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Received: 9 March 2022

Accepted: 15 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An RG-FLAT-CRF Model for Named Entity Recognition of
Chinese Electronic Clinical Records
Jiakang Li 1,2, Ruixia Liu 1 , Changfang Chen 1, Shuwang Zhou 1,3, Xiaoyi Shang 1 and Yinglong Wang 1,*

1 Shandong Artificial Intelligence Institute, Qilu University of Technology (Shandong Academy of Sciences),
Jinan 250353, China; lijiakang178@163.com (J.L.); liurx@sdas.org (R.L.); chenchangfang012@163.com (C.C.);
zhoushw@sdas.org (S.Z.); shangxy@sdas.org (X.S.)

2 Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of
Technology (Shandong Academy of Sciences), Jinan 250353, China

3 College of Computer Science and Engineering, Shandong University of Science and Technology,
Qingdao 266590, China

* Correspondence: wangylscsc@126.com

Abstract: The goal of Clinical Named Entity Recognition (CNER) is to identify clinical terms from
medical records, which is of great importance for subsequent clinical research. Most of the current
Chinese CNER models use a single set of features that do not consider the linguistic characteristics of
the Chinese language, e.g., they do not use both word and character features, and they lack morpho-
logical information and specialized lexical information on Chinese characters in the medical field.
We propose a RoBerta Glyce-Flat Lattice Transformer-CRF (RG-FLAT-CRF) model to address this
problem. The model uses a convolutional neural network to discern the morphological information
hidden in Chinese characters, and a pre-trained model to obtain vectors with medical features. The
different vectors are stitched together to form a multi-feature vector. To use lexical information
and avoid the problem of word separation errors, the model uses a lattice structure to add lexical
information associated with each word, which can be used to avoid the problem of word separation
errors. The RG-FLAT-CRF model scored 95.61%, 85.17%, and 91.2% for F1 on the CCKS 2017, 2019,
and 2020 datasets, respectively. We used statistical tests to compare with other models. The results
show that most p-values less than 0.05 are statistically significant.

Keywords: clinical named entity recognition; Chinese medical text; pre-trained model

1. Introduction

Informatization has penetrated all aspects of social life. In the medical field, more
and more hospitals are building information systems to improve their service level and
core competitiveness, effectively use limited medical resources, and provide patients
with high-quality treatment. These information systems can not only improve doctors’
efficiency but also enhance internal management, making information communication
among departments more efficient and simplifying and standardizing the medical treatment
process. Medical staff can be released from tedious and repetitive work, with extra time
and energy being used to provide better patient services.

Existing medical systems have generated countless medical data, and if the data cannot
be used effectively, it will be a waste of professional knowledge. As a medical record,
Electronic Medical Record (EMR) has received great attention in scientific research [1]
because it contains complete and detailed clinical information generated by patients during
each visit. EMR refers to the digital information such as words, symbols, charts, graphics,
data, images, and so on, generated by medical personnel using the information system
of medical institutions in medical activities. EMR contains various information such as
text and medical images. Medical images are mainly the results of laboratory tests of
patients, such as CT and B-ultrasound. These medical images can currently be analyzed
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using pattern recognition and machine learning methods, but EMR also contains much
textual data. To make use of the text data, Natural Language Processing (NLP) technology
is essential. Electronic medical records cover all patient information from admission
to discharge, including admission time, symptoms, body parts, examination methods,
medication, and other physical information [2]. Medical services may consider providing
patients with the facility to submit inquiries in the form of comments [3].

EMR information extraction is to identify various medical entities from texts and
establish relationships among them. The information extraction of EMR was first carried out
on English medical records, and many achievements have been achieved, while domestic
research on Chinese EMR is still in its infancy. Therefore, it is our top priority.

Named Entity Recognition (NER) is the foundation of text data mining and information
processing. For entity recognition in the medical field, it refers to identifying entities such
as symptoms, body parts, examinations, etc. Identifying this information and analyzing the
relationship among different entity information plays an indispensable role in establishing a
knowledge map in the medical field, building an auxiliary diagnosis model, and providing
data support for clinical decision-making.

Early NER systems are mainly rule-based approaches. This method extracts the target
entity through the preset rule template and has achieved certain results. Although for some
uncommon fields, experts need to write rules, which is demanding, time-consuming, and
limited, rule-based approaches are not outdated but are still an important complement to
other approaches.

Feature-based Supervised Learning Approaches transform NER tasks into classifi-
cation tasks or sequence labeling tasks. Conditional Random Fields (CRF) and Hidden
Markov Models (HMM) [4] are two common algorithms.

With the rapid expansion of deep learning, Gated Recurrent Unit (GRU) and Long
Short-Term Memory (LSTM) are applied to the CNER tasks [4]. Alam et al. [5] proposed
a new framework based on association rule mining for prognostic factor identification
in malignant mesothelioma. At present, the integration of LSTM and CRF is a common
method. However, there are limitations. Transformer [6] proposes self-attention, enabling
the LSTM networks to solve long-distance dependencies. Transformers gradually replaced
LSTM as the mainstream feature extractor in NLP.

Unsupervised pre-trained models are suitable for general domains but not appropriate
for the medical domain.

In addition, Chinese NER is related to word segmentation. Since Chinese entities are
generally composed of words, word segmentation errors will lead to errors in Chinese NER.
The character-based Chinese NER model cannot fully utilize the information of words. The
Lattice-LSTM proposed by Zhang et al. [7] improves the accuracy of this task by adding
dictionary information to the model. However, due to the complexity of the lattice structure,
it does not support parallel computing. Li et al. [8] proposed a Flat Lattice Transformer
(FLAT), which uses a flatten lattice structure and transformer to realize parallel processing.
At the same time, FLAT uses the calculation method of relative position in the Transformer-
XL model [9], and by adding additional position information in the Transformer structure,
it solves the modeling of long text and captures ultra-long distance dependencies.

Also, unlike other languages, Chinese is a pictograph. Chinese characters contain rich
semantic information. Many words with similar meanings are similar in composition and
structure of Chinese characters, which is especially obvious in the medical field. The glyph
information of Chinese characters is also of significant reference value. Glyce, proposed by
Meng [10], can extract the glyph vectors of Chinese characters. It attempts to extract the
semantics of Chinese characters from various ancient and modern Chinese characters and
various writing styles, and the performance is improved.

