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Abstract: The phonocardiogram (PCG) is an important analysis method for the diagnosis of cardio-
vascular disease, which is usually performed by experienced medical experts. Due to the high ratio of
patients to doctors, there is a pressing need for a real-time automated phonocardiogram classification
system for the diagnosis of cardiovascular disease. This paper proposes a deep neural-network
structure based on a one-dimensional convolutional neural network (1D-CNN) and a long short-term
memory network (LSTM), which can directly classify unsegmented PCG to identify abnormal signal.
The PCG data were filtered and put into the model for analysis. A total of 3099 pieces of heart-sound
recordings were used, while another 100 patients’ heart-sound data collected by our group and
diagnosed by doctors were used to test and verify the model. Results show that the CNN-LSTM
model provided a good overall balanced accuracy of 0.86 ± 0.01 with a sensitivity of 0.87 ± 0.02,
and specificity of 0.89 ± 0.02. The F1-score was 0.91 ± 0.01, and the receiver-operating characteristic
(ROC) plot produced an area under the curve (AUC) value of 0.92 ± 0.01. The sensitivity, specificity
and accuracy of the 100 patients’ data were 0.83 ± 0.02, 0.80 ± 0.02 and 0.85 ± 0.03, respectively.
The proposed model does not require feature engineering and heart-sound segmentation, which
possesses reliable performance in classification of abnormal PCG; and is fast and suitable for real-time
diagnosis application.

Keywords: heart sound; phonocardiogram; deep neural network; machine learning

1. Introduction

Cardiovascular disease (CVD) is one of the main causes of death worldwide. Accord-
ing to the statistics provided by WHO in 2019, approximately 17.9 million people die from
CVD every year worldwide [1]. Early diagnosis of CVD allows prevention measures and
medications to be taken and saves lives. Many technologies have been developed for the
diagnosis of CVD, such as Coronary Computed Tomography (CT) and Echocardiography.
Another method of CVD diagnosis is through the analysis of heart sounds recorded. Heart
sound is a kind of heart-structure vibration caused by blood flow in the cardiovascular
system [2], and specific heart sounds can reflect the health status of the heart. The phonocar-
diogram (PCG) is a graphical representation of heart-sound recording, and has been widely
used for CVD diagnosis. Clinicians always use a stethoscope to listen to heart sounds of the
patient, and then diagnose whether the patient has a cardiovascular disease or not based
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on the PCG information obtained. This process is time-consuming and requires the doctor
to have a wealth of experience.

An automated system can be used as an auxiliary tool for doctors to perform diagnoses
of heart problems and reduce their burden. Numerous methods have been proposed to
study PCG signals for the diagnosis of heart problems based on heart-sound segmentation
and predefined manual features. Heart-sound segmentation can determine the systolic and
diastolic regions of the PCG signal, which is convenient for subsequent artificial extraction
of relevant features to classify the PCG signal. The feature domains used for classification
generally include time, frequency, wavelet, energy, high-order statistics and entropy [3–9].
The methods used for classification include an artificial neural network (ANN) [10–13], a
support vector machine (SVM) [14], clustering [15,16] and so on. Gerbarg et al. were the
first researchers to attempt the classification of PCG using a threshold-based method [17].
Springer et al. proposed an improved hidden semi-Markov model (HSMM) and improved
PCG segmentation performance [18]. Tang et al. extracted up to 515 features from nine different
dimensions and used SVM to identify the abnormal signal (murmurs) in the PCG signal [19].

So far, it can be found that most of the automatic heart-sound-classification methods
are based on a complex set of features, such as time interval, frequency spectrum of states,
state amplitude, energy, frequency spectrum of records, cepstrum, cyclostationarity, high-
order statistics and entropy. These features are usually calculated manually. Although the
accuracy of the results is high, the extracted features are too complicated, which may lead
to subjective bias and variations. Krishnan et al. proposed a deep neural-network (DNN)
model without using feature engineering. They divided the original PCG signal into shorter
time segments of 6 s epochs. The processed data were then inputted to the proposed DNN
architecture for analysis, resulting in an accuracy of 0.8565 with a sensitivity of 0.8673, and
a specificity of 0.8475 in detection of abnormal heart sounds [20].

In response to these situations, in this study, we develop an end-to-end DNN for
PCG analysis and classification. The research aims to simplify the PCG signal feature
engineering and speed up the analysis of PCG recordings, thereby helping cardiologists
provide faster treatment plans for patients.

