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Abstract: The use of an inertial measurement unit (IMU) to measure the motion data of the upper limb
is a mature method, and the IMU has gradually become an important device for obtaining information
sources to control assistive prosthetic hands. However, the control method of the assistive prosthetic
hand based on the IMU often has problems with high delay. Therefore, this paper proposes a method
for predicting the action intentions of upper limbs based on a long short-term memory (LSTM) neural
network. First, the degree of correlation between palm movement and arm movement is compared,
and the Pearson correlation coefficient is calculated. The correlation coefficients are all greater than
0.6, indicating that there is a strong correlation between palm movement and arm movement. Then,
the motion state of the upper limb is divided into the acceleration state, deceleration state and rest
state. The rest state of the upper limb is used as a sign to control the assistive prosthetic hand. Using
the LSTM to identify the motion state of the upper limb, the accuracy rate is 99%. When predicting
the action intention of the upper limb based on the angular velocity of the shoulder and forearm,
the LSTM is used to predict the angular velocity of the palm, and the average prediction error of
palm motion is 1.5 rad/s. Finally, the feasibility of the method is verified through experiments, in the
form of holding an assistive prosthetic hand to imitate a disabled person wearing a prosthesis. The
assistive prosthetic hand is used to reproduce foot actions, and the average delay time of foot action
was 0.65 s, which was measured by using the method based on the LSTM neural network. However,
the average delay time of the manipulator control method based on threshold analysis is 1.35 s. Our
experiments show that the prediction method