To solve problems, we propose a RoBerta Glyce-Flat Lattice Transformer-CRF (RG-
FLAT-CRF) model suitable for Chinese CNER tasks. First, the glyph vector is obtained
by Glyce, the character vector and word vector are obtained by Word2vec [11], and the
character vector obtained by RoBerta is spliced with the glyph vector and the word vector
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obtained by Word2vec. At the same time, the Flat-lattice structure is used, word information
is added, the head position code and tail position code are constructed for each character
and vocabulary, and the relative position code is calculated. The concatenation of vectors
and the corresponding position encoding are sent to a transformer to extract the context
information of every Chinese character. Finally, we jointly decode the labels of the entire
sentence using CRF. Our main contributions are as follows:

Contribution

In our contributions, we have:

1. A RoBerta Glyce-Flat Lattice Transformer-CRF model is proposed, which can make
full use of the glyph information and language features of Chinese medical texts, has
strong coding and text representation capabilities, and can accurately identify various
types of Chinese electronic clinical Entity records.

2. According to the particularity of medical entities and the language characteristics of
Chinese, a multi-feature fusion vector is constructed. The pre-trained model is used to
obtain vectors that conform to medical characteristics. At the same time, to strengthen
the semantic representation of medical entities, convolutional neural networks are
used to extract the glyph features of medical entities, and different character vectors
are spliced together to form a composite character vector.

3. Use of a lattice structure to add potential lexical information to each word to avoid
word segmentation errors. The relative position vector in the improved transformer
directly captures the dependencies between words and vocabulary, makes full use of
case information, and can be implemented in parallel.

The rest of this article is organized as follows. Section 2 provides a brief review of
related work of NER. The proposed model is presented in Section 3. The relevant content
of the experiment is described in detail in Section 4. Finally, Section 5 gives the conclusions.

2. Related Work

We include the following studies: (1) How to enhance the semantic representation
of Chinese word vectors. (2) Feature extraction networks more applicable to the Chinese
language. (3) The characteristics and difficulties of named entity recognition in Chinese
electronic medical records. (4) Related Evaluation Metrics [12]. We used multiple strings
such as “Chinese electronic medical record named entity recognition”, “Chinese named
entity recognition”, and “medical named entity recognition” to retrieve peer-reviewed
articles using Multiple databases, including Scopus, ACM Digital Library, IEEE Xplore,
ScienceDirect, SpringerLink, and Google Scholar [13].

This section primarily provides a brief introduction to rule-based and dictionary-based
methods, machine learning-based methods, and deep learning-based methods. Then, the
representation method of the word vector is introduced.

2.1. Rule-and-Dictionary-Based Clinical Named Entity Recognition

Nowadays, Rule-and-Dictionary-Based CNER is commonly used, and these methods
benefit from the development of professional medical dictionaries. Researchers complete
the NER task by pattern matching according to the belonging list in the dictionary. Friedman
et al. [14] developed a clinical document processor that recognized medical information
in the medical record and mapped this information into a structured representation con-
taining medical terms. Fukuda et al. [15] proposed a method to identify the names of
substances such as proteins from biological papers, using the characteristics of proper noun
descriptions in the professional field, which eliminates the need to prepare a professional
term dictionary in advance. Names can be extracted with precision, whether they are
known or newly defined or are single or compound words.

The completeness and accuracy of the dictionary and the accuracy of the matching al-
gorithm can determine the accuracy of such methods. Therefore, dictionary-based methods
are more suitable for fields where proper nouns are fixed and updated infrequently. In the
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biomedical field, there are problems such as the fast updating of proper nouns and different
expressions of the same entity name. Experts need to spend much time and effort writing
rules, and the cost is high. In addition, different rules are needed for different systems.
They are of poor portability and are hard to reuse quickly.

2.2. Clinical Named Entity Recognition Based on Machine Learning

In the past, traditional machine learning based on CNER has been widely used, includ-
ing HMM, CRF, Support Vector Machine (SVM) [16], Naive Bayesian Model (NBM) [17],
etc. Settles [18] used combined feature sets with CRF in biomedical NER tasks. Tang [19]
developed an SVM-based NER system for medical entities in the medical record. Roberts
et al. [20] utilized SVM with a manually constructed dictionary to classify. Liu [21] evalu-
ated the contribution of different features in the CRF-based CNER task.

Compared with the methods analyzed in Section 2.1, the method in Section 2.2 does
not require the experimenter to master much language knowledge, thus saving time and
effort. However, this type of method requires a lot of energy to design features. The effect
of the model depends on the designed features. With deep learning modeling, the feature
extraction problem in traditional machine learning can be addressed.

2.3. Deep-Learning-Based Clinical Named Entity Recognition

Recently, we have witnessed the great success of deep learning in the field of NLP, such
as NER and event extraction tasks. Commonly used network models include Convolutional
Neural Networks (CNN) [22], Recurrent Neural Networks (RNN) [23], and LSTM. Ma
et al. [24] proposed the Bi-directional LSTM-CNNs-CRF model, character-level representa-
tions are extracted using CNN, Bi-directional LSTM (BiLSTM) is responsible for modeling
the contextual information of each word. Xu et al. [25] combined bidirectional LSTM and
CRF based, BiLSTM-CRF model can learn the information features of a given dataset and
achieved a score of 0.8022 at NCBI, outperforming many widely used baseline methods.
Yin et al. [26] used convolutional neural nets for Chinese character radical feature extraction
and captured the correlation between characters using self-attentiveness. Kong et al. [27]
proposed a Chinese medical named entity recognition based on a multi-layer CNN and
attention mechanism, constructing a multi-layer CNN to extract short-term and long-term
memories and using an attention mechanism to capture global information. However, the
above deep neural network-based CNER methods cannot model the ambiguity of Chinese.

The BERT-BiLSTM-CRF model was proposed by Jiang et al. [28] to be applied to
CNER. The semantic representation of words was enhanced with a BERT pre-trained
language model, and the BiLSTM was to learn contextual information. Qin et al. [29]
proposed a BERT-BiGRU-CRF model in the field of Chinese electronic medical records,
which uses BERT to convert the electronic medical record text into low-dimensional vectors
and BiGRU to obtain contextual features. Wu et al. [30] used a bi-directional LSTM model
to learn a medical entity’s partial head information using Roberta to learn medical features.
Wang et al. [31] used information from medical encyclopedias as additional information
to enhance the recognition of Chinese electronic medical record entities. However, these
models do not fully consider the characteristics of medical domain data, and it is not very
effective in medical entity extraction.

