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Abstract: A new method for short-circuit fault location is proposed. The method is based on
instantaneous signal measurement and its first and second derivatives, which are the novel elements
of the current approach. The derivatives allow associating a precise time stamp to the occurrence
of the fault. Due to retardation phenomena, the difference between the times in which a signal is
registered in two detectors can be used to locate the fault. We offer several mathematical models
to describe the fault. Although a description of faults in terms of a lumped circuit is useful for
elucidating the methods for detecting the fault, this description will not suffice to describe the fault
signal propagation; hence, a distributed models is needed, which is given in terms of the telegraph
equations. Those equations were used to derive a transmission line transfer function, and an exact
analytical description of the fault signal propagating in the transmission line was obtained. The
analytical solution was verified both by numerical simulations and experimentally.

Keywords: fault location; real-time

1. Introduction

One of the most important results of special relativity is the fact that no signal can
travel faster than the speed of light in a vacuum c [1]. The same is true for a signal generated
from a fault occurring in a power transmission line such as a short or a disconnection. As
the signal due to the fault reaches detectors along the line at different times (due to a finite
propagation speed), one can use the differences in the time of arrival to locate the fault
along the line. This location technique is passive in the sense that one does not need to
inject any signal to the power line in order to locate the fault; rather, the fault itself is the
source of the signal. Another advantage is that the detection and location are performed in
real-time. Still, several issues are raised regarding the proposed technique:

• What is the signal velocity, and what is the needed sampling rate?
• What should be measured (voltage and/or current)?
• How many detectors are needed?
• What are the dispersion effects on the prorogation of the signal, and how do they

affect accuracy?
• What are the best practices for signal processing in order to obtain an accurate time

of arrival?
• How does the current technique compare in terms of accuracy with previous works?

We try to answer those questions in the current paper. The discussion was limited to
low-voltage transmission lines, while the discussion of high-voltage transmission lines will
be the subject of a future paper.

Power transmission lines have a broad range of faults. These fault classifications
appeared in various previous articles [2–9]. There are several approaches to fault location
algorithms, including various approaches regarding measurements and data processing
and their proposed applications. The bridge circuit method [10] employs an adjustable
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impedance to calculate the location of the fault. Mustari et al. [11] employed a neural
network approach. The method of de Morais Pereira and Zanetta [12] was based on steady-
state measured phasors in local terminals. M. N. Alam et al. [13] presented a method based
on surface electromagnetic waves propagating along a transmission line (see also [14]).
In M. Aldeen and F. Crusca’s study [15], the faults were modeled as unknown inputs,
decoupled from the state and output measurements through coordinate transformations,
and then estimated via the use of the observer theory. The article by Qais Alsafasfeh
et al. [16] presented a method that integrates the symmetrical components technique
with principal component analysis (PCA) for fault classification and detection. In another
research work [17], Petri nets were used to obtain the modeling and location detection
of faults in power systems. Another widely used method is that of wavelet transform
analysis [18–21]. We compared the accuracy of the current method to the accuracy of
previous work in the concluding section.

The plan of the paper is as follows: First, we present the basic idea of the method.
Then, we provide a description of the fault in terms of a lumped circuit, which is useful
for elucidating the methods for detecting the fault; here, we shall demonstrate the ability
to determine the signal arrival time using derivatives. This description will not suffice,
however, to describe the fault signal propagation; hence, a distributed model is needed,
which is given in terms of the telegraph equations [22–25]. After introducing the main
formalism and the telegraph equations of the distributed system, we give a specific example
of a two-wire power line. We present several models to describe the development of a
short and the signal generated in a possible detector due to that short. These include
exponential, Gaussian, and step function forms. For the step function model, an inverse
Laplace transform allowed us to determine the time-dependent signal at the sensor position
analytically. At this stage, we compared the analytical and numerical solutions. Next, the
experimental setup is described. We show the high level of conformity of the theoretical and
experimental measurements using the appropriate data processing. Finally, we determined
the system accuracy and compared it with previous methods.

2. Methodology: Fault Detection by Retardation

Consider a fault of unknown location that causes a signal to propagate to both sided of
the transmission line (see Figure 1). The signal is registered by a detector, which determines
its time of arrival, t1 for Detector 1 and t2 for Detector 2.

Figure 1. Transmission line with a short and detectors.

If the unknown time at which the fault occurred is t0 and the constant velocity of the
signal propagation is v, the following relations follow:

v(t1 − t0) = d1; v(t2 − t0) = d2 (1)

in which d1 and d2 are the unknown distance from the fault to Detectors 1 and 2, respectively.
The total distance between the two detectors is known as:

d = d1 + d2 (2)

Defining the time difference tdi ≡ t2 − t1, the distance from Detector 1 to the short
may be written as follows:
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d1 =
1
2
(d− v tdi) (3)

Hence, if tdi is a random variable of the standard deviation σtdi , the corresponding
standard deviation of d1 is:

σd1 =
v
2

σtdi (4)

provided we assume that the velocity v is known. Now, σtdi can be evaluated as:

σtdi =
√

σ2
t1
+ σ2

t2
− 2Ct1t2 . (5)

in which the covariance Ct1t2 is given in terms of the following expectation value:

Ct1t2 = E[(t1 − t̄1)(t2 − t̄2)], t̄ ≡ E[t] (6)

If the uncertainty in t1 is uncorrelated with the uncertainty in t2, the covariance is null,
and we have a simplified expression:

σtdi =
√

σ2
t1
+ σ2

t2
. (7)

If σt1 = σt2 , this will result in:

σtdi =
√

2σt1 . (8)

Thus, we can rewrite σd1 in terms of σt1 as follows:

σd1 =
v√
2

σt1 (9)

Now, suppose that the data are sampled at intervals of T; if the signal is detected
initially at time tD, this means that the signal arrived at any time between tD and tD − T.
Since we do not have any information about what time the signal really arrived, we
assumed that t1 is a random variable distributed uniformly in the interval [tD − T, tD]. The
probability density function of t1 is depicted in Figure 2.

Figure 2. Uniform distribution probability density function of t1; in the illustration, we assumed
T = 5 and tD = 10.
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Since the moments of a uniform distribution function are known, we can easily
evaluate the expectation and standard deviation of t1 as follows:

t̄1 = tD −
1
2

T, σt1 =
T

2
√

3
(10)

Inserting the result of Equation (10) into Equation (9) leads to:

σd1 =
vT

2
√

6
(11)

Thus, the accuracy at which we need to know the location of the fault will determine
the sampling rate fS according to the following formula:

fS =
1
T

=
v

2
√

6 σd1

(12)

As we shall show later, for a power line, the typical propagation of the signal is close
to light’s velocity in a vacuum:

v ' c ' 3× 108 m/s. (13)

Thus, if the required distance precision is about 1 m, then the time measurement
sampling rate should be:

fS ' 6.12× 107Hz (14)

This is much lower than the clock rate of current computer processors. We do not deal
here with additional sources of uncertainty, such as the noise level of transmission lines,
and leave that for future work.