2. Materials and Methods

The workflow of this study is shown in Figure 1. After the PCG signal is preprocessed,
it is directly input into classifier for analysis, and then it is identified as to whether it is
abnormal or normal.
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Figure 1. Block diagram of the proposed method. First, the phonocardiogram (PCG) is preprocessed;
then, the PCG is fed into the designed model to classify normal and abnormal heart sounds.

2.1. Dataset

This study used the Physionet Challenge 2016 dataset (CinC) to train and validate
the PCG classification model. The database was sourced from several contributors around
the world and collected at either a clinical or nonclinical environment from both healthy
subjects and pathological patients recorded at a sampling frequency of 2000 Hz. It consists
of six databases (A through F). The databases contain a total of 3240 PCG recordings in
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mV, lasting from 5 s to over 120 s, and the dataset ‘E’ has high background noise. The PCG
recordings were collected from different locations on a human body. The PCG signals are
divided into two types: normal and abnormal records. Normal records are from healthy
people, while abnormal records are from patients being diagnosed with heart disease.
Figure 2 shows typical normal and abnormal PCG, respectively. The normal PCG have
regular beats with one relatively weak beat between the two strong beats, while there is
random distribution of weak sounds between the two strong beats with irregular signal
amplitudes for the abnormal heart sounds. More details about the CinC can be obtained
from Physionet [21,22]. All PCG signals used in this study are shown in Table 1.

To demonstrate the robustness and generalizability of our method, we also used the
ZJU4H PCG dataset from the Fourth Affiliated Hospital of Zhejiang University, School of
Medicine as the test dataset. The dataset contains a total of 1075 heart-sound records from
100 patients diagnosed by cardiovascular experts.

Table 1. Summary of the PCG records used for the training and verification of the classification.

Dataset Number
of PCG

Normal
PCG

Abnormal
PCG

Training
Datasets

Validation
Datasets

Test
Datasets

Dataset-a 409 117 292 245 82 82
Dataset-b 490 370 102 294 98 98
Dataset-c 31 7 24 19 6 6
Dataset-d 55 21 28 33 11 11
Dataset-e 2000 1876 124 1200 400 400
Dataset-f 114 76 34 68 23 23
Total Cinc 3099 2483 616 1859 620 620
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Figure 2. PCG recording of: (a) normal signal; (b) abnormal signal.

2.2. Preprocessing

Since the PCG data used are from different medical institutions, the amplitude values
of the sound signals vary significantly, which is difficult for analysis and model establish-
ment. The data were normalized using the min–max normalization. The frequency of PCG
was between 1 and 800 Hz, and the frequency for the important signal component was
above 20 Hz [21]. Therefore, the Butterworth bandpass filter with a frequency range of
20–800 Hz was used to remove the low- and high-frequency noises. In order to facilitate
the signal processing, the signals of different lengths were segmented to the same length
of 5 s. This number was selected based on reference [21], which pointed out that it takes
at least 5 s of data to detect cardiac abnormalities. The processed signal can be seen as a
vector with a dimension of 1 × 10,000.
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2.3. Model

In this study, the automatic classification of heart sounds can be seen as a binary-
classification problem that uses deep neural networks to classify recorded PCG signals into
normal and abnormal categories. In this study, we first thought of using CNN to process
heart-sound signals. CNN shares convolution kernels, processing high-dimensional data
without pressure, and can automatically perform feature extraction. However, it is easy
to ignore the correlation between the part and the whole. LSTM is a kind of RNN, which
emphasizes the relevance of data, which can solve this problem. Therefore, we combined
one-dimensional convolutional neural networks (1D-CNN) and long short-term memory
networks (LSTM) to classify heart sounds. We designed three network structures to evaluate
the heart-sound classifiers. Net_1 uses 1D-CNN, Net_2 uses LSTM, while Net_3 uses 1D-
CNN and LSTM. Table 2 is the summary of the structure and parameters of the three
structure models.

Table 2. Summary of the Net_1 architecture evaluated for heart-sound classification.