2.4. Research Status of Word Vector Representation Methods

If you want to reflect a word in a text and perform mathematical calculations, it must
be done through word embedding. The bag-of-words model simply represents words
without any semantic features. As the number of words increases, so does the dimension.
Researchers propose a way to solve this problem using a pre-trained language model for
word representation. Pre-training refers to obtaining a training model independent of
subsequent tasks from a large-scale corpus using self-supervised learning. The model
can be transferred to other tasks, thereby reducing the training burden of subsequent
tasks. The Word2Vec model was proposed by Mikolov et al. to obtain vectors. The GloVe
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algorithm was proposed by Pennington et al. [32]. In recent years, pre-trained models
have received increasing attention. Since this type of model is a context-independent word
vector trained by static pre-training technology, it cannot accurately model the polysemy of
a word. Therefore, Peters et al. [33] proposed the ElMo algorithm. The bidirectional LSTM
network structure was used for context encoding, which could effectively capture context
information.

2.4.1. Models for BERT and Its Variants

Devlin et al. [34] proposed Bidirectional Encoder (BERT). The emergence of Bert
opened a new era of research in the field of NLP. Then some improved pre-training mod-
els based on BERT, mainly including ERNIE [35], BERT-WWM [36], RoBerta [37], and
XLNet [38]. The ERNIE model is pre-trained using massive corpora in multiple fields,
including encyclopedias, news, forums, etc. BERT-WWM’s improvement over BERT is to
replace a complete word with a Mask label instead of a subword. The RoBerta model uses
a dynamic mask mechanism for pre-training, cancels the NSP task, and expands the batch
size. As an auto-regressive model, the XLNet model can expand the language model and
increase the prediction of bidirectional words, the above predicting the next word and the
following predicting the previous words.

2.4.2. Research on Chinese Characters

The structure of Chinese characters is different from that of English. Chinese characters
are pictographs, and their glyphs also contain rich meanings. Therefore, many scholars have
carried out characterization studies on the glyph features of Chinese characters. Sun [39]
proposed to learn the radical features of Chinese. Wang et al. [40] proposed a Chinese
character root and stroke-enhanced embedding method for learning Chinese character
roots from the internal information of semantics and form. Wei [41] proposed a visual
embedding method for semantic association among visual words, segmented the glyph,
spliced the average embedding vectors corresponding to each sub-region, and converted it
into a fixed-length vector for keyword detection. Su [42] used convolutional autoencoders
to learn glyph features from images of traditional Chinese characters and introduced glyph
features during training using the corpus. Meng [6] proposed the Glyce model. It tried
to extract the semantics of Chinese characters from various ancient and modern Chinese
characters and various writing styles, and the performance was improved.

These are the characteristics of Chinese, which improve CNER tasks. However, the cur-
rent mainstream CNER methods cannot integrate the pre-trained model with the Chinese
glyph information.

3. Proposed Method

In the NER task, the character sequence of the input text is represented by X = (x1, x2, . . . , xn).
The labels of the input text are represented by Y = (y1, y2, . . . , yn). The goal of a NER
system is to predict the correct sequence Y of labels for the text given the known sequence
of characters X of the text. The RG-FLAT-CRF model proposed in this chapter consists of
three parts; the embedding layer, the encoding layer, and the decoding layer. The overall
structure is shown in Figure 1.

The model first matches the latent words related to the character in the input text and
splices the character information and words information into the embedding layer. The
embedding layer consists of three parts, and the character vector is spliced after processing
by RoBerta, Glyce, and Word2vec. The word vector is obtained using Word2vec, head
and tail position encoding are constructed for each character and word, and the relative
position encoding is calculated. The concatenation of word vectors and the corresponding
position encoding are input into the encoding layer, consisting of a Transformer neural
network that captures deep features and encodes the input sequence. Finally, the output of
the encoding layer is input to the decoding layer, which predicts the final label sequence.
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This study uses NER to perform entity recognition on Chinese EMR. Specific steps are
as follows:

(1) Electronic medical record data preprocessing, that is, the original electronic medical
record text data set is processed, and the electronic medical record text set is repre-
sented as J = (j1, j2, . . . , jn), where the i-th electronic medical record text is represented
as ji. The predefined entity category C = (c1, c2, . . . , cm), is divided and annotated
according to the character level, and the characters and predefined categories are
separated by spaces when annotating.

(2) Establish a Chinese EMR text training dataset.
(3) Model training, that is, training the RGT-CRF model. Take the Chinese EMR test text

set Jtest = (j1, j2, . . . , jN) as input and take the entity and its corresponding category
pair as output:

{
〈m1, c1〉, 〈m2, c2〉, . . . ,

〈
mp, cp

〉
. The entity mi represents the entity

that appears in the document, and bi and ei represent the start and end positions of
mi, respectively. There is no need to overlap between entities; that is, ei < bi + 1. Cmi

represents the predefined category of entity mi, calculates the F1 score according to
the precision and recall rate, and uses the F1 score as the comprehensive evaluation
index of the model.

3.1. Embedding Layer

The embedding layer consists of three parts: RoBerta layer, Glyce layer, and Word2vec
layer:

(1) RoBerta layer: the model adopts the better pre-training model RoBerta to capture
the characteristics of medical text and converts each word of medical text into a
low-dimensional vector form through RoBerta.

(2) Glyce layer: scan each word in the sentence to obtain the glyph vector corresponding
to each word, and enhance the representation of the word.

(3) Word2vec layer: Using Word2vec, the vector representation of each word in the
medical text and the vector representation of the latent words can be obtained to
enrich the semantic representation.

The character vectors processed by RoBerta, Glyce, and Word2vec are spliced to obtain
multi-feature word vectors, and then the character vectors and word vectors processed by
Word2vec are spliced together.
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3.1.1. RoBerta

Pretrained language models are often used in NER tasks to generate richer semantic
representations. BERT and its variant RoBerta are widely used in research. We use RoBerta
for text encoding instead of BERT. Compared with BERT, the model structure of RoBerta has
not changed. They are all composed of 12 stacked transformers. Each layer has a hidden
state of 768 dimensions. Each Transformer uses a 12-head self-attention mechanism. The
only thing that has changed is the pre-training method. Dynamic masks and text encoding
are adopted to remove the NSP task and use more data to train the model.

