; Gotlieb, A. Cost-effective test suite minimization in product lines using search techniques. J. Syst. Softw. 2015,
103, 370–391. [CrossRef]

49. Li, J.J.; Geppert, B.; Rößler, F.; Weiss, D.M. Reuse Execution Traces to Reduce Testing of Product Lines. In Proceedings of the 11th
International Software Product Line Conference, Kyoto, Japan, 10–14 September 2007; Volume 2, pp. 65–72.

http://doi.org/10.1007/s10664-016-9494-9
http://doi.org/10.1145/3361146
http://doi.org/10.1007/s10270-016-0569-2
http://doi.org/10.1016/j.infsof.2018.03.008
http://doi.org/10.1016/j.jss.2019.110419
http://doi.org/10.1016/j.jss.2018.09.055
http://doi.org/10.1016/j.jss.2014.08.024

	Introduction
	Equivalence of Test Executions in SPL
	SPL Testing Process for Avoiding Equivalent Test Executions
	Step 1: Obtain a Product Family
	Step 2: Build/Update Checksum Matrix
	Step 3: Select Test Cases to Execute
	Step 4: Execute Test Cases and Collect Execution Traces

	Case Study Using the VendingMachine SPL
	Testing of the Initial Version of a Product Line (Testing of SPLV0)
	Modification for Adding New Test Cases (Testing of SPLV1)
	Modification Affecting Existing Test Cases (Testing of SPLV2)
	Threats to Validity
	Result and Discussion

	Related Work
	Studies on Testing of a Single SPL Version
	Studies on SPL Regression Testing
	Studies on Reducing Test Redundancy at the Level of Test Executions

	Conclusions
	References