3. Methodology: Signal Detection

What kind of signal should we measure for the fault location, and should it be the
voltage or current? How should it be processed in order to avoid the accumulation of a
large amount of unnecessary data due to the high sampling rate dictated by Equation (14)?
We shall try to answer those question using a lumped circuit model, as described in
Appendix A [26–28], in which we show that a fault signal can be obtained by measuring
either the current or voltage.

The high sampling rate that is needed for accurate location as described in Equation (12)
imposes a storage challenge as the amount of data accumulated may be prohibitive. How-
ever, taking the derivative of the signal, which may be the voltage or current, allowed us
to overcome this obstacle (see Appendix A). By choosing a high detection threshold, one
avoids false positives, and this allowed us to store a relatively small amount of data that
was sufficient for the detection and location of the short. In some cases, a second derivative
was required.

Generally, the first voltage derivative is enough (except for the load voltage), while in
the case of current measurement, the second derivative is necessary.

We further noticed an additional restriction on the required resolution T, in order to
avoid the case that the pulse goes undetected, that is between sampling points, we needed
to have a resolution smaller than the pulse duration, which is the same duration as the time
it takes the short to form; hence:

T < τS (15)

Now, if τS ' 10−8 s, this means that:

T < 10−8 s (16)
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This limitation is even more restrictive than the one appearing in Equation (14),
leading to:

TS =
1
fS
' 1.63× 10−8 s (17)

Obviously, a lumped model neglects the effect of spatial distances, and hence the effect
of signal propagation. To describe the effect of signal propagation properly, a distributed
model is needed, and with such a model we could study the short signal propagation and
related phenomena including dispersion; this is discussed in the following section.

4. Methodology: Distributed Model

Until now, we have ignored the signal propagation in the circuit and assumed that the
changes in the voltage and the current occur immediately and simultaneously everywhere.
This assumption is not compatible with the theory of special relativity, which states that any
signal must propagate with finite velocity, smaller than the speed of light in a vacuum [1].
To describe this behavior, we used the transmission line propagation model [29], a section
of which is depicted in Figure 3.

Figure 3. Transmission line structure for a single unit length.

This approach leads to the telegraph equations. We describe this model in the time
and frequency domains and draw the relevant conclusion from each presentation.

4.1. The Time Domain

The equations that describe the voltage and the current dependence in the time domain
are the telegraph equations given below [29]:

∂V(x, t)
∂x

= −RI(x, t)− L
∂I(x, t)

∂t
,

∂I(x, t)
∂x

= −GV(x, t)− C
∂V(x, t)

∂t
(18)

where R is the resistance, L is the inductance, G is the conductance, and C is the capacitance,
per unit length each (see Figure 3). This pattern is repeated indefinitely (see Figure 4).

Figure 4. Transmission line structure repeated.

The above equations can be solved for an infinite transmission line excited at x = 0 by
an excitation Vin(t) representing the effect of the short on the voltage. The solution for the
voltage is:

V(x, t) ≈ Vin

(
t−
√

LCx
)

exp

(
−
√

LC
2

(
R
L
+

G
C

)
x

)
(19)

The above solution describes a voltage signal propagating at a velocity:

v =
1√
LC

(20)
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and an exponential decay with a decay factor of:

α =

√
LC
2

(
R
L
+

G
C

)
. (21)

Assuming the transmission line to be a two-wire cable as described in Appendix A,
the following parameters are obtained [29]:

R =
2RS
πd

, L =
µ

π cosh−1
(

D
d

) , G =
πσ

cosh−1
(

D
d

) , C =
πε

cosh−1
(

D
d

) (22)

where each wire has a diameter d, and the distance between the wires is D. The material
between the wires has a permittivity ε, permeability µ, and (a very small) conductivity σ.
The wire resistance is calculated, as in Equation (A6), using the surface resistance given
in Equation (A5). The short propagation velocity (20) can be now calculated using the
parameters of Equation (22), to yield:

v =
1
√

εµ
=

c
n

(23)

where n is the index of refraction around the transmission line. It should be noted that
the electromagnetic wave is propagating in the region between the conductors and not in
the conductors themselves, where the propagation is much slower and the decay is very
strong. We noticed that if the two wires are surrounded by air n ' 1, we would recover the
velocity of Equation (13).

Notice that since according to Equations (A5) and (A6), the resistance is frequency
dependent as dictated by the skin effect, the resistance term in Equation (18) is not a
simple multiplication and should be replaced by a convolution. Thus, a frequency domain
formalism is more adequate for this type of problem, as will be described next.

4.2. The Frequency Domain

In the frequency domain, the telegraph equation takes the form [29]:

∂V(x, ω)

∂x
= −(R + iωL)I(x, ω),

∂I(x, ω)

∂x
= −(G + iωC)V(x, ω), i ≡

√
−1 (24)

Combining these two equations, we can separate the voltage and current variables, in
terms of the following two equations:

∂2V(x, ω)

∂x2 = γ2V(x, ω),
∂2 I(x, ω)

∂x2 = γ2 I(x, ω) (25)

where we define:
γ ≡

√
(R + iωL)(G + iωC) (26)

These equations have a solution of the form:

V(x, ω) = V(+)(ω)e−γx + V(−)(ω)eγx

I(x, ω) = 1
Z0

(
V(+)(ω)e−γx −V(−)(ω)eγx

) (27)

The functions V(±)(ω) are derived from the initial conditions. The impedance Z0 is
defined as follows:

Z0 ≡
√

R + iωL
G + iωC

(28)
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In the case where the resistivity and the leakage admittance are small enough, such that:

R << ωL, G << ωC (29)

we can approximate the impedance:

Z0 ≈
√

L
C

(30)

and the real and imaginary parts of γ take the form:

Re(γ) ≈
√

LC
2

(
R
L
+

G
C

)
= α, Im(γ) ≈ ω

√
LC (31)

As the frequency rises, the approximation becomes more accurate. Hence, for the
higher-frequency Fourier components associated with the short formation, this approxima-
tion is more effective. Notice that while Re(γ) describes absorption and coincides with the
same expression for absorption obtained in Equation (19), Im(γ) describes propagation.

4.3. Time-Dependent vs. Stationary Shorts

Steady-state shorts are easily analyzed in transmission line theory; here, we shall try
to elucidate the connection between the transient phenomena of the short’s appearance and
its asymptotic behavior as a steady- state phenomenon. Our model is depicted in Figure 5.

Figure 5. Detailed short in the transmission line model.