The vector is obtained through the RoBerta. The RoBerta structure is shown in Figure 2.
The input text is Z = {Z1, Z2, . . . , Zx}. First, the sequence is vectorized. This part consists
of token embedding, clause embedding, and position embedding. These three embedding
layers are essentially equivalent to the static embedding layers, and the table lookup is
performed by the embedding matrix. For the x-th token in the processed token sequence,
the vector calculation is as follows:

ex = Wt(Etx ) + Ws(Esx ) + Wp(Ex) (1)

where Wt, Ws, Wp are the token embedding matrix, the clause embedding, and the position
matrix.
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Token Embeddings represent the Embedding vector of each word. Segment Em-
beddings are used to distinguish different sentences before and after punctuation marks.
Position Embeddings represent the embeddings of a word’s position. The input feature
of RoBerta is the sum of the above 3 embeddings. “[CLS]” is used as the starting symbol
of the input, indicating that the feature can be used in the classification model. “[SEP]”
indicates the clause symbol, which is used to cut off the clauses in the sentence.

The obtained vector is input into the stacked Transformer to extract features. The final
output is the result of encoding the input sentence text. Finally, we obtained the sentence
representation vector with the dependency information among words and words in the
sentence text. The calculation is as follows:

H = Multrans(E) (2)

where Multrans(.) represents the stacked Transformer, outputting the text encoding of the
entire sentence through the last layer H, which can be expressed as H = h0, h1, . . . , hx. Here
hx is the text representation vector to the xth token.

3.1.2. Glyce

Chinese characters are pictographs, and most Chinese characters are evolved from
graphics. Chinese characters contain rich semantic information, especially in the medical
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field. Most of the words for diseases have the same parts. Therefore, we believe that adding
glyph information to word vectors can enhance the representation of characters.

Glyce used different versions of the writing method, as well as different writing to
enhance the representation of the characters.

Glyce is different from traditional CNN. There are about 100,000 Chinese characters,
but only a few thousand are commonly used. Compared with classification on the ImageNet
dataset. There’re few training examples for Chinese characters. Compared with the size
of Imagenet images, Chinese images are usually smaller, with a size of 12 × 12. Thus
according to the Chinese writing habits, a 2× 2 Tianzi lattice structure is used. As shown in
Figure 3, this structure can reflect the glyph information of Chinese, including components
such as radicals, which is suitable for the extraction of glyph information.
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Figure 3. Schematic diagram of the Tianzi lattice.

The structure of Glyce Tianzi lattice-CNN is shown in Figure 4. The processing process
is shown in Figure 5. To capture lower-level graph features, the input image approximation
firstly passes through a convolutional layer with kernel size 5. In addition, the convolutional
layer has to increase the number of feature channels to 1024. Then we apply a max-pooling
layer with a pooling kernel of 4 × 4 to perform feature downsampling. After this, the
resolution is reduced from 8 × 8 to 2 × 2. This 2 × 2 Tianzi lattice structure shows the
glyph features of Chinese characters, and finally, we apply the group convolution operation
to map the Tianzi lattice to the final output.
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For the input text Z = {Z1, Z2, . . . , Zx}, the glyph vector obtained by Glyce is
EG = (eG0, eG1, . . . , eGx) as shown in Figure 6.
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3.1.3. Word2vec

We use Word2vec to get word vectors, a typical representative of distributed repre-
sentation. Compared with one-hot, Word2vec takes into account the relationships among
words. In addition, Word2vec also optimizes the training efficiency of the model, so it is
used more frequently.

3.2. Position Encoder

Chinese NER tasks are often considered sequence labeling tasks. By calculating
the probability of each character corresponding to each entity type label, The label with
the highest probability is used as the final identification result. There are usually two
vectorization methods to vectorize Chinese characters into the model calculation: methods
based on word vectors and methods based on character vectors.

The first task of the word vector-based model is to segment the text into the form of
words. The improvement effect of word vectors on entities is significant. The word contains
more semantic information, but if there is a false classification, it will affect the results of
NER.

For instance, in Figure 7, this sentence can be divided into ‘济南人 (Jinan People)’, ‘和
(and)’, ‘山庄 (Mountain Villa)’, and can also be divided into ‘济南 (Jinan People)’, ‘人和山
庄 (Renhe Mountain Villa)’. These two-word segmentation methods have a great impact
on recognition.
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Using character vector-based models avoids word segmentation error information but
lacks lexical information. For example, ‘感冒 (cold)’, separate the word ‘感 (feel)’ and ‘冒
(emit)’ represent different semantic information. ‘感 (feel)’ means feeling, and ‘冒 (emit)’
means to penetrate outward or rise upward. It is difficult to express the information of
the word ‘感冒 (cold)’ in medicine after ‘感 (feel)’ and ‘冒 (emit)’ are separated, which is
especially obvious in the medical field.

To address the above problems, we adopted the FLAT-lattice structure, shown in
Figure 8. This structure uses both character vectors and word vectors. Based on character
vectors, the latent vocabulary of each character is matched, and the word vectors are added
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to the model. This method utilizes the semantic relationship of words and avoids the
phenomenon of word segmentation errors.
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After using the dictionary to obtain lattice information from the string, it is flattened,
and the structure is shown in Figure 8.

These flat lattices can also be defined as spans. A span comprises a token, a head,
and a tail. A token is a word or character, and the head represents the starting position of
the token in the original sequence, and the tail represents the ending position of the token
in the original sequence. For characters, the head and tail are the same. For the matched
words, head indicates the start position of the word in the sequence, and tail indicates the
end position of the word in the sequence. The flat lattice can preserve the original structure
of the lattice and, at the same time, preserve the word order information of the original
sentence.

According to the Flat-lattice structure, there are three interrelationships, intersection,
involvement, and separation. We use relative position encoding to encode the positional
relationship among each span. Relative position encoding does not directly model the
interaction relationship but obtains a dense vector by computing a set of head and tail
changes. Not only the interrelationships among spans can be represented, but more detailed
sequence relationships can be shown, such as the distance among words and characters. Let
tailx and tailx, heady and taily denote the head and tail positions of sx and sy, respectively.
Four kinds of relative distances can be used to represent the relative relationship between
sx and sy. Their calculation formulas are as follows:

rhh
xy = headx − heady (3)

rht
xy = headx − taily (4)

rth
xy = tailx − heady (5)

rtt
xy = tailx − taily (6)

where rhh
xy stands for the distance from the head of sx to the head of sy, rht

xy is the distance
from the head of sx to the tail of sy, rth

xy represents the distance from the tail of sx to the
head of sy, rtt

xy is the distance from the tail of sx to the tail of sy. The final relative position
encoding is a nonlinear transformation of the four distances, which can be calculated like:

Lxy = ReLU
(

Wl

(
Prhh

xy

⊕
Prht

xy

⊕
Prth

xy

⊕
Prtt

xy

))
(7)

among them, Wl is a learnable parameter, ⊕ represents the connection operator, and the
calculation method of Pr refers to the calculation method of the transformer. The calculation
is as shown in the equation:

P2k
r = sin

r

1000
2k

dmodel

(8)

P2k+1
r = cos

r

1000
2k

dmodel

(9)
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3.3. Encoder

The encoding layer consists of Transformers, which aim to extract semantic and
temporal features from the context automatically.

