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Abstract: Because the galloping of iced conductors is one of the main disasters in the State Grid,
resulting in huge economic and property losses every year, the research on relevant monitoring
methods is of great significance. The existing galloping monitoring technology is mainly based on the
contact detection method, which presents potential electrical hazards and power supply problems.
In this paper, a conductor galloping monitoring method based on the target detection of infrared
sources is put forward to overcome the shortcomings of existing methods. In other words, an infrared
source label is installed on the conductor spacer, high-definition night vision infrared cameras are
installed on electric power towers to take video of the infrared source labels, and the characteristic
amplitude of conductor galloping is calculated by an image recognition and tracking algorithm. The
practical application results indicate that the method has the advantages of non-contact detection,
safety and reliability, and high detection accuracy.

Keywords: infrared source; image recognition; meteorological; low power consumption

1. Introduction

In recent years, the construction of power transmission lines across China has become
faster and faster, and the requirements for lean power transmission management have
become more demanding. As of the end of 2019, the combined length of 110 (66) kV and
higher transmission lines was 1.0934 million km, and the line length of UHV projects
in operation was over 38,000 km. The number of incidents of wire dancing has been is
increasing year by year. Since 1957, more than 1500 galloping accidents have been recorded
in China, and transmission lines of different levels from 10 kV to 1100 kV have been affected,
resulting in economic losses in the tens of billions of RMB.

Conductor galloping refers to a type of low-frequency, large-amplitude self-excited
vibration caused by eccentric icing of transmission line conductors and wind excitation. It
can cause serious accidents such as line tripping, damage to armor clamps and insulators,
broken conductor strands or broken lines, damage to electric power towers, damage to
foundations, and even tower collapse. It can be seen that it is a serious disaster that
endangers the safe and stable operation of transmission lines [1,2]. Therefore, it is of great
significance to study effective monitoring techniques for conductor galloping.

2. Related Works

It is difficult to measure the trajectory of conductor galloping with existing models.
Several scholars have studied the trajectories of conductor galloping in an attempt to find
models that can analyze the trajectories and predict the amplitude of conductor gallop-
ing [3–9], . Some scholars have applied UAV target tracking and detection to conductor
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galloping monitoring [10]. However, although this method has high monitoring accuracy, it
cannot achieve all-weather automatic monitoring, and the cost is high. At present, there are
two main methods to monitor conductor galloping. One type of non-contact monitoring of
conductor galloping is achieved through video capture images and image analysis modules.
By installing cameras on poles or towers, the conductors are photographed or videoed,
and then the data is transmitted back to the monitoring center. At the monitoring end, the
motion state of the conductor is observed manually to judge whether it is galloping or not.
This method is intuitive and can qualitatively judge the galloping state, but it depends on
manual work and cannot be used for automatic detection, let alone providing warnings
in advance.

As a result, automated systems have gradually emerged that model and analyze
the images sent back to the monitoring end and set up early warning mechanisms. In
reference [11], a transmission conductor video monitoring device was used to obtain video
information on conductor galloping. Multiple frames of continuous images taken from the
transmission conductor galloping video were used to create contour feature templates by
selecting the conductor spacer bars as the tracking targets, and by matching the conductor
spacer bars to locate the conductor position and calculate the gallop offset. Reference [12]
reported a method that captures each frame of images from the video and selects the split
wire spacer as the feature for edge detection. By automatically searching for and locating
the contour position of the spacer in each frame image, the center coordinates of the spacer,
and the horizontal axis of the spacer, a he time series of the instantaneous displacement
and displacement in the vertical axis direction is calculated. Finally, the main frequency
and amplitude of conductor galloping are obtained by spectrum analysis. The method
in reference [13] first extracts the spacer bars from the image using image matching and
morphological operations, corrects for perspective distortion for skeleton extraction, and
finally uses weighted invariant moment values for shape metrics. Several of the above
methods using image processing techniques for conducting galloping monitoring suffer
from low recognition accuracy in dim light or rain and fog. The method described in
reference [14] uses microwave interference technology to obtain the parameters of the
tower deformation, predicts the amplitude of the conductor galloping with microwave in-
terference technology by affecting the coefficient of deformation factors, and uses the image
fitting method to improve the microwave interference technology to predict and analyze
the deformation of the tower. However, this method relies on manual measurement, and
the degree of automation is not high. In addition, the wire galloping amplitude is predicted
by the deformation of the tower, and there is a certain prediction error. Other studies in the
literature focus on data collected on conductor galloping for risk prediction [15–17].