We assumed that the short appears at some point (x = 0) in the transmission line, in
which the continuity of the voltage and current dictates:

V1(0, ω) = V2(0, ω), I1(0, ω) = I2(0, ω) + Ishort(ω). (32)

We assumed that the short current does not exist at t = 0; likewise, the short current
after a long time can be calculated using the fact that the voltage on the short vanishes at
t→ ∞. The second assumption can be formulated as:

lim
t→∞

Ishort(t) = Ishort asymptotic(t) (33)

To obtain the asymptotic short current, the following calculation was performed. First,
we used the fact that after a considerable duration, the voltage on the short vanishes to
obtain the following:

Vshort asymptotic(ω) = V(+)(ω) + V(−)(ω) = 0 (34)

This leads to the result:
V(−)(ω) = −V(+)(ω) (35)
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Inserting this result into Equation (27) and taking into account that Vasymptotic(ω,−L1)
is the source voltage lead to the following result:

Vin(ω) = Vasymptotic(ω,−L1) = V(+)(ω)
(

eγL1 − e−γL1
)

(36)

Hence:

V(+)(ω) =
Vin(ω)

2 sinh(γL1)
(37)

The asymptotic short current in the frequency domain can be calculated using Equation (27)
at x = 0 and taking into account Equations (35) and (37):

Ishort asymptotic(ω) = I(ω, 0) =
2V(+)

Z0
=

Vin(ω)

Z0 sinh(γL1)
(38)

Taking into account Vin(t) given in Equation (A8) (which is equivalent to a sum of delta
functions in the frequency domain), the asymptotic short current in the time domain is:

Ishort asymptotic(t) =
A0

Z0
Re

ejω0t

sinh(γ(ω0)L1)
(39)

The second assumption was that the short current vanishes at t = 0:

Ishort(t = 0) = 0 (40)

In the current model, this requirement is fulfilled by multiplying the asymptotic
expression with some reasonable function that vanishes at t→ 0 and approaches unity at
t→ ∞, for example:

Ishort(t) = Ishort asymptotic(t)u(t)
(

1− e−
t
∆

)
(41)

in which u(t) is a step function. The calculation results for the short current on the load
side are as follows:

I2(x, t) =
e−α(x+L1)

Z0
Vin(t− td1)−

e−αx

2
Ishort(t− td)−

e−α(x+2L1)

2
Ishort(t− td2) (42)

where td = x
v , td1 = x+L1

v , and td2 = x+2L1
v . v is the signal propagation velocity. The current

at the load side is affected by three terms, each with unique retardation. The source voltage
is retarded by a time td1, while the short current is retarded by a time td for the direct
signal and by td2 for the same signal reflected by the circuit source. Each retardation time is
proportional to the distance it needs to travel from its source and inversely proportional
to the velocity of propagation. The model also shows that the signals suffer attenuation
proportional to the distance they travel.

4.4. Signal Dispersion

We now consider the problem of dispersion. This problem is interesting since we
would like to know in what ways does the line distort signals propagating on it and, in
particular, how the signal produced by the short is effected. We start from the definition
of γ given in Equation (26), and we assume that G = 0. Consequently, the propagation
index is:

γ(ω) = iω
√

LC

√
1 +

R
iωL

, (43)

Now, let us investigate the condition:

Ra ≡ R(ω)

iωL
� 1 (44)
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The resistance R(ω) is frequency dependent due to the skin effect and can be calculated
from the surface resistance using Equations (A5) and (A6) as follows:

R =
2√
πd

√
µc

σc
f (45)

Thus, we obtain the ratio:

R
ωL

=
1√

π3dL

√
µc

σc

1√
f

(46)

Thus, the approximation given in Equation (44) is even better for higher-frequency
components. Introducing the inductance impedance:

ZL = iωL = i2π f L (47)

we can cast Equation (46) in the form:

R
ZL
∼= −

2.72i√
f

(48)

in which the numerical values for the parameters are taken from Tables A1, A2, and A5.
Equation (48) is depicted in Figure 6, which shows that the condition given in Equation (44)
holds even better for a high frequency.

Figure 6. The ratio of resistance to inductance impedance as a function of frequency according to
Equation (48).

For a small parameter |x| � 1, we can write:

√
1 + x = 1 +

x
2
− x2

8
+

x3

16
+ O[x]4. (49)

Hence, taking into account that R
ωL � 1, γ(ω) of Equation (43) has up to third order

the form:

γ(ω) ∼= i
ω

v

[
1− j

R
2ωL

+
1
8

(
R

ωL

)2
+

j
16

(
R

ωL

)3
]

(50)

This expression can be separated into an imaginary and real parts as follows. The
imaginary part of γ takes the form:

Imγ ∼=
ω

v
+

µc

4π2d2L2σcv
(51)
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where we have taken into account Equation (46). As Equation (51) is linear in ω, we
concluded that there is no dispersion during the signal propagation that requires non-linear
phase terms. To appreciate the linearity of Imγ, we depict it as a function of the frequency
in both Figure 7 for low frequencies and in Figure 8 for high frequencies without making
an expansion approximation; the linearity and, hence, the lack of dispersion are apparent
for a wide frequency range.

Figure 7. Imγ low frequency dependence.

Figure 8. Imγ high frequency dependence.

For the real part of γ, we obtain:

Reγ ∼=
√

µc

2
3
2 L
√

σcv

√
ω (52)

The real part depends on the frequency, but this part is relatively small, compared to
the imaginary part. To appreciate the frequency dependence of Reγ, we depict its behavior
for low frequencies (Figure 9), high frequencies (Figure 10), and extremely high frequencies
(Figure 11).

Figure 9. Reγ for low frequencies.
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Figure 10. Reγ for high frequencies.

Figure 11. Reγ for very high frequencies.

To appreciate how small Reγ is with respect to Imγ, we plot the ratio of those quantities
in Figure 12.

Another indication of the dominance of Imγ over Reγ is the frequency dependence of
|γ|, which follows quite closely the linear behavior of Imγ, as depicted in Figure 13.

Figure 12. The ratio of the real part to the imaginary part of γ.
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Figure 13. |γ| as a function of frequency.

Finally, we remind ourselves that we assumed zero admittance G = 0 in our calcu-
lations. Practically, this means that we neglected the air admittance with respect to the
capacitive admittance:

YC = iωC = i2π f C. (53)

To check if this assumption is justified, we calculated the ratio of the air admittance to
capacitive admittance:

G
YC
' −1.38× 10−6i

f
(54)

where we used the parameters of Table A3 for the air admittance and Equation (22) for the
capacitance. The ratio, which is quite small, becomes even smaller for higher frequencies,
as depicted in Figure 14, and thus justifies our initial assumption.

Figure 14. The frequency dependence of
∣∣∣ G

YC

∣∣∣.
The conclusion of this subsection is that dispersion is not significant in the media in

which the pulse generated by the short propagates. This will be further elaborated in the
next subsection, as we study the prorogation of a signal along the line.