Before the transformer appeared, most NER used BiLSTM as the model’s encoder.
However, BiLSTM has some problems: (1) The sequential nature of the recurrent neural
network represented by LSTM hinders the parallelization of training samples; (2) The
problem of long-term dependence cannot be completely solved.

Transformer avoids recurrent model structure and uses attention mechanism for
modeling. The structure is shown in Figure 9. We used its encoding part, which consists
of two parts, a feedforward network and a multi-head self-attention layer, both of which
have a residual network. Multi-head self-attention consists of stacked self-attentions, all
accompanied by a “layer normalization” step.
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When the encoder encodes this word, the self-attention mechanism can take other
words in this sentence into consideration.

First, we send the vector output of the embedding layer and the corresponding relative
position encoding to the encoding layer, using the encoding layer of the transformer. A
Query vector, a Key vector, and a Value vector are created for each word by this self-
attention mechanism. They are obtained through the vector multiplication by the three
matrices we trained. Their calculation formula is as follows:

Q = Linear(X) = XWq (10)

K = Linear(X) = XWk (11)

V = Linear(X) = XWk (12)

The second step is to calculate the score, which will make the gradient more stable,
and then it is divided by

√
dhead. The traditional Transformer model can capture contextual

semantics by adding position information to the input, but there is a problem of sentence
errors in the face of text segmentation input. Therefore, extra position information is
added to the Transformer structure of the Transformer-XL model, and the absolute vector is
converted into a relative vector. Solve the modeling of long text, capture ultra-long distance
dependencies, and calculate the attention score vector among input vectors by the formula:

A∗x,y =
Wᵀ

q Eᵀ
sx EsyWk,E + Wᵀ

q Eᵀ
sx LxyWk,R + uᵀEsx Wk,E + vᵀLxyWk,R√

dhead
(13)

where Wq, Wk,E, Wk,R, u, v are learnable parameters,Esx , Esy are the embedded representa-
tions of sx and sy.
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Then pass the result through softmax, which normalizes the scores for all words. For
the weighted value vector, the output of the self-attention layer at that position is obtained,
and the following is its formula:

Attention(A, V) = so f tmax(A)V (14)

The multi-head attention mechanism consists of multiple self-attentions. Define multi-
ple groups of different Q, K, and V, and let them focus on different contexts, respectively.
The process of calculating Q, K, V is still the same, except that the matrix of linear transfor-
mation has changed from one set of

(
WQ, WK, WK

)
to multiple sets of

(
WQ, WK, WK

)
.

For the input matrix X, each group of Q, K, V can get an output matrix Z. Concatenate
the different matrices together and multiply with an additional matrix Wo.

The multi-head attention mechanism enhances the attention layer’s performance in
two aspects:

(1) It empowers the model with a closer focus on different locations.
(2) Multiple “representation subspaces” are given to the attention layer, and multi-head

attention allows us to possess multiple sets of Q, K, and V matrices. After training, each
group projects the output into a different representation subspace. The calculation
formula is as (15):

MHatt(A, V) = Concat(head1, . . . , headh)Wo (15)

The resulting output is subjected to layer normalization and residual connections. The
specific formula is as follows:

XMHatt = XMHatt + X (16)

XMHatt = LayerNorm(XMHatt) (17)

After the operation of Feedforward, the formulas are shown in equations:

Xhidden = Linear(ReLu(Linear(Xattention))) (18)

Xhidden = Xattention + Xhidden (19)

Xhidden = LayerNorm(Xhidden) (20)

3.4. Decoder

The decoding layer consists of CRFs, whose purpose is to resolve the correlation
between the output labels to obtain the globally optimal annotation sequence for the text.

For the input sequence X = (x1, x2, . . . , xn), its predicted label is Y = (y1, y2, . . . , yn).
The score matrix P output by the encoding layer is n×k in size, n is the length of the input
sequence, and q is the different types of labels defined. Pi,yi represents the score of the ith
character in the sentence on the yi label. A state transition score matrix A represents the
probability score of transition among different labels. Ayi ,yi−1 represents the transition score
from label yi to label yi+1. y0, yn+1 represent the start tag and the end tag, respectively.
Under the condition of the given sequence, the score S(X, y) of the corresponding sequence
tag is obtained. The functions can be described as follows:

SX, y =
n

∑
i=0

Ayi ,yi+1 +
n

∑
i=1

Pi,yi (21)

The predicted probability is P(y|X) . The calculation formula is shown in (22):

P(y|X) =
eS(X,y)

∑y′ ∈YX
eS(X,y′ )

(22)
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The loss function, as shown in the formula:

− log(P(y|X)) = log ∑
y′ ∈YX

eS(X,y′ ) − S(X, y) (23)

In the last, we adopted the Viterbi algorithm to get the optimal path, that is, a more
reasonable predicted label of the input sequence. The calculation formula is as follows (24):

y∗ = argy′ ∈YX
max S(X, y′ ) (24)

3.5. Time Complexity Analysis

We discuss the time complexity of the model.

O

(
n2·d + n·d2 +

N

∑
l=1

M2
l ·K

2
l ·Cl−1·Cl + n·k2

)

where n is the sequence length and d is the dimension of embedding. n is the number of
convolutional kernels the neural network has; l is the lth convolutional layer of the neural
network; C is the number of output channels of the lth convolutional layer of the neural
network; and for the lth convolutional layer, the number of input channels Cn is the number
of output channels of the l-1st convolutional layer. k is the number of labels as

4. Experiment Design

This section presents the following aspects: the dataset used for the experiments, the
labeling rules, the evaluation metrics, and an introduction to the comparative experimental
model.

4.1. Dataset

Our proposed RG-FLAT-CRF model is validated with real datasets of three clinical
NER tasks.