The second approach is based on the monitoring methods of acceleration transducers,
an inertial navigation system (INS), and Beidou. The acceleration transducer [18,19],
INS, Beidou [20–22], and other modules are installed on the conductor to collect the
motion parameters of the conductor and calculate the characteristic amplitude of conductor
galloping.

The second method is now the mainstream technology, but it has the following problems:

• Power supply problem. Since most UHV and EHV lines are DC lines that cannot be
induced to receive power, modules such as acceleration sensors are powered by solar
panels and batteries, which increase the load on the wires. At the same time, it is
difficult for the limited battery capacity to support the high power consumption due
to real-time detection by the monitoring module. In addition, dust on the solar panels
and the degradation of battery energy storage performance will prevent the method
from effectively monitoring conditions for extended periods.

• Security risks. Installation of detection modules on the wires not only increases
the burden on the wires, but also these “active” devices will affect the electrical
performance and safety of the wires, which is an additional safety hazard.

• The price is high. The acceleration sensor, inertial navigation, and especially the
Beidou positioning module, also need to be equipped with data transmitters, Beidou
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reference stations, wireless transmission modules, high-energy batteries, etc. The
equipment costs are high, and the equipment must have strong electrical performance,
electromagnetic compatibility, and protection performance. Hence, the equipment is
expensive and difficult to popularize.

• Equipment maintenance is difficult. As the main equipment is installed on the wires,
once the equipment fails, it needs to be replaced on the wires, which are usually
operating online, presenting great difficulty and heavy work burdens for the power
operation and maintenance departments.

Since there are many safety hazards with the contact types, this paper focuses on
the non-contact monitoring method. Focusing on the problem with existing non-contact
monitoring technology, namely, that of being affected by the light antenna, which causes
the accuracy to decrease, a conductor galloping monitoring method based on the target
detection of infrared sources is put forward. An infrared source label is installed on the
conductor spacer as the detected target, a high-definition night vision infrared camera
is installed on an electric power tower to take videos of the infrared source label, and
the target recognition and tracking are carried out with an industrial personal computer
(IPC), thus obtaining the motion trajectory of the infrared source label, and then calculating
the characteristic amplitude of conductor galloping. In addition, the application of an
infrared source label equips the system with monitoring functions for nighttime and
foggy conditions.

3. Infrared Light Source Target Selection Algorithm

The system for a conductor galloping monitoring method based on target detection
of an infrared source mainly comprises 3 parts: an infrared source label, high-definition
night vision infrared camera, and IPC. Specifically, the infrared source label has remarkably
morphological characteristics and reflects infrared light; the high-definition night vision
infrared camera is used to take videos of the infrared source label; the IPC is used for target
recognition and tracking of infrared source labels in the video shot by the high-definition
night vision infrared camera, thus obtaining the motion trajectory of the infrared source
label and then calculating the characteristic amplitude of conductor galloping. Taking
advantage of the shortcomings of existing galloping monitoring methods, the improved
design mainly includes the following:

• The application of infrared source labels and high-definition night vision infrared
camera can ensure not only detection by the camera during the day, but also detection
of conductor galloping at night or in damp and foggy environments.

• In view of the foggy condition in video scenes, a fast image defogging method com-
bined with dark channel is adopted to enhance the image quality and the infrared
source label recognition rate [23–26].

• As for possible defects and fractures of the infrared source label in binarized images,
the algorithm for image corrosion and dilation is adopted to repair the shape of the
infrared source [27,28].