Layer (Type) Params

Input [1 × 10,000] PCG time sequence

Conv1D
Filters = 64, 1 × 100, ReLU
Filters = 32, 1 × 100, ReLU
Filters = 32, 1 × 100, ReLU

Dropout dropout rate = 0.5

MaxPooling1D Pool size = 2, strides = 2

Flatten

Dropout dropout rate = 0.3

Dense
1 × 512, ReLU
1 × 128, ReLU
1 × 64, ReLU

Output 1 × 2, Softmax

2.3.1. Input Layer

We used three different network structures for comparative analysis. The input layer
of each network structure was different. The processed PCG signal was 5 s long data, and
can be expressed as a vector with a dimension of 1 × 10,000. In Net_1 and Net_2, the input
was a PCG time sequence with a dimension of 1 × 10,000. In Net_3, a processed PCG signal
was divided into 100 parts. The input was a vector with a dimension of 1 × 100 × 100.

2.3.2. 1D-Convolutional Neural Network

1D-CNN was used in this study for two network structures: Net_1 and Net_3. In
Net_1, we used three one-dimensional convolutional layers. The first convolutional layer
had 64 convolutional filters, the second convolutional layer had 32 convolutional filters,
while the third convolutional layer had 16 convolutional filters. The input sample was
10,000 points. We set the total length of all convolutional filters in Net_1 to 100.

In Net_3, 1D-CNN was used to extract the features of the heart-sound sequence.
This part consisted of three one-dimensional convolutional layers. The length of the
convolutional filter was 5. The number of filters owned by the three convolutional layers
was 8, 4 and 2, respectively. Batch normalization was introduced between each layer to
renormalize the output value of the previous layer. We used TimeDistributed to apply
1D-CNN to 100 parts of a PCG signal at the same time.

2.3.3. Pooling Layers

After the features are obtained through 1D-CNN, a pooling layer needs to be used to
reduce the dimension of the obtained features to reduce the amount of computation. In
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this study, a one-dimensional max-pooling layer was used in Net_1 and Net_3, with both
pool size and stride of 2.

2.3.4. Long Short-Term Memory Network

Time-series data at different points in time are interrelated, such as heart sounds; so
how do we make the association between the data also being analyzed by neural network?
Think about how we humans analyze the associations of various things. The most basic
way is to remember what happened before. Recurrent neural network (RNN) will store the
analysis results at different time points, and finally will accumulate all the previous results
and analyze them together. RNN learns on sequential data; in order to remember these data,
RNN will generate memories of previous events like a human. Similarly, they will forget like
humans. This will cause gradient-disappearance and gradient-explosion problems.

The long short-term memory network (LSTM) is a kind of RNN that is specially
designed to solve the problems in general RNNs. Compared with ordinary RNN, LSTM
has three more controllers: input control, output control, and forget control [23]. The three
controllers are all based on the original RNN system. If the information at this time is
very important to the result, the input control will store this information according to
the degree of importance of the information for analysis. If the information at this time
changes our thoughts on the previous information, then the control units will forget some
of the previous information and replace the current information proportionally. The output
control will output the correct information based on these.

In Net_2, we directly used the three LSTM layers to process the data. Detailed param-
eters can be seen in Table 3.

In Net_3, we divided the heart-sound data records into one hundred segments, and
applied TimeDistributed to 100 parts of a PCG signal at the same time. The features
extracted from the 1D-CNN will be input to the LSTM for processing, and the processed
data will be used as the input of the two dense layers. Table 4 shows the parameters of
LSTM.

Table 3. Summary of the Net_2 architectures evaluated for heart-sound classification.

Layer (Type) Params

Input [1 × 10,000] PCG time sequence

LSTM
Units = 512
Units = 256
Units = 128

Dropout dropout rate = 0.5

Dense 1 × 64, ReLU

Output 1 × 2, Softmax

2.3.5. Dense Layers

The network structures used in this study contain dense layers using the ReLU activa-
tion function. The parameters of dense layers are shown in Tables 2–4. The output layer of
three network structures is two neurons with softmax activation. The result is represented
as ŷ. ŷ is a vector with a 1 × 2 dimension; ŷ0 represents the probability of abnormal heart
sounds; and ŷ1 represents the probability of normal heart sounds. Abnormal heart sounds
are represented by 0 (class 0), and normal heart sounds are represented by 1 (class 1). The
sum of ŷ0 and ŷ1 is 1. If the probability score of ŷ1 is greater than that of ŷ0 , then the PCG
data are classified as normal signals; otherwise, the PCG data are classified as abnormal signals.
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Table 4. Summary of the Net_3 architectures evaluated for heart-sound classification.