4.5. Signal Propagation

We assumed that at the entrance to a transmission line, we inject a short signal of
the form:

V(0, t) = 2e
− t2

2σ2
0 cos(ω0t) (55)

Thus, we assumed that the short generates a pulse signal, while the standard voltage
is a periodic trigonometric function of frequency ω0, which is modulated by the pulse.
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The pulse was assumed to be Gaussian with a width σ0. The same signal in the frequency
domain takes the form:

V(0, ω) =
√

2πσ0

(
e−

σ2
0
2 (ω+ω0)

2
+ e−

σ2
0
2 (ω−ω0)

2
)

(56)

This signal is depicted in Figure 15.

Figure 15. The entrance voltage signal in the frequency domain.

Now, since that signal is injected at the entrance, it can propagate in only one direction;
hence, Equation (27) takes the form:

V(x, ω) = V(0, ω)e−γ(ω)x (57)

We now expand γ around ω0 till the second order. This results in:

γ
(
ω0 + ω′

) ∼= γ(ω0) + γ′(ω0)ω
′ +

1
2

γ′′(ω0)ω
′2. (58)

Taking into account Equations (56)–(58) and performing an inverse Fourier transform,
we arrive at the following expression for a propagating signal:

V(x, t) = 2σ0Re

 eiω0t−γ0xe
− (t−td)

2

2σ2(x)

σ(x)

 (59)

where the delay time td is:

td = −iγ′0x =
x
v

1 + 3
4 Ra√

1 + Ra
∼=

x
v

; (60)

hence, this is approximately the distance divided by the velocity, as expected. We noticed
that the expression:

vg =
∣∣Imγ′0

∣∣−1
= v

(√
1 + Ra

1 + 3
4 Ra

)
, (61)

is the group velocity, which is the velocity of a wave packet. The width of the signal is:

σ(x) =
√

σ02 + γ′ ′0x (62)

where:

γ′ ′0 =
−iRa

(
1 + 3

2 Ra
)

16vω0
√

1 + Ra3
∼= −

R(ω0)

16vω2
0 L

(63)
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The term γ′ ′0x signifies the pulse broadening as it propagates along the line. Let us
assume that σ0 ≈ 10−6 s. For a frequency of 1 MHz and a distance of 1 km:

γ′ ′0x ∼= −6.39× 10−19−2.85× 10−33i << σ2
0 = 10−12; (64)

hence, the dispersion is negligible. However, for a frequency of 1 kHz and a distance of
10 km:

γ′ ′0x ∼= −6.39× 10−12−2.85× 10−17i ≈ σ2
0 = 10−12 (65)

the widening is comparable to the initial width. Hence, despite the fact that dispersion
seems small, it accumulates over long distances.

4.6. Bifurcations

A power transmission line often bifurcates, as depicted in Figure 16.
In the bifurcation junction, the signal is transmitted to the bifurcating channels and

is also reflected to the original channel in which the short was originally formed. The
amount of signal reflected or transmitted is quantified by the reflection R and transmission
T coefficients. Those coefficients can in turn be calculated as follows:

Figure 16. Schematic bifurcation in a power line.

T1→2 =
2Z2

Z1 + Z2
, T2→1 =

2Z1

Z1 + Z2
(66)

R2→1 =
Z2 − Z1

Z1 + Z2
= −R1→2 (67)

in which Z1 is the impedance of the line before the bifurcation junction and Z2 is the
impedance of the line after the bifurcation junction. In case the signal meets multiple
bifurcation junctions along its path, multiple reflection occur, as depicted schematically in
Figure 17.

Figure 17. Multiple reflections from a changing propagation media.
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Multiple reflections will result in multiple signals arriving at the detector, as depicted
schematically in Figure 18.

Figure 18. Multiple reflections arriving at the detector.

We note that reflected signals arrive at the detector later and in reduced amplitude
due to the longer path they need to travel and the additional attenuation the signal suffers
during propagation (see Equation (59)) and reflection. We note that if a line bifurcates
into multiple identical lines as in Figure 19, the total impedance at the channel after
the bifurcation will be equal to the original impedance Z0 divided by the number of
transmission lines N; hence:

Z1 = Z0, Z2 =
Z0

N
(68)

Figure 19. A transmission line bifurcating into multiple channels.

This implies, according to Equation (66), a transmission coefficient of:

T1→2 =
2Z2

Z1 + Z2
=

2 Z0
N

Z0 +
Z0
N

=
2

N + 1
(69)

R1→2 =
Z1 − Z2

Z1 + Z2
=

Z0 − Z0
N

Z0 +
Z0
N

=
N − 1
N + 1

; (70)

hence, for a bifurcation to a large number of channels, the reflection coefficient will tend to
one, while for a continuation into a single identical channel, there will not be obviously
a reflection.

We now examine the reflection effect and see if one can use the reflected signal instead
of a second sensor, thus reducing the amount of hardware needed in order to implement
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the method described. First, let us look at Figure 20: The short occurs between the sensor
and the bifurcation point. Thus, a signal is propagating from the short to the sensor, and
an additional signal propagates to the bifurcation point where it is reflected. Provided
that the short will not introduce an impenetrable obstacle, the signal will eventually reach
the detector at a later time. The direct signal arrival time will be satisfied according to
Equation (1):

t1 − t0 =
L1

v
(71)

Figure 20. A short occurs between the sensor and the bifurcation point.

The reflected signal will arrive at a later time such that:

t2 − t0 =
L1 + 2L2

v
(72)

Hence, the time difference between the direct and reflected signal allowed us to
calculate the distance between the short and bifurcation point as:

L2 =
1
2

v(t2 − t1) (73)

Now, since the distance L between the sensor and the bifurcation point is known
in advance, we may calculate the distance between the short and the bifurcation point
as follows:

L1 = L− L2 = L− 1
2

v(t2 − t1) (74)

Thus, in this case, a single detector will suffice, and we will not need two detectors, as
described in Section 2. This reduces the cost of the system and removes redundant issues
such as sensor synchronization. The last advantageous scenario is depicted in Figure 21.

Figure 21. The sensor is between the short and the bifurcation point.
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The direct signal arrival time will be satisfied according to Equation (1):

t1 − t0 =
L1

v
(75)

The reflected signal will arrive at a later time such that:

t2 − t0 =
2L2 − L1

v
(76)

The time difference in this case will yield:

L2 − L1 =
1
2

v(t2 − t1) (77)

which does not reveal any information about the short location, but rather, some trivial
information about the distance between the sensor and the bifurcation point, which is
already known. Of course, if there exist additional bifurcation points on the signal path
(for example, left to the short), then we are in the previous case again, and one sensor will
suffice. We may deduce that putting sensors on bifurcation points will reduce the amount
of sensors needed. Finally, we looked at the case in which the signal arrives at a sensor
located after the branching point of the net, as in Figure 22.

Figure 22. The sensor is on a bifurcation of the transmission line.

The sensor will receive a signal at:

t1 − t0 =
L + L1

v
(78)

This will not suffice to locate the short unless a reflected signal is received from another
point along the network. To conclude, we deduced that putting sensors on bifurcation
points will reduce the amount of sensors needed along the network. Moreover, relying on
reflections may solve the problem of sensor synchronization.