• The low-power consumption system design and galloping emergency response design
of the calculation unit reduce the operating power consumption of the system and
ensure the calculation functionality [29–31].

3.1. System Framework

The system for the galloping monitoring method based on infrared light source target
detection mainly consists of five parts: infrared light source label, high-definition night
vision infrared camera, solution unit, solar panel and intranet platform, as shown in
Figure 1.
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Figure 1. System framework diagram.

The infrared light source label has significant morphological characteristics and reflects
infrared light. The high-definition night vision infrared camera is used to shoot video of
the infrared light source label. The calculation unit used for the high-definition night
vision infrared camera video of the infrared light source tags for target recognition and
tracking, obtaining the trajectories of the infrared light source tag, and then calculating the
characteristic magnitude of conductor galloping. Based on the national grid’s “Q/GDW
242-2010 General technical specification for condition monitoring devices for transmission
lines”, the computed data are sent to the intranet platform. The solar panel draws power
for the solver unit and high-definition night vision infrared camera. The internal network
platform analyzes the data received on the conductor dancing features and issues dancing
alarm references to power grid departments.

3.2. System Working Mode

The working mode of the system designed in this paper involves periodic collection
and reporting and alarm and urgent reporting. By default, the system works every 40 min
for 5 min. The dancing data are collected for calculation, and the data are packaged and sent
to the cloud monitoring platform according to the specification formulated in Q/GDW 242-
2010 General Technical Specification for Transmission Line Condition Monitoring Device.
The system then sleeps for 35 min. If the solution unit detects an alarm notification of
dancing features, it will continuously collect data and send them to the intranet platform.
This working mode ensures that the solver can monitor the traversal effectively and
maintain the low power consumption of the system.

For easy reference, all notations are described in Table 1.

Table 1. Description of notations.

Notation Description

H(x) foggy image with pixel x

J(x) desired image after defogging

t(x) transmittance

A atmospheric optical intensity value

ρ regulatory factor

M(x) image composed of the minimum values in the three channels of image
R, G and B containing fog

Mave(x) image produced by M(x) average filter

mav mean of all elements in normalized M(x)

src(x, y) grayscale value of each pixel of the grayscale image

M threshold of binarization
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Table 1. Cont.

Notation Description

dst(x, y) grayscale value of each pixel after binarization

R rectangle filling rate

Sarea connected domain area

Srectangle minimum bounding rectangle area of connected domain

r the ratio of rectangle length to width

Wrectangle width of minimum bounding rectangle

Lrectangle length of minimum bounding rectangle

(xini, yini) central coordinate of the infrared source

(x, y) the central coordinate of all infrared sources in the current frame image

len conductor galloping amplitude

α spatial mapping coefficient

dtarget
the actual distance that the central coordinate of the infrared source

moves

npixel
the number of pixels in the image that the distance of the central

coordinate of the infrared source moves

θ galloping ellipse inclination angle

Er relative error

dreal the actual distance by gyroscope

3.3. Image Preprocessing

The image is modeled by the following fog pattern:

H(x) = J(x)t(x) + A(1− t(x)) (1)

where H(x) is the existing image with fog, J(x) is the desired image after defogging, A
is the atmospheric optical intensity value, an empirical value that can be determined in
advance, and t(x) is the transmittance. Let L(x) = A(1− t(x)), which is an ambient photon
parameter; when the fog on the screen is severe, the smaller the transmittance t(x), the
greater the value L(x). Therefore, the defogged image can be conveyed as:

J(x) =
H(x)− L(x)

1− L(x)
A

(2)

L(x) is calculated as follows:

L(x) = min{ [min(ρ×mav, 0.9)×Mave(x)], M(x) } (3)

where ρ is the regulatory factor, and the larger ρ is, the darker the overall picture is. M(x)
is the image composed of the minimum values in the three channels of image R, G and
B containing fog, that is, M(x) = min

c∈{r,g,b}
(Hc(x)). Mave(x) is the image produced by

M(x) average filter, that is, Mave(x) = average(M(x)); mav is the mean of all elements in
normalized M(x). The value of L(x) is the result of further reduction in the filtered value
of M(x).