Layer (Type) Params

Input [1 × 100 × 100] PCG time sequence

Time Distributed Conv1D
Filters = 8, 1 × 5, ReLU
Filters = 4, 1 × 5, ReLU
Filters = 2, 1 × 1, ReLU

Dropout dropout rate = 0.5

Time Distributed MaxPooling1D Pool size = 2, strides = 2

Time Distributed Flatten

LSTM Units = 256

Dense 1 × 128, ReLU

Dropout dropout rate = 0.3

Output 1 × 2, Softmax

2.3.6. Dropout Layers

In order to prevent overfitting, we need dropout layers to randomly discard some
neurons. These neurons are not really discarded, but temporarily disabled, which will
discard some features and increase the robustness of the model. Dropout layers force
a neuron unit to work with other neuron units selected at random, weakening the joint
adaptability between neuron nodes and enhancing the generalization ability. The detailed
dropout rates are shown in Tables 2–4.

2.4. Class Weight

In the classification model, we often encounter two types of problems. The first one
is that misclassification is expensive. The second is that the sample is highly imbalanced.
Therefore, in the clinical application of deep-learning algorithms, it is very important to
deal with the problem of class imbalance. For example, imagine you have two classes:
A and B. Class A is 90% of the dataset and Class B is 10%, but you are most interested
in identifying instances of Class B. You could predict Class A every time, which easily
achieves 90% accuracy, but it is a useless classifier for your intended use case. This is a
common scenario when performing detection, such as detecting malicious content online
or disease markers in medical data. The prediction accuracy can be improved by adjusting
the degree of influence on the loss function with few categories.

In this study, to solve the problem of class imbalance for normal and abnormal heart-
sound samples, we set different class weights in the loss function. Abnormal samples
acquire a larger weight when they are incorrectly predicted; that is, the model applies
different penalties to classes with mispredictions. The new weight for each class is defined
as Equation (1). The number of the class represents the number of categories. In this study,
this value is 2, because of a binary classification. Class i means a certain category. Here,
the value of i is 0 and 1. 0 represents abnormal heart sounds; 1 represents normal heart
sounds. Class weights weight the loss function during training so that the model focuses
on samples from underrepresented classes. The class weights will be dynamically adjusted
based on the data of each round of training.

class_weighti =
Number o f training samples

Number o f class × Number o f classi
(1)

2.5. Training and Validation

The proposed classification model is based on supervised learning; each heart sound
data has a label, and the weight is updated by minimizing the binary cross entropy to
achieve the optimal solution. The learning rate of Adam optimizer [24] is 0.0006. The model
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is based on the keras framework and runs on Google Colaboratory, which is a research tool
developed by Google, and is mainly used for machine-learning-based R&D. The advantage
of Google Colaboratory is that it provides free GPU usage to most of the AI developers.
The GPU is NVIDIA TESLA T4, 16GB. We use sensitivity (recall), specificity, balanced
accuracy (MAcc), F1-score and receiver-operating characteristic curve (ROC) to evaluate
the performance.

3. Results

These performance evaluations of the three network structures are shown in Figures 3
and 4. The performance of Net_1 was not so good; Net_2 produced the highest detection
of true negative cases, with a specificity of 0.88; Net_3 provided the best overall balanced
performance compared to the other two network architectures. In the training process of
Net_3, we set class weights in the loss function to solve the problem of category imbalance.

Figure 4 shows the receiver-operating characteristic curve (ROC). Net_3 with the set-
ting of class weights provided the highest area-under-the-curve (AUC) value of
0.92 ± 0.01; Net_1 and Net_2 provided an acceptable AUC value of 0.87 ± 0.02 and
0.74 ± 0.03 for the PCG classification. From the combined view of MAcc, F1-score and
ROC, Net_3 with class weight is the best of the four models.

With the setting of the class weights, Net_3 provided the best overall performance
compared to the default equal-weight loss function with respect to MAcc of 0.87, F1-score
of 0.91 and AUC value of 0.92. Figure 5 shows the training and validation loss and accuracy
vs. epoch curve of Net_3. As the number of iterations increases, the loss-function curve
will gradually converge. In order to prevent overfitting, we set the number of iterations to
500. The training of the neural networks involved 10 runs. The final result is the average of
these 10 runs.