4.7. Laplace Analysis

We now address the transmission line pulse propagation problem using the technique
of Laplace analysis [30]. The simplified power system of our interest is schematically
presented in Figure 23.

Figure 23. Schematic of the fault scenario.

The fault produces two separate signals propagating towards the source and the
load, where the sensors are located. In each section, as a result of the fault, the voltage
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perturbation is perceived as an input signal, propagating towards a sensor, as shown in
Figure 24.

Figure 24. Schematic of the fault modeling.

In the transmission line, we assumed the validity of the telegraph Equation (24) and
replaced iω → s. The Laplace form of the telegraph equations admits the solution:

V(x, s) = V(−)(s)e
−xγ(s) + V(+)(s)e

xγ(s) (79)

I(x, s) =
V(−)(s)
Z0(s)

e−xγ(s) −
V(+)(s)
Z0(s)

exγ(s) (80)

where,
Z(s) = R + sL, Y(s) = G + sC (81)

γ(s) =
√

Z(s)Y(s) (82)

Z0(s) =

√
Z(s)
Y(s)

(83)

It is realistic to presume that the conductance G of the separating dielectric material
between the wires is insignificant. The series resistivity is calculated taking into account
the skin effect:

R(s) =
1

πd

√
2µc

σc

√
s ≡ ξ

√
s (84)

where d is the conductor wire diameter and:

ξ =
1

πd

√
2µc

σc
. (85)

Consequently, the expression (82) can be written as follows:

γ(s) = s
√

LC
√

1 + R(s)
sL = s

√
LC
√

1 + ξ√
sL ≈

≈ s
√

LC
(

1 + ξ
2
√

sL

)
= s
√

LC + ξ
2

√
C
L
√

s
(86)

The sensor impedance ZL was designed to be infinite so as not to influence the
measurement results. Substituting boundary conditions,

Vf ault(s) = V(0, s) = V(−)(s) + V(+)(s) (87)

and:
ZL = ∞ (88)

which implies zero current at x = l:

I(l, s) =
V(−)(s)
Z0(s)

e−lγ(s) −
V(+)(s)
Z0(s)

elγ(s) = 0 (89)
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or:
V(−)(s) = V(+)(s)e

2lγ(s) (90)

Combining the above equation with Equation (87) yields:

V(+) =
Vf ault(s)

1 + e2lγ(s)
(91)

and:

V(−) =
Vf ault(s)

1 + e−2lγ(s)
(92)

The voltage signal at the sensor due to the fault is thus:

Vout(s) ≡ V(l, s) =
2e−lγ(s)

1 + e−2lγ(s)
Vf ault(s) (93)

Identifying the last expression as the summation of a geometric series, it can be
re-written as the sum:

Vout(s) = 2Vf ault(s)
∞

∑
n=0

(−1)ne−(1+2n)lγ(s) (94)

Defining:
τn ≡ (1 + 2n)l

√
LC (95)

and:

Bn ≡ (1 + 2n)l
ξ

2

√
C
L

(96)

the expression for the voltage at the sensor, Equation (94), takes the form:

Vout(s) = 2Vf ault(s)
∞

∑
n=0

(−1)ne−τns+Bn
√

s (97)

This sum can be interpreted as the sum of multiple reflected waves each with its
unique delay time. The system’s transfer function may be now calculated as follows:

H(s) ≡ Vout(s)
Vf ault(s)

= 2
∞

∑
n=0

(−1)ne−τns+Bn
√

s (98)

This allows for obtaining the signal measured at the sensor, due to any fault waveform.
For example, if the fault is a sudden short circuit at x = 0 and t = 0, the voltage at the fault
location is:

Vin(t) ≡ V(0, t) = V0 −V0u(t). (99)

Using the superposition principle, Vout(t) may be expressed as the sum of a DC input
and a step function input response.

Vout(t) = Vout(Vin=V0)(t)−Vout(Vin=V0u(t))(t) (100)

Since the impedance at the edge is infinite, the voltage along the line due to the DC
input is simply V0. Moreover, the Laplace transform of a step function satisfies:

L{u(t)} = 1
s

, (101)

hence:

Vout(Vin=V0u(t))(s) =
V0H(s)

s
(102)
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Hence, using the transfer function definition, Equation (98), and performing an inverse
transform back to the time domain, we obtain:

Vout(t) = V0 − 2L−1

{
V0

s

∞

∑
n=0

(−1)ne−τns+Bn
√

s

}
(103)

Taking a known inverse Laplace transform [22]:

L−1

{
e−τs e−B

√
s

s

}
= er f c

(
B

2
√

t− τ

)
u(t− τ) (104)

The voltage at the sensor, as a result of the fault, is:

Vout(t) = V0 − 2V0

∞

∑
n=0

(−1)ner f c
(

Bn

2
√

t− τn

)
u(t− τn) (105)

The above result will suffice if the rise time of the short is fast enough and can
be ignored.

5. Methodology: Experimental Setup
5.1. Experiment Hardware

The experimental demonstration of the fault location technique involved the setup
shown schematically in Figure 25, in which a 10V DC voltage was supplied from a TTi
QL355TP power supply source, shown in Figure 26, to a 50 m two-wire cable and switches.
The sensor was a MS09404A Mixed Signal Oscilloscope with a 4 GHz bandwidth, which
has two channels, as shown in Figure 27.

Figure 25. Schematic of the experimental setup.

Figure 26. TTi QL355TP power supply.
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Figure 27. MS09404A Mixed Signal Oscilloscope of a 4 GHz bandwidth having two channels.

Figure 28 illustrates the dimensions of the transmission line.

Figure 28. Dimensions of the transmission line.

The transmission line was comprised of a two-wire power cord. Each wire was made
of copper and had a d = 1 mm diameter, while the distance between the wires was D = 4
mm. These parameters allowed us to calculate the inductance L and capacitance C from the
dielectric constant, magnetic permeability, and conductivity as follows (see Equation (22)):

εr(insulator) = 3.45, µr(insulator) = 1,

σcopper = 3× 106 S
m

, n =
√

εrµr ' 1.86

C =
2πε

cosh−1
(

D2−2d2

2d2

) = 7.22× 10−11 F
m

L =
εµ

C
= 5.27× 10−7 H

m
(106)

5.2. Experimental Process

On one side of the transmission line, we connected the DC source, 2 switches, and the
scope channel; another channel was connected to the other side. Closing the first switch
when the second switch is open, we obtained a steady-state DC voltage along the line. The
short circuit fault was achieved by closing the second switch.
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6. Results: Data Processing
6.1. Location Accuracy

Measuring the voltage of both sides of the line, we can see clearly the delay in signal
propagation along the line. Additional reflected waves (Figures 29 and 30) are also seen.
The scope channel data were exported and processed using the MATLAB software.

Figure 29. Comparison of the experimental results and theoretical predictions of Equation (105) for
the measured voltage.

Figure 30. Comparison of the sensor voltage and its derivative.