As can be seen from Formula (3), L(x) can be calculated by using the fast image defog-
ging method combined with dark channel prior. It can not only ensure the effectiveness of
defogging, but also avoid the problem of darkened images after defogging.

The image is transformed from the RGB chromaticity diagram to the GRAY grayscale
image with a grayscale range of 0–255. The grayscale image is processed by median filtering
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to eliminate noise interference, and the grayscale image is binarized. The formula is shown
as (4):

dst(x, y) =
{

255 i f src(x, y) > M
0 otherwise

(4)

where src(x, y) is the grayscale value of each pixel of the grayscale image, with a value range
of 0–255; M is the threshold of binarization, and the appropriate value can be determined
by experiment; dst(x, y) is the grayscale value of each pixel after binarization, with a value
of 0 or 255. Because the infrared source is a white circle in the image, the contour of the
infrared source is clear, and the shape is clear after binarization. Moreover, most of the dark
background in the image turns black, highlighting the shape of the infrared source.

3.4. Identification of the Calculation Central Coordinates of Infrared Source

As for possible defects and fractures of the infrared source in the binarized image,
the algorithm of image corrosion and dilation is adopted to repair the shape of the in-
frared source.

The set of detected image contour points is stored in an array; each array represents
a contour, and the closed region contained in each contour is called a connected domain.
The perimeter of the connected domain refers to the number of pixels contained in the
peripheral contour of the connected domain, and the area of the connected domain refers
to the number of all pixels in the whole connected domain. Connected domains that are
not within the minimum and maximum values of the perimeter and area are excluded.

The minimum bounding rectangle of each connected domain is drawn, and the in-
frared source is identified by using the geometric characteristics of the connected domain
and its minimum bounding rectangle. Here, two characteristics of rectangle filling rate
and the ratio of rectangle length to width are mainly used. The rectangle filling rate is the
ratio of the above connected domain area to its minimum bounding rectangle area, and its
formula is shown as (5):

R = Sarea/Srectangle (5)

In Formula (5), R represents the rectangle filling rate, Sarea is the connected domain
area, and Srectangle is the minimum bounding rectangle area of the connected domain. The
ratio of rectangle length to width is the ratio of minimum bounding rectangle length to
width of the above connected domain, and its formula is shown as (6):

r = Wrectangle/Lrectangle (6)

In Formula (6), r represents the ratio of rectangle length to width, Wrectangle is the
width of minimum bounding rectangle, and Lrectangle is the length of minimum bounding
rectangle. For instance, the infrared source is a circle, and the ratio of rectangle length
to width of the circle is 1. An interval near 1 is set to exclude the connected domains in
which the ratio of rectangle length to width is not in the interval. Each connected domain
in the image is traversed, and the rectangle filling rate R and the ratio of rectangle length to
width r are used to judge and screen, and the connected domains that meet both conditions
are retained and identified as the infrared source. The center of the minimum bounding
rectangle identified as the connected domain of the infrared source is taken as the center
of the infrared source. Assuming that infrared sources are identified in the image of the
current frame, their central coordinate takes the central coordinate (x, y) of all infrared
sources in the current frame image as the final central coordinate of the infrared source in
the current frame image, denoted as (x, y).

3.5. Calculation of Conductor Galloping Amplitude

Taking the central coordinate (xini, yini) of the infrared source in the static state of the
conductor as the benchmark for monitoring, the displacement of the infrared source in
the current frame image is calculated as the conductor galloping amplitude; its dancing
trajectory is shown in Figure 2.
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The formula is shown as (7):

len = 2× α×
√
(x− xini)

2 + (y− yini)
2 (7)

where len is the conductor galloping amplitude in the current frame image. α is the spatial
mapping coefficient, which represents the actual spatial distance corresponding to a pixel
in the image, and can also be calculated by offline calibration, and the formula is shown
as (8).