Electronics 2022, 11, x FOR PEER REVIEW 7 of 11 
 

 

2.5. Training and Validation 
The proposed classification model is based on supervised learning; each heart sound 

data has a label, and the weight is updated by minimizing the binary cross entropy to 
achieve the optimal solution. The learning rate of Adam optimizer [24] is 0.0006. The 
model is based on the keras framework and runs on Google Colaboratory, which is a re-
search tool developed by Google, and is mainly used for machine-learning-based R&D. 
The advantage of Google Colaboratory is that it provides free GPU usage to most of the 
AI developers. The GPU is NVIDIA TESLA T4, 16GB. We use sensitivity (recall), specific-
ity, balanced accuracy (MAcc), F1-score and receiver-operating characteristic curve (ROC) 
to evaluate the performance. 

3. Results 
These performance evaluations of the three network structures are shown in Figures 

3 and 4. The performance of Net_1 was not so good; Net_2 produced the highest detection 
of true negative cases, with a specificity of 0.88; Net_3 provided the best overall balanced 
performance compared to the other two network architectures. In the training process of 
Net_3, we set class weights in the loss function to solve the problem of category imbalance. 

Figure 4 shows the receiver-operating characteristic curve (ROC). Net_3 with the set-
ting of class weights provided the highest area-under-the-curve (AUC) value of 0.92 ± 
0.01; Net_1 and Net_2 provided an acceptable AUC value of 0.87 ± 0.02 and 0.74 ± 0.03 for 
the PCG classification. From the combined view of MAcc, F1-score and ROC, Net_3 with 
class weight is the best of the four models. 

With the setting of the class weights, Net_3 provided the best overall performance 
compared to the default equal-weight loss function with respect to MAcc of 0.87, F1-score 
of 0.91 and AUC value of 0.92. Figure 5 shows the training and validation loss and accu-
racy vs. epoch curve of Net_3. As the number of iterations increases, the loss-function 
curve will gradually converge. In order to prevent overfitting, we set the number of iter-
ations to 500. The training of the neural networks involved 10 runs. The final result is the 
average of these 10 runs. 

 
Figure 3. Performance measures of the network architectures for heart-sound classification. Figure 3. Performance measures of the network architectures for heart-sound classification.



Electronics 2022, 11, 1246 8 of 11Electronics 2022, 11, x FOR PEER REVIEW 8 of 11 
 

 

 
Figure 4. The ROC curve shows the classification performance of the heart-sound classifiers. Area 
under curve of Net_1 is 0.87 ± 0.02. Area under curve of Net_2 is 0.74 ± 0.03. Area under curve of 
Net_3 with default weight is 0.88 ± 0.03. Area under curve of Net_3 with the setting of the class 
weights is 0.92 ± 0.01. 

  
(a) (b) 

Figure 5. The training and validation loss vs. epoch curve of Net_3 with setting class weight. (a) is 
training and validation loss vs. epoch; (b) is training and validation accuracy vs. epoch. 

4. Discussion 
We can see that the three models perform differently for the same data. Net_1 uses 

CNN. Net_2 uses RNN. Net_3 combines the advantages of these two DNNs and has better 
performance than Net_1 and Net_2. 

So far, most of the classification methods for heart sounds have been manually based 
on the characteristic features of the projects, and then a variety of machine-learning meth-
ods were used for analysis, such as SVM, random forests and k-nearest neighbor. Alt-
hough these methods have good accuracy for detecting abnormal heart sounds, subjective 
deviations will inevitably occur. Table 5 compares the method proposed in this study with 
the existing methods for heart-sound classification. All these methods used the same CinC 
as a dataset in this study. Masun et al. extracted features from time, frequency and com-
plexity analysis and achieved 80% accuracy [25]. Li et al. first segmented the heart-sound 
data, and then extracted as many as 497 features from eight categories, including time, 
amplitude, energy, frequency, cepstrum, cyclostationary, high-order statistical and cross-
entropy features. They then fed these features into CNN and obtained an accuracy of 

Figure 4. The ROC curve shows the classification performance of the heart-sound classifiers. Area
under curve of Net_1 is 0.87 ± 0.02. Area under curve of Net_2 is 0.74 ± 0.03. Area under curve of
Net_3 with default weight is 0.88 ± 0.03. Area under curve of Net_3 with the setting of the class
weights is 0.92 ± 0.01.

1 
 

  

(a) (b) 
 

Figure 5. The training and validation loss vs. epoch curve of Net_3 with setting class weight. (a) is
training and validation loss vs. epoch; (b) is training and validation accuracy vs. epoch.