Our aim was of course to discover how long it takes the signal to arrive from the
fault to the measuring point. Because the waves arriving at the edge are reflected in the
opposite direction (towards the fault), where they are repeatedly reflected, one fault may
supply several data points that we can process to our advantage, depending on how fast
the transient signals decay. In this study, it was possible to measure five signals (peaks)
each time, and so, we chose the optimal data processing technique.

To obtain the best accuracy, we performed numerous voltage smoothing and voltage
derivative smoothing, changing the time window and thus the number of samples. Obvi-
ously, the wider the window, the less noise we had to distort our results. However, a wide
window may distort the reflection signal as well, compromising our accuracy. We used five
different averaging windows and thus obtained five different errors for each reflection. The
data are given in the Appendix B; in the table, each line represents a different value of the
voltage smoothing window and voltage derivative smoothing window and the errors that
were deduced for each reflection and processing method.
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Figure 30 shows that the voltage derivative peaks were much sharper; therefore, the
short circuit fault location was calculated by finding the time intervals between the local
extremum points in the voltage derivative at the transmission line edge. In addition, the
smoothing filter window may slightly change the results, and the optimum configuration
was 200 points in a window. In this situation, the accuracy in the short circuit fault location
detection was ±0.005% using the second peak.

This can be compared to the theoretical accuracy predicted by Equation (11). In the
current case, the sampling rate was 4 GHz, and hence, the time between samples was
T = 2.5× 10−10 s and the velocity v = c

n = 1.62× 108 m/s. Thus, the accuracy may be
as high as 0.008 m, which is ±0.008%, quite close to the best experimental result. This
indicates that the theoretical limit is achievable provided the data are processed correctly.

6.2. Comparison with Theory

We now compare the results of the theory given in Equation (105) to the (smoothed)
experimental results. The signal reflection scheme is shown in Figure 31. The results of the
comparison are depicted in Figure 32.

Figure 31. The propagation times for the pulse reflections.

Figure 32. Comparison results between Equation (105) and the smoothed scope channel.

The unprocessed timings of various peaks were correlated with signal reflections and
are given in Table 1.
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Table 1. Distance calculations based on raw data without applying any processing technique.

ti (s) ∆i (s) ∆ti (s) ∆L Error (%)

4.5 × 10−7 4.5 × 10−7 79 −21%

1.5 × 10−6 1.0 × 10−6 5.2 × 10−7 90 −10%

2.8 × 10−6 1.3 × 10−6 6.5 × 10−7 113 13%

4.1 × 10−6 1.3 × 10−6 6.5 × 10−7 113 13%

5.4 × 10−6 1.3 × 10−6 6.6 × 10−7 114 14%

The same results derived from the theoretical calculation are given in Table 2.

Table 2. Distance calculations from the simulation results.

tj (s) δj (s) ∆t′I (s) L′

5.8 × 10−7 5.8 × 10−7 100

1.7 × 10−6 1.2 × 10−6 5.8 × 10−7 101

2.9 × 10−6 1.2 × 10−6 5.9 × 10−7 102

4.2 × 10−6 1.2 × 10−6 6.2 × 10−7 107

5.3 × 10−6 1.2 × 10−6 5.9 × 10−7 102

Obviously, the theoretical distance evaluation was better than the experimental one;
however, processing dramatically improved the situation, as we saw in the previous section.
The distances can be derived from the time differences since ∆L = v ∆t = 1.62× 108 ∆t
m. In the above, we denote ∆ti and ∆t′i for one-direction experimental and theoretical
propagation times, respectively. As we can see, the propagation times were sufficiently
stable and consistent with the theoretical model. Hence, the pulse location information
can also be obtained from the voltage signal (without the signal derivative if precision is
not required).

However, there was a difference between the theoretical and the experimental graphs.
In the experimental data, there were additional peaks in the first reflected waves; after the
third (main) peak, the “oscillation” frequency was twice as great as in the theoretical model.
This was because of the reflected waves from the middle of the transmission line: in the
experimental setup, the line was not homogeneous, as can be deduced from the additional
peaks we received.

Finally, we present the comparison of the theoretical and empirical derivatives given
in Table 3 and Figure 33. The timing of the peak derivatives seemed to fit much better
the theoretical curve, and the location errors were much smaller. As noted previously,
processing may improve the accuracy drastically.

Table 3. Distance calculations from the signal derivatives and respective location errors.

ti ∆ti ∆L Error (%)

1 3.11 × 10−7 52.1 4.28%

2 9.16 × 10−7 6.06 × 10−7 101.5 1.55%

3 1.52 × 10−6 6.08 × 10−7 101.9 1.90%

4 2.16 × 10−6 6.31 × 10−7 105.8 5.82%

5 2.77 × 10−6 6.15 × 10−7 103.1 3.14%

6 3.40 × 10−6 6.28 × 10−7 105.3 5.32%
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Figure 33. Comparison between the theoretical derivative and smoothed scope channel derivative.

7. Synchronization between Sensors

In order to take full advantage of the accuracy of the current method (see Table 4
and [2–4,31–33]) proper synchronization between sensors is required. Indeed, before
measuring a transient phenomenon [34], an accurate method for measuring it must be
chosen [35]. According to a broad literary review of a shelf product that will be used in the
final device for synchronization between the measurements of the sensors, it was found that
the White Rabbit Precision Time Protocol (PTP) was suitable for robust sub-nanosecond
synchronization [36]. For a description of the characteristics of this technology, see [37–39].

Table 4. Comparison of fault location accuracy methods. DSE—distribution state estimation algo-
rithm. SMT—synchronized measurement technology.

Method Accuracy (%) Reference

The developed algorithm 0.005 Here

Both ends of a single high-voltage line 0.01 [31]

H-matrix and the measurements of V and C 3.226 [32]

Varying the fault resistance fault locations algorithm 0.81 [33]

Proposed Algor. 12.58 [2]

Simple Ohm’s Law 16.22 [2]

Absol. Value Imped. 16.17 [2]

Loop React. 21.98 [2]

Takagi 17.45 [2]

Santoso et al.’s algorithm 14.4–17.5 [2]

Impedance-based method 3.91 [3]

DSE large [4]
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Table 4. Cont.

Method Accuracy (%) Reference

Fuzzy inference 5 [5]

HV travel waves 0.78 [6]

SMT 3 [7]

Steady-state measured phasors (three phase) 0.313 [12]

Steady-state measured phasors (phase to ground) 0.410 [12]

ANFIS 0.0774 [11]

8. Conclusions and Summary

In the framework of the current research, a propagation of a short signal in a two-wire
cable was investigated. It was shown that the short can be detected either by voltage or
current measurements using the voltage/current first or second derivatives. The short can
be detected either at the source or the load side. It was also shown that using bifurcations
and reflection, the amount of detectors may be reduced. In order to achieve a high level
of accuracy regarding the short’s location, the inter-sampling duration should be of the
nanosecond order (GHz sampling frequency). Of course, if there is no significant slope
over a predetermined number of samples (say 1000 samples), there is no need to save
them. Hence, the samples may be written as a moving window to some buffer register and
deleted if the gradient is not significant. We also studied the phenomena of the dispersion
of the short signal and determined in what cases it was significant.