These three datasets are all from the CCKS competition dataset. The following is the
introduction to these datasets.

CCKS-2017 data is adopted for the experiment. Since we did not participate in the com-
petition, we only found some open-source data. The CCKS-CNER2017 dataset. Provides
300 electronic clinical record texts with 29,865 annotated instances (7816 sentences). It is
annotated with five entity types: symptoms and signs, diseases and diagnosis, body parts,
examinations and tests, and treatment. Table 1 lists its detailed statistics. The proportion of
each part of the data is shown in Figure 11.

Table 1. Entity statistics of the three datasets.

Entity Type CCKS2017 CCKS2019 CCKS2020 Total

symptoms and signs 7831 - - 7831
diseases and diagnosis 721 5488 5628 11,837

body parts/anatomical parts 10,719 11,468 11,420 33,607
examinations and tests 9546 - - 9546

treatment 1048 - - 1048
examinations - 1302 1626 2928

surgery - 1182 1136 2318
tests - 1678 2081 3759

drugs - 2266 2814 5080
Total 29,865 23,384 24,705 77,954

CCKS-2019 contains 23,384 annotated instances (10,179 sentences). They are annotated
with six entity types, namely diseases and diagnosis, examinations, tests, surgery, drugs,
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and anatomical parts. The elaborated statistics are shown in Table 1. The proportion of
each part of the data is shown in Figure 10.
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CCKS-2020 contains 24,341 annotated instances (13,308 sentences) with six entity types:
diseases and diagnosis, examinations, tests, surgery, drugs, and anatomical parts. Table 1
shows the specific statistics. The proportion of each part of the data is shown in Figure 12.

Electronics 2022, 11, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 11. The proportion of medical entities on CCKS2019. 

CCKS-2020 contains 24,341 annotated instances (13,308 sentences) with six entity 
types: diseases and diagnosis, examinations, tests, surgery, drugs, and anatomical parts. 
Table 1 shows the specific statistics. The proportion of each part of the data is shown in 
Figure 12. 

 
Figure 12. The proportion of medical entities on CCKS2020. 

4.2. Labeling Rules 
We adopt the BOI rule, where the entity’s beginning is represented by B, I is the in-

terior, and O stands for the other categories. 
Annotation methods of five entity categories in CCKS2017: SS for symptoms and 

signs, DD for disease and diagnosis, AP for body parts, EE for inspection and examination, 
TM for treatment. 

Annotation methods of six entity types in CCKS2019 and 2020: DD for disease and 
diagnosis, GEXA for examination, AP for the anatomical site, SU for surgery, EEXA for 
the test, and DR for the drug. 

  

23%

6%

49%

5%
7%

10%

diseases and
diagnosis

 examinations

anatomical parts

surgery

 tests

drugs

23%

5%

47%

5%

8%

12%

diseases and
diagnosis

 examinations

anatomical parts

surgery

 tests

drugs

Figure 12. The proportion of medical entities on CCKS2020.

4.2. Labeling Rules

We adopt the BOI rule, where the entity’s beginning is represented by B, I is the interior,
and O stands for the other categories.

Annotation methods of five entity categories in CCKS2017: SS for symptoms and signs,
DD for disease and diagnosis, AP for body parts, EE for inspection and examination, TM
for treatment.

Annotation methods of six entity types in CCKS2019 and 2020: DD for disease and
diagnosis, GEXA for examination, AP for the anatomical site, SU for surgery, EEXA for the
test, and DR for the drug.
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4.3. Evaluation Indicators

This paper uses the most common evaluation metrics in the NER field Precision, Recall,
and F1 scores are used as the evaluation indicators of the model to evaluate the performance
of the evaluation model comprehensively. TP is the number of positive samples predicted
as positive samples, FN is the number of positive samples predicted as negative samples,
and FP is the number of negative samples predicted as positive samples. They are widely
used to evaluate classification and sequence annotation tasks [43].

Precision: The ratio of the number of recognized entities to the number of recognized
entities is recorded as Precision, abbreviated as P. The calculation formula is Equation (25).

Recall: The percentage of correctly identified entities out of the number of entities in
the sample. The calculation formula is Equation (26).

Both take values between 0 and 1, and the closer the value is to 1, the higher the
precision or recall. Precision and recall are sometimes contradictory; a weighted harmonic
mean that needs to be considered, and the F1-score is a combination of the two. The
higher the F1 score, the more robust the classification model is. The calculation formula is
Equation (27).

Precision =
TP

TP + FP
(25)

Recall =
TP

TP + FN
(26)

F1-score =
2× Precision× Recall

Recall + Precision
(27)

4.4. Experimental Parameters

The parameters of the RG-FLAT-CRF were tuned by Adam, and a hierarchical lr
mechanism introduced. For the pre-trained RoBerta model, a learning rate of 3 × 10−5 is
used, and for the other parts a learning rate of 2 × 10−4 is used. For the RG-FLAT-CRF
model, the batch size used is 12. Details are shown in Table 2.

Table 2. Parameter settings.

Parameter Value

lattice embedding 50

bigram embedding 50

glyce embedding 768

linear projection dim 768

dropout 0.1

Transformer head dim 20

Transformer head num 8

5. Results and Analysis

This part is divided into two parts: performance comparison with existing models,
and ablation research.

5.1. Performance Comparison with Existing Models

To verify the effect of the RG-FLAT-CRF-model, the RGT-CRF model is compared to
the existing state-of-the-art models. Evaluated on CCKS2017, CCKS2019, and CCKS2020
datasets, respectively. The comparison model is as follows:

(1) RoBerta: Liu et al. [37] improved the BERT model and proposed the RoBerta model.
RoBerta performed better than BERT on NLP downstream tasks, and used RoBerta to
enhance semantic representation and complete NER tasks.
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(2) RoBerta-BiLSTM-CRF: Xu et al. [25] combined the bi-directional LSTM and CRF,
which has become a classic model, and combined the RoBerta model with BiLSTM-
CRF on this basis. Use RoBerta trained vectors and then use the BiLSTM-CRF model
to extract entities.

(3) RoBerta-BiGRU-CRF: Qin et al. [29] proposed a BERT-BiGRU-CRF model in the field
of Chinese electronic medical records, where the pre-trained model was replaced with
an improved RoBerta.

(4) Ra-RC: Wu et al. [30] used RoBerta to obtain medical semantic features while using a
bidirectional long short-term memory network to learn the radical features of Chinese
characters.