4. Discussion

We can see that the three models perform differently for the same data. Net_1 uses
CNN. Net_2 uses RNN. Net_3 combines the advantages of these two DNNs and has better
performance than Net_1 and Net_2.

So far, most of the classification methods for heart sounds have been manually based
on the characteristic features of the projects, and then a variety of machine-learning meth-
ods were used for analysis, such as SVM, random forests and k-nearest neighbor. Although
these methods have good accuracy for detecting abnormal heart sounds, subjective devia-
tions will inevitably occur. Table 5 compares the method proposed in this study with the
existing methods for heart-sound classification. All these methods used the same CinC as a
dataset in this study. Masun et al. extracted features from time, frequency and complexity
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analysis and achieved 80% accuracy [25]. Li et al. first segmented the heart-sound data,
and then extracted as many as 497 features from eight categories, including time, ampli-
tude, energy, frequency, cepstrum, cyclostationary, high-order statistical and cross-entropy
features. They then fed these features into CNN and obtained an accuracy of 86.8% [26]. As
can be seen from Figure 5, the way of using DNN is better than the method of heart-sound
segmentation and manual feature recognition. Because the features are calculated and
selected manually, there may be problems of calculation bias and selected features that
are not comprehensive enough. The end-to-end DNN is that the model recognizes the fea-
tures by itself, and does not need to be constructed manually, which greatly simplifies the
complexity of the model. By reducing manual preprocessing and subsequent processing,
the model can go from the original input to the final output as much as possible, giving
the model more space for automatic adjustment according to the data, and increasing the
overall fit of the model. Krishnan et.al. proposed a deep neural-network model that can
directly classify heart-sound data with a classification accuracy of 85.74% [20]. Considering
the correlation before and after the heart-sound signal sequence, we used a combination of
CNN and LSTM to process the heart sound and obtained a higher accuracy of 86%, with a
sensitivity of 87% and specificity of 82%. The F1-score was 91%.

Table 5. Comparison of related work in heart-sound classification based on Physionet Challenge 2016
dataset.

Related Work Method Performance

Masun et al. [25] Random forest + LogitBoost +
Cost-sensitive classifier

Sensitivity:
Specificity:

MAcc:

80%
81%
80%

Li et al. [26] CNN
Sensitivity:
Specificity:

MAcc:

87%
86%
86%

Krishnan et al. [20] DNN

Sensitivity:
Specificity:

MAcc:
F1-score:

AUC:

87%
85%
86%
85%
86%

This study
(Net_3 with class

weight)
1D-CNN + LSTM

Sensitivity:
Specificity:

MAcc:
F1-score:

AUC:

87%
82%
86%
91%
92%

Figure 6 shows the performance of Net_3 with the setting of the class weight under
two test sets, CinC 2016 and ZJU4H. The model provided a MAcc of 0.85, with a sensitivity
of 0.83 and specificity of 0.80. The F1-score of the model was found to be 0.90. The
performance of the two test sets was similar to Net_3 with the setting of the class weight.
This proves that Net_3 with the setting of the class weight has good versatility.
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5. Conclusions

In this study, we propose an end-to-end 1D-CNN-LSTM without PCG segmentation
and feature engineering for PCG analysis and classification, and aim to automate the feature-
engineering and feature-selection process used in the analysis of the PCG signal and to
reduce the analysis time of PCG records for heart-disease identification, thus assisting
the cardiologist in providing a faster treatment plan to the patients. This method directly
obtains PCG data and classifies them as normal or abnormal heart sounds. In addition,
this method does not require presegmentation of PCG sounds into basic heart sounds, and
also has good performance for heart-sound data with high-noise components. Moreover,
the model has been also verified by the data obtained from the Fourth Affiliated Hospital
of Zhejiang University, School of Medicine, which show a good performance. Therefore, the
neural-network architecture based on the convolutional neural network and long short-term
memory network proposed in this study can be used as a feasible tool to detect abnormal
PCG from unsegmented heart-sound signals without any feature-engineering processing.

Of course, there are still some limitations in our work. Compared with the methods
based on feature engineering, the end-to-end method proposed by us lacks some inter-
pretabilities. In addition, we achieved the classification of normal and abnormal heart
sounds but could not identify a specific heart disease. In the future, we will optimize the
method and be able to diagnose specific heart diseases according to the heart-sound signals.
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