Our method was based on the idea that in any system information even in the form
of an electromagnetic wave will advance from one side of the system to the other in a
fast, but finite velocity v stratifying v < c, where c is the speed of light in a vacuum.
When considering a steady-state, we may neglect the propagation phenomena and employ
lumped models; however, this is not applicable for short durations, as considered here.

The accuracy was significantly better in the retardation approach than in various
methods mentioned in previous work. In Table 4, the accuracy of the different methods
is compared.

It is expected that in the future, better wave sampling techniques and devices will be
developed, as well as better processing methodologies, thus improving accuracy.

As the temporal difference between the fault signal arrivals and the width of the signal
(see for example Figure A37) are much less by many orders of magnitude than the period
of the AC voltage, one can assume that for all practical purposes, the AC signal is constant.
Hence, we expect an AC experiment to yield similar results.

The above system description was derived for an electrical transmission line as the
wave behavior is well known and there is considerable expertise in making the calculations;
however, the same holds true for optical fibers and optical reflections, as well as for pipes,
such as water, gas, or oil pipes, for which one can use acoustic echoes. The calculations for
the fault’s location are the same, although the propagation rates are different in the acoustic
case. In the optical case, the equation v = c

n still holds true. In both cases, underground
pipes and underground fiber optic cables can be damaged at hard-to-reach locations, and an
accurate determination of the fault’s location is helpful in knowing where to start digging.
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Appendix A. The Lumped Circuit Model

The schematic description of the short circuit is presented in Figure A1.

Figure A1. Transmission line with a short.

This is modeled in Figure A2.

Figure A2. Short circuit example.

The parts of the transmission line before and after the short circuit are considered as a
resistor and inductor connected in series. In order to mathematically analyze this, we used
the Kirchhoff voltage law and Ohm’s law:

Vin(t) = R1 I1(t) + L1
dI1(t)

dt + VS(t)
VS(t) = R2 I2(t) + L2

dI2(t)
dt + Vout(t)

Vout(t) = ZI2(t)
(A1)

in which Vin is the source voltage, I1 is the source current, VS is the short voltage, I2 is
the load current, and Vout is the load voltage. R1 and L1 are the resistance and inductance
before the short, and R2 and L2 are the resistance and inductance after the short, while Z is
the load impedance.

Appendix A.1. The Case of Resistive Impedance

In the first step, we ignored the inductance for mathematical simplicity. We also
noticed that by Ohm’s law:

VS(t) = RS(t)IS(t) (A2)

where RS(t) is the time-dependent short resistance and IS(t) is the current flowing through
the short. According to Kirchhoff’s current law:

IS(t) = I1(t)− I2(t) (A3)

Thus, the currents in this case can be calculated algebraically as follows:

I1(t) =
Z+R2+RS(t)

R1·[Z+R2+RS(t)]+RS(t)·(Z+R2)
·Vin(t)

I2(t) =
RS(t)

R1·[Z+R2+RS(t)]+RS(t)·(Z+R2)
·Vin(t)

IS(t) =
Z+R2

R1·[Z+R2+RS(t)]+RS(t)·(Z+R2)
·Vin(t)

(A4)
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In the current model, the transmission line was a two-wire copper cable; each wire has
a diameter d, and the distance between them is D; the cable is depicted in Figure A3. The
total cable length is l. The values used for the demonstration are given in Table A1.

Figure A3. Cable geometry for the demonstration.

Table A1. Two-wire cable parameters.

Parameter Value Unit

σc(Copper) 5.96× 107 S/m

d 0.06 m

D 2 m

l 1000 m

The surface resistance in ohms (Ω) may be written as follows [29]:

RSur f ace =

√
ωµc

2σc
=

√
π f µc

σc
(A5)

In the above, ω is the angular frequency, f is the frequency, µc is the magnetic per-
meability of the material, and σc is the conductivity. Hence, the resistance per unit length
[Ω/m] can be written as:

R = 2
Rsur f ace

2π d
2

= 2
Rsur f ace

πd
(A6)

The values used for the cable description appear in Table A2.

Table A2. Two-wire cable resistance.

Parameter Value Unit

µc 4π × 10−7 H/m

f 50 Hz

Rsur f ace =
√

π f µc
σc

1.82× 10−6 Ω

R = 2 Rsur f ace
πd 1.93× 10−5 Ω

m

We noticed that the value of f = 50 Hz used above is typical for many power lines.
However, as the typical duration of the short is miniscule, the signal generated by the short
will include a broad band of frequencies, each suffering a different impedance. This is
dealt with in a later part of this paper. However, here, we assumed for simplicity that the
resistance is constant.
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The short circuit appears at distance l1 from the input. The short-circuit RS(t) resis-
tance is shown in Figure A3. The short is described by a time-dependent resistance, which
was assumed to behave exponentially:

RS(t) = RS0e−
t

τS . (A7)

The initial resistance RS(0) = RS0 was assumed to be very large and represents the
region’s air resistance. However, at time t = 0, a short is initiated, causing an exponential
decrease in the short resistance at a typical duration of τS = 10–100 ns, which depends on
the conditions and geometry of the short-circuit region. The short-circuit parameters are
concentrated in Table A3.

Table A3. Short-circuit parameters.

Parameter Value Unit

l1 300 m

l2 = l − l1 700 m

τS 100 ns

ρS0 (air) 1.3× 1016 Ω m

lS 0.1 m

AS 0.0004 m2

RS0 =
ρS0 lS
AS

3.25× 1018 Ω

Thus, the current flows through the short instead of the load, causing a decrease in the
load current. Moreover, since the overall impedance of the circuit decreases and is now
dominated by the impedance of the short, the current at the source becomes much higher.

Figure A4. Short-circuit resistance.

The transmission line resistances and the load impedance are described in Table A4.



Electronics 2022, 11, 980 30 of 47

Table A4. Transmission line resistance and load impedance.

Parameter Value Unit

R1 = R · l1 0.00579 Ω

R2 = R · l2 0.0135 Ω

RT = R1 + R2 0.0193095 Ω

Z 15.625 Ω

The input voltage was assumed to be of the form:

Vin(t) = A0 cos(ω0t), (A8)

where A0 = 220 [V], ω0 = 2π f0 = 100π rad/s. We shall now present the calculation results.

Appendix A.1.1. Current

The source current just before the short is depicted in Figure A5 and after the short is
depicted in Figure A6.

Figure A5. Source current before the short.

Figure A6. Source current after the short.

Hence, the current at the source is a highly sensitive indicator of the occurrence of a
short. To avoid storing unnecessary data and for precise timing of the short’s occurrence,
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one can look at the source current derivative (Figure A7); this has a distinctive pulse shape.
Hence, by taking the derivative of the signal and by fixing a high detection threshold, one
can avoid recording unnecessary data.

Figure A7. Source current derivative.

On the load side, the current vanishes after the short occurs (Figure A8); hence, the
load current is also an excellent indicator of the short’s occurrence.

Figure A8. Load current.

Again, we see that on the load side, the current behavior allows for identification of
the short by taking the current derivative (Figure A9). This method allows precise timing
with the need to store a small amount of data, as indicated above.
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Figure A9. Load current derivative.

Appendix A.1.2. Voltage

The short circuit pulse may also be detected by the voltage measurement. For example,
the voltage measured at half the distance between the source and the short will yield a
voltage V1 as follows:

V1(t) = Vin(t)−
1
2

R1 I1(t) (A9)

This voltage is depicted in Figure A10.

Figure A10. Voltage at half the distance between the source and the short.

Again, the distinctive pulse shape of the voltage derivative (Figure A11) is apparent
with the same advantage mentioned before.



Electronics 2022, 11, 980 33 of 47

Figure A11. Voltage derivative at half the distance between the source and the short.

The voltage at the short vanishes (Figure A12), since the resistance approaches zero
during the short’s creation, providing the same behavior, which allows the pulse form in
the voltage derivative (Figure A13).

Figure A12. Voltage at the short.

Figure A13. Voltage derivative at the short.
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Similarly, the voltage V2 at half the distance between the short and the load may be
measured (Figure A14), and the pulse may be detected using the voltage derivative (Figure A15).

V2(t) = Vs(t)−
1
2

R2 I2(t) (A10)

Figure A14. Voltage at half the distance between the short and the load.

Figure A15. Voltage derivative at half the distance between the short and the load.

Summarizing the results of our first model, we saw that the current and voltage mea-
surements enabled the short’s pulse detection, indicating the short’s occurrence. Likewise,
it was shown that detection was possible both at the source and the load side. In order to
detect the pulse, a resolution of the τS order is needed. In the current model, the inductance
was neglected, leading to a simplified description; in the next section, we will look at the
case were induction is taken into account, leading to a somewhat more complex mathe-
matical analysis. Moreover, in a lumped model, there is no pulse propagation along the
transmission line, and for this purpose, we introduce a distributed model later in this paper.

Appendix A.2. The Case of Resistive and Inductive Impedance

In this model, the transmission line inductance is no longer neglected as in the previous
section. Therefore, the equations given in (A1) become coupled differential equations that
can only be solved numerically. The two-wire cable induction can be calculated and is
shown in Table A5.
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Table A5. Transmission line inductance.

Parameter Value Unit

L =
µ
π ar cosh

(
D
d

)
1.68× 10−6 H

m

L1 = L · l1 0.000503938 H

L2 = L · l2 0.00117585 H

LT = L1 + L2 0.00167979 H

The current in the circuit before the short occurs can be calculated analytically and is
given as follows:

I10(t) = I20(t) =
A0 ·At

Z + RT
· cos[ω · t + ϕt] (A11)

where: At ≡ 1√
1+(ω·τp)

2 , ϕt ≡ −arctan[ω · τp], τp ≡ LT
Z . This current is depicted in

Figure A16.

Figure A16. The initial current.

We now study the numerical solutions of Equation (A1) given the above initial form.

Appendix A.2.1. The Current

The source current is demonstrated in Figures A17 (right after the short) and A18 (a
long time after the short).

Figure A17. Source current right after the short.
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Figure A18. Source current a long time after the short.

Figure A19. The source current derivative.

In the previous model, the derivative had a pulse shape. In the current model, the
first derivative did not exhibit a pulse shape (Figure A19); however, the second derivative
(Figure A20) did exhibit a pulse shape with all the benefits mentioned previously.

Figure A20. The source current second derivative.
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Current measurements on the load side also provide the short pulse detection ability.
The load current is shown in Figures A21 (right after the short) and A22 (a long time after
the short). Here, the current decay is evident.

Figure A21. Load current (right after the short).

Figure A22. Load current (after some time).

The current’s first and second derivatives are shown in Figures A23 and A24, respectively.
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Figure A23. The load current derivative.

Figure A24. The load current second derivative.

We see that the short may be detected and accurately timed by the current’s second
derivative, measured at either the source or the load side. Next, we investigated the current
at the short itself. It is obvious that it is zero before the short happens, after which it grows
linearly (Figure A25). After some time, the short current reaches the characteristic source
current values (Figure A26).
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Figure A25. Short current (right after the short).

Figure A26. Steady-state short current.

Appendix A.2.2. The Voltage

The short-circuit pulse may also be detected by the voltage measurement between
the source and the short. If the voltage is measured at half a distance, due to a high short
current, the voltage will be:

V1(t) = Vin(t)−
1
2

R1 I1(t)−
1
2

L1
dI1(t)

dt
(A12)

The voltage and its derivative are shown in Figures A27 and A28, respectively. We
deduced that for the voltage case, a first derivative will suffice for the short location even
when inductance is not neglected.
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Figure A27. Voltage at half the distance between the source and the short.

Figure A28. Voltage derivative at half the distance between the source and the short.

Figures A29 and A30 describe the voltage and its derivative at the short itself. We see
that the voltage difference at the short when its resistivity goes to zero is also zero, and the
pulse behavior of the voltage derivative is depicted.
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Figure A29. The short voltage.

Figure A30. The short voltage derivative.

Analogous results may be obtained if the voltage is measured at the load side, even
if the measurement is not at the load itself. For example, for half the distance voltage
measurement, one obtains:

V2(t) = Vs(t)−
1
2

R2 I2(t)−
1
2

L2
dI2(t)

dt
(A13)

Figures A31 and A32 show the voltage at half the distance between the short and the
load. The voltage a brief duration after the short has formed is depicted in Figure A31, and
a longer duration of the same is depicted in Figure A32.
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Figure A31. Voltage at half the distance between the short and the load (right after).

Figure A32. Voltage at half the distance between the short and the load (after some time).

The voltage derivative displays a pulse behavior (Figure A33), and thus, in this case, a
first derivative will suffice and a second derivative is not needed.

Figure A33. Voltage derivative at half the distance between the short and the load.
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Finally, the load voltage is described, which is proportional to the load current (see
also Equation (A1)):

Vout(t) = Z · I2(t) (A14)

The load voltages, after a brief duration since the short’s occurrence and later, are
shown in Figures A34 and A35, respectively.

Figure A34. Load voltage (right after the short).

Figure A35. Load voltage (after some time).

The first and the second load voltage derivatives are shown in Figures A36 and A37.
In this case, the desirable pulse shape was obtained for the second derivative.
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Figure A36. Load voltage derivative.

Figure A37. Load voltage second derivative.
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Appendix B. Errors Received from the Smoothing Voltage and Derivative Smoothing
Voltage Window

Figure A38. Load voltage second derivative.
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