(5) AR-CCNER: Yin et al. [26] used a convolutional neural network to extract radical
features while using a self-attention mechanism to capture the dependencies between
characters.

(6) ACNN: Kong et al. [27] used a multi-layer CNN structure to capture short-term and
long-term contextual relations. CNN can also solve the problem that LSTM is difficult
to exploit GPU parallelism, and the model uses an attention mechanism that can
obtain global information.

(7) BE-Bi-CRF-JN: Wang et al. [31] cite additional medical knowledge information to
correlate the original text in the named entity recognition task with its encyclopedic
knowledge and enhance the ability of entity recognition by building a connection
network.

Tables 3–5 show the precision, recall, and F1 results detailing various medical entities
and all medical entities. From the comparison results of Table 6, the performance of the
RGT-CRF model proposed in this chapter has achieved the best results on the three datasets,
and the improvement on CCKS2017 is about 2~5%. The improvement is about 0.3~8% on
CCKS2019 and about 3~9% on CCKS2020.

Table 3. Results of different models on CCKS2017.

Model Evaluation
Index

Entity Type
Comprehensive

ValueSymptoms
and Signs

Diseases and
Diagnosis Body Parts Examinations

and Tests Treatment

RoBerta
P 96.95 74.21 88.09 95.59 76.39 91.99
R 98.05 82.52 88.44 96.36 78.95 93.01
F1 97.49 78.14 88.26 95.976 77.64 92.49

RoBerta-
BiGRU-CRF

P 97.6 82.97 88.38 95.75 75.81 92.56
R 97.99 81.82 88.69 96.58 77.99 93.09
F1 97.79 82.39 88.53 96.16 76.88 92.82

RoBerta-
BiLSTM-CRF

P 97.02 79.22 88.39 95.59 80.66 92.41
R 98.39 85.31 90.65 96.53 81.81 94.11
F1 97.7 82.15 89.5 96.05 81.23 93.25

Ra-RC
P 95 89.44 89.29 95.73 61.25 94.14
R 98.11 89.17 90.79 97 69.01 92.39
F1 96.53 89.31 90.03 96.36 64.9 93.26

ACNN
P 93.2 79.67 87.81 94.25 74.26 90.19
R 97.92 79.39 84.41 95.9 75.7 90.78
F1 95.5 79.52 86.08 95.07 74.97 90.49

AR-CCNER
P 96.53 74.07 89.38 94.78 82.91 92.27
R 97.83 73.17 90.41 97.22 82.91 93.73
F1 97.18 73.62 89.89 95.98 82.91 93

RGT-CRF
P 98.48 82.79 91.72 98.58 81.37 95.47
R 98.66 85.31 90.16 97.2 82.99 95.76
F1 98.56 84.03 90.93 97.88 82.17 95.61
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Table 4. Results of different models on CCKS2019.

Model Evaluation Index

Entity Type
Comprehensive

ValueDiseases and
Diagnosis Examinations Anatomical

Parts Surgery Tests Drugs

RoBerta
P 74.81 83.23 82.62 80.38 71.71 81.74 79.85
R 75.27 83.48 84.14 78.4 63.79 82.08 79.85
F1 75.03 83.35 83.37 79.37 67.51 81.9 79.85

RoBerta-
BiGRU-CRF

P 67.15 65.47 82.94 76.1 65.58 64.62 72.95
R 77.17 84.64 82.78 74.69 67.93 80.21 79.78
F1 71.81 73.83 82.85 75.38 66.73 71.57 76.21

RoBerta-
BiLSTM-

CRF

P 75.76 84.97 83.06 78.26 69.73 77.49 79.7
R 79.22 85.22 83.66 77.78 66.72 81.04 80.75
F1 77.45 85.09 83.35 78.01 68.19 79.22 80.22

Ra-RC
P 78.74 81.23 82.67 79.61 74.28 93.27 83.31
R 79 85.71 85.23 77.56 69.96 92.27 82.44
F1 78.87 83.41 83.93 78.57 72.06 92.77 82.87

ACNN
P 75.84 85.37 88.2 76.27 68.23 92.34 83.07
R 87.3 90.52 89.37 83.33 71.69 91.96 87.29
F1 81.17 87.87 88.78 79.65 69.92 92.15 85.13

BE-Bi-CRF-
JN

P 83.79 84.14 82.02 83.82 82.4 87.43 83.16
R 83.66 89.71 87.55 90.48 89.8 85.11 86.67
F1 83.73 86.83 84.7 87.02 85.94 86.25 84.88

RGT-CRF
P 78.3 88.84 85.58 84.23 78.5 88.44 85.36
R 80.18 88.09 86.98 80.16 72.62 85.04 84.99
F1 79.22 88.46 86.27 82.14 75.44 86.7 85.17

Table 5. Results of different models on CCKS2020.

Model Evaluation Index

Entity Type
Comprehensive

ValueDiseases and
Diagnosis Examinations Anatomical

Parts Surgery Tests Drugs

RoBerta
P 85.28 78.05 90.03 88.03 69.28 87.77 86.68
R 86.76 95.17 88.23 93.21 86.18 87.49 88.2
F1 86.01 85.76 89.12 90.54 76.81 87.62 87.43

RoBerta-
BiGRU-CRF

P 69.23 70.08 88.5 70.66 67.96 87.26 76.74
R 84.65 91.5 89.4 91.4 86.59 87.92 88.09
F1 76.16 79.37 88.94 79.7 76.15 87.58 82.02

RoBerta-
BiLSTM-

CRF

P 84.8 78.3 90.27 90.04 72.54 87.93 87.05
R 84.8 92.56 88.57 94.12 83.74 87.27 87.67
F1 84.8 84.83 89.41 92.03 77.73 87.59 87.35

BE-Bi-CRF-
JN

P 81.88 81.25 94.64 83.7 76.82 94.64 82.52
R 81.32 85.71 92.44 86.52 87.88 92.44 85.05
F1 81.6 83.42 93.53 85.08 81.98 93.53 83.76

RGT-CRF
P 88.04 84.06 92.16 91.38 81.08 90.73 90.85
R 87.33 94.05 91.81 92.4 88.96 90.35 91.57
F1 87.68 88.77 91.98 91.88 84.83 90.53 91.2