α = dtarget/npixel (8)

where dtarget is the actual distance that the central coordinate of the infrared source moves,
and npixel is the number of pixels in the image that the distance of the central coordinate of
the infrared source moves. The above method for calculating the spatial mapping coefficient
α is also applicable when the focal length of the camera changes.

3.6. Calculation of the Galloping Ellipse Inclination Angle and Galloping Frequency of
the Conductor

Based on Figure 2 above, it is obtained that

θ = arctan(|x− xini|/|y− yini|) (9)

In Formula (9), θ is the galloping ellipse inclination angle, the |x− xini| and |y− yini|
are the half range of the horizontal and vertical galloping amplitudes, respectively. The
conductor galloping frequency can be obtained by applying the fast Fourier transform to
the galloping amplitude len of the morphological label of all obtained infrared sources.

4. Design of Hardware and Software
4.1. Design of Infrared Source Label

The infrared source label occupies a vital position in monitoring conductor galloping
that directly determines the effectiveness and efficiency of galloping monitoring. Its design
and installation are shown in Figure 3.

The morphological label of the infrared source uses a black acrylic board as the
substrate; a white acrylic board in the shape of a concentric circle is embedded on the
substrate, and a layer of infrared reflective film is affixed on the white acrylic board. During
normal daytime conditions, high-definition night vision infrared cameras detect conductor
galloping by detecting the contour features of white concentric circles. At night or in foggy
conditions, the high-definition night vision infrared camera turns on the infrared light, and
the light is reflected by the infrared source label, which gives the imaging of the infrared
source in the camera remarkable characteristics. Moreover, the detection of the IPC is the
same as in the normal daytime, and even better than that during normal daytime.
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4.2. Design of the Calculation Unit

The solution unit consists of two parts: calculation unit and decision-making unit. Its
hardware block diagram is shown in Figure 4.
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Figure 4. The structure of the hardware.

The calculation unit is composed of a high-definition night vision infrared camera,
industrial personal computer, 4G router and electro timer. The high-definition night vision
infrared camera is a fully automatic ball machine, with a focal length of 23 × 16 times; it
has an efficient infrared array and low-power consumption circuit design, an irradiation
distance of up to 200 m, and a built-in heat treatment device to prevent the ball machine
from being covered with fog. The IPC has a 64-bit processor; Intel I7-5500U CPU with
main operating frequency of 2.4 GHz, and dual network ports, and supports power-on
self-start. Network port 1 of the IPC interacts with the high-definition night vision infrared
camera, and network port 2 connects to a 4G router. The 4G router supports TDD-LTE and
FDD-LTE modes with transmission speeds of up to 150 Mbps and a timing relay using the
RS485 communication interface.

The decision-making unit is composed of a minimum system with an MCU and
weather station. The minimum system consists of an STM8L151 microprocessor, crystal
oscillation circuit, reset circuit, and download circuit. The MCU minimum system and
peripherals adopt 485-level communication mode; a MAX485 level conversion chip is
selected, its serial port 1 is used for data interaction with the timing relay; the baud rate is
9600 bps and 8 data bits with no check bit. Its serial port 2 is used for data interaction with
the weather station with a baud rate of 9600 bps, 8 data bits, and even parity check. The
weather station can measure temperature, humidity, wind speed, and wind direction using
the 485-interface output.

The power supply circuit can convert the solar panel input voltage of 18V into multiple
voltage outputs: a 3.3 V power supply for the microcontroller minimum system; 5 V
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to power the weather station; and 12 V to power the 4G routers, industrial computers,
and relays.

4.3. Work Flow of The Calculation Unit

The work flow chart of the calculation unit is shown in Figure 5. In the working mode,
the processor is connected to the high-definition night vision infrared camera through
network interface 1 to ensure the speed of video transmission. The power supply for the
camera and IPC is controlled by a timing relay, and the calculation unit works for 5 min
every 40 min by setting a timer. In the working mode, after the start and initialization of
the galloping monitoring unit, calculation of the characteristic amplitude of the galloping
begins, then stops after 5 min.
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The IPC judges whether the characteristic amplitude of the galloping warrants an
alarm or not. If the alarm is given, the system will continue to work. If the alarm is not
given, the timing relay disconnects the power supply and starts the timer for 35 min. Within
35 min, if the STM8L151 single-chip microcomputer detects that the meteorological data
has given an alarm, the timing relay controlled by serial interface 1 will turn on the power
supply of the camera and IPC to allow them to directly enter working mode and increase the
detection frequency. Within 35 min, if the STM8L151 single-chip microcomputer does not
give an alarm, after 35 min, the galloping monitoring unit will also enter the working mode.

4.4. Cost Estimation

The system consists of infrared light source tags, high-definition night market infrared
cameras, back-end calculation units and front-end display platforms. Both traditional
image processing for non-contact monitoring and sensor-based contact monitoring tech-
nologies, back-end calculation units and front-end display platforms are essential. The
only cost difference between the methods proposed in this paper is associated with the
HD night vision infrared camera. This system uses a 2-megapixel infrared camera of the
iDS-2DF8253I5X series (C) (DJ), and the cost is RMB 2500, which is equivalent to USD
400. Similar to the cost of other image processing methods, it is far lower than the Beidou
monitoring technology that costs more than 25,000 yuan. Therefore, the monitoring method
adopted in this paper has practical promotion value in engineering applications.

5. Testing and Data Analysis
5.1. Experimental Verification

In order to verify the effectiveness of the conductor galloping monitoring method
based on infrared light source target detection, a series of experimental tests were carried
out. We selected a 2-megapixel infrared camera with model iDS-2DF8253I5X series (C) (DJ)
and a web-side software platform written in C++ language running on the Windows 2012
Server system to display the calculated conductor galloping data. Two iron tower models
were selected, and the distance between them was 3 m. A thick rope was tied on the top of
the two iron towers and the morphological label of the infrared light source was placed at
the sag point of the rope, as shown in Figure 6.
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In accordance with the results of the calculation unit, the actual offset and the measured
offset in the horizontal and vertical directions were compared, as shown in Tables 2–5. It
can be seen from these figures that the deviation between the two was very small. When the
distance was 200 m, the error between the two was 1.2%, which provided high detection
accuracy and was able to meet the monitoring requirements of the power grid platform.
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Table 2. Tag recognition performance at 50 m.

Actual Value
(m)

Horizon (m) Vertical (m)

Measured Error Measured Error

1 1.003 0.003 1.004 0.004

1.5 1.503 0.002 1.5015 0.001

2 1.994 −0.003 1.994 −0.003

2.5 2.5025 0.001 2.51 0.004

3 3.009 0.003 3.003 0.001

Table 3. Tag recognition performance at 100 m.

Actual Value
(m)

Horizon (m) Vertical (m)

Measured Error Measured Error

1 1.003 0.003 1.002 0.002

1.5 1.494 −0.004 1.506 0.004

2 2.004 0.002 1.994 −0.003

2.5 2.4925 −0.003 2.51 0.004

3 3.003 0.001 3.015 0.005

Table 4. Tag recognition performance at 150 m.

Actual Value
(m)

Horizon (m) Vertical (m)

Measured Error Measured Error

1 1.006 0.006 0.995 −0.005

1.5 1.488 −0.008 1.5105 0.007

2 2.014 0.007 2.012 0.006

2.5 2.4775 −0.009 2.4875 −0.005

3 3.018 0.006 3.018 0.006

Table 5. Tag recognition performance at 200 m.

Actual Value
(m)

Horizon (m) Vertical (m)
Measured Error Measured Error

1 1.009 0.009 0.989 −0.011

1.5 1.4775 −0.015 1.518 0.012

2 2.026 0.013 1.974 −0.013

2.5 2.4725 −0.011 2.5325 0.013

3 3.036 0.012 3.033 0.011

5.2. Application Test

The system was installed on an 800 kV UHV transmission line in Xuancheng city,
Anhui Province in November 2019. The morphology label of the infrared light source was
installed on the spacer bar near the sag point of the wire, the solution unit was installed on
the first-level platform of the pole tower, the solar panel and solution unit were fixed on
the pole tower in the form of a hoop, and the camera was installed in a customized fixed
structure, as shown in Figure 7. In Figure 7, the yellow circle represents the infrared light
source label.
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Figure 7. The installation of infrared light tag.

The recognition performance on foggy days is as shown in Figure 8; the solver could
still detect the infrared light source effectively. Under the strong support of Anhui Power
Transmission and Transformation Engineering Co., Ltd. (Hefei, China), the detection
accuracy of this system has been compared in several groups of tests. At the spacer bar
where the label is mounted, a gyroscope was also installed. Over a short period of time, the
gyroscope still had high detection accuracy. The gyroscope transmitted the dancing data
on the detected wire to the main monitoring station through wireless mode.
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Figure 8. The recognition performance on foggy days.

Galloping test experiments were carried out on the methods in this paper to record
the different positions of the wire galloping and to restore the spatial movement trajectory
based on the measured horizontal and vertical data. At the spacer where the label was
installed, a gyroscope was also installed to compare the gyroscope data with the data
measured by the system. In the two groups of experiments shown in Figure 9, the orange
trajectory represents the infrared light source method, the blue trajectory represents the
monitoring results from the gyroscope, the horizontal axis represents the amplitude in the
horizontal direction, and the vertical axis represents the amplitude in the vertical direction.
According to the measured horizontal and vertical data, the spatial motion trajectory was
restored, as shown in Figure 9. The data obtained with the method in this paper were
basically equivalent to the data measured by the gyroscope, which can effectively monitor
wire galloping.
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To verify the effectiveness of the method in this paper, the experiment also compared
it with two other methods, described in [12,14]. The infrared light source high-definition
camera was set up at a distance of 400 m from the wire, and the other method devices
similarly set up at a distance of 400 m. Taking the amplitude measured by the gyroscope
as the reference standard, the method in this paper was compared with the amplitude
measured by the other two methods, and the measurement accuracy was measured by the
relative error. The relative error calculation formula is shown in Formula (10):

Er =
dtarget − dreal

dreal
× 100% (10)

where dtarget is the dance amplitude measured by the different methods. dreal is the dance
amplitude measured with the gyroscope.

Figure 10 is a comparison of the relative errors of the measured amplitudes of the three
methods. It can be seen that the relative error of the infrared light source was relatively
small and basically about 3%, which did not change with time. This was because the
infrared light source label was installed on the wire spacer and the high-definition night
vision camera was installed on the tower. The infrared camera was capable of high-precision
identification in dark and foggy conditions. The video monitor captured galloping images
directly from the video, and the relative error at night and in foggy weather was large,
reaching 10%~15%. The microwave interference technology used manual measurements,
and the degree of automation was not high. Second, it predicted the galloping amplitude
of the wire through the deformation of the tower. The accuracy was not high enough, and
the relative error was 5% to 10%.
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6. Conclusions

A conductor galloping monitoring method with high recognition and good detection
accuracy based on the target detection of an infrared source was proposed. The calcula-
tion unit adopts periodic acquisition and alarm acquisition, which not only ensures the
effectiveness of system detection and low power consumption by system operations, but
also enables the device to run stably for long periods to cope with bad meteorological
conditions. Compared with the monitoring technology of INS and Beidou positioning,
this system does not directly contact the live conductors, is thus safe and reliable with
no potential electrical hazards or remarkable morphological characteristics, and costs less.
Compared to other image processing monitoring methods, this system is unaffected by
changes in weather and lighting, and offers high monitoring accuracy at no additional cost.
The experimental data indicate that the method has high detection accuracy and can be
applied in the automatic monitoring of conductor safety in the State Grid.
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