The effect of ACNN is unstable in CCKS2017 and CCKS2019. Compared with other
models, ACNN does not use BERT or an improved model based on BERT to enhance
semantic representation, but multi-layer CNN and attention mechanisms play a certain
positive role. From the three datasets, most of the models use BERT or an improved pre-
training model based on BERT to enhance semantic representation and have achieved good
experimental results. RoBerta-BiLSTM-CRF performs better than RoBerta-BiGRU-CRF on
the three datasets. Although BiGRU has a simpler structure than BiLSTM, it is clear that
BiLSTM is more suitable for Chinese electronic medical record NER. At the same time,
these two models perform moderately well on the three datasets, as the feature extraction
networks of the two models are variations of recurrent neural networks and cannot solve
the long-range dependency problem. AR-CCNER and Ra-RC performed better on the
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CCKS2017 and CCKS2019 datasets overall. Although AR-CCNER did not use a BERT-based
pre-training model to enhance semantic representation, both AR-CCNER and Ra-RC were
based on the characteristics of Chinese. BiLSTM and CNN are used to extract and use
radical features, respectively, which utilize the glyph information of Chinese characters to a
certain extent, but do not consider the information of learning the overall glyph structure of
Chinese characters, and the model also lacks medical vocabulary information. BE-Bi-CRF-
JN also achieved good results, proving that the use of external corpus in Chinese electronic
medical records NER is effective. The above analysis shows that the RGT-CRF model is
more suitable for Chinese electronic medical record named entity recognition electronic
medical record recognition. This is mainly because the model adds glyph information
while introducing lexical information based on words.

Table 6. Comparison of the results of different F1 of each model on different datasets.

Model
Dataset (F1)

CCKS2017 CCKS2019 CCKS2020

RoBerta 92.49 79.85 87.43
RoBerta-BiGRU-CRF 92.82 76.21 82.02
RoBerta-BiLSTM-CRF 93.25 80.22 87.35

Ra-RC 93.26 82.87 -
ACNN 90.49 85.13 -

AR-CCNER 93 - -
BE-Bi-CRF-JN - 84.88 83.76

RGT-CRF 95.61 85.17 91.2

From the perspective of entity type, the overall recognition effect of different medical
entities is compared longitudinally. From Figures 13–15, it can be seen that the recognition
results of different models on CCKS2017 show disease and diagnosis. Poor, because there
are many long entities like ‘右股骨颈骨折髋关节股骨头表面置换术 (Right femoral neck
fracture hip femoral head resurfacing)’ in the two types of entities in the CCKS2017 dataset,
and the boundaries of each entity cannot be clearly identified. The recognition results of
different models on CCKS2019 and CCKS2020 show disease and diagnosis. The recognition
results of these two types of entities are poor because the two types of entities in the
CCKS2019 dataset and CCKS2020 dataset are similar to ‘CA125′, ‘CEA’. Many entities
coexist with English and numbers, such as ‘CA199′, which will also cause the model to fail
to identify the boundaries of each entity.
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Figure 13. F1 values of different entities on CCKS2017 for different models.
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Figure 15. F1 values of different entities on CCKS2020 for different models.

To make the comparative results more convincing, a further hypothesis test was
performed by calculating p-values using the t-test method, and p-values smaller than the
significance level (usually 0.05) were considered statistically significant. Table 7 shows the
statistical comparison of the proposed method with other methods. Most of the results are
significant.

Table 7. Comparison results with different models on different datasets.

Model CCKS2017 CCKS2019 CCKS2020

RoBera 0.0217 0.0019 0.0424
RoBerta-BiGRU-CRF 0.0382 0.0043 0.0049
RoBerta-BiLSTM-CRF 0.0029 0.0055 0.2025

5.2. Ablation Research

We design a set of ablation experiments to verify the contribution of each part to the
model, where RGT-CRF-NG indicates that the model does not add glyph information.
RGT-CRF-NF shows that the model does not add lexical information and its corresponding
positional encoding. Finally, it is compared with RoBerta-BiLSTM-CRF and RGT-CRF on
three datasets, and the results are shown in Table 8.
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Table 8. Performance of different variants on three datasets.

Model
Dataset (F1)

CCKS2017 CCKS2019 CCKS2020

RoBerta-BiLSTM-CRF 93.25 80.22 87.35
RGT-CRF-NG 93.87 82.65 88.13
RGT-CRF-NF 94.92 84.03 89.83

RGT-CRF 95.61 85.17 91.2

The experimental results of RGT-CRF-NF and RGT-CRF-NG are better than the
RoBerta-BiLSTM-CRF model regarding the three datasets, indicating that the glyph infor-
mation and the use of lattice structure to add lexical information are effective for Chinese
electronic medical record named entity recognition. The result of RGT-CRF-NG is slightly
worse than that of RGT-CRF-NF, indicating that adding medical glyph information to
the Chinese electronic medical record NER task is more effective than word information.
This comparison can also be found in the above experiments using glyph information.
Similarly, the final model with radical information is better than the model without radical
information. This is because many Chinese characters in medical entities have the same
glyph structure, so their meanings are also similar.

For example, ’疼 (pain) ’, ’痛 (pain)’, ’病 (sick)’, ’腹 (belly)’, ’腰 (waist)’, ’肝 (liver)’,
’脾 (spleen)’, ’呕 (vomit)’, ’吐 (threw up)’, ’咳 (cough)’, ’嗽 (cough)’, ’胰 (pancreatic)’, ’肠
(intestinal)’, ’肿 (swell)’, ’胀 (swell)’. And this is very common in medical entities.

6. Conclusions

In this paper, an RG-FLAT-CRF model is proposed for Chinese CNER, which can learn
the glyph features of medical fonts, and at the same time introduces word information to
enhance word boundaries, and finally achieves good performance on three datasets. The
RG-FLAT-CRF model obtains character vectors through RoBerta, Glyce, word2vec, and
word vectors through word2vec. The word information is fused using the Flat-lattice struc-
ture and then encoded by the transformer network. In line with the output of the encoding
layer, the label of each input character is predicted by the CRF layer. It addresses problems
like word segmentation errors and lack of lexical information, given the characteristics of
Chinese medical characters and the vector of multi-feature fusion. The final experimental
results demonstrate that our proposed model outperformed the baseline models.

Several issues require further research. At this stage, deep learning requires a large
amount of annotated data to train the model, as does our proposed model, but large-scale
annotated data in the Chinese electronic medical record domain requires medical experts
to annotate, which can be time-consuming. Therefore, our next research investigates how
to perform named entity recognition on medical record texts with sparse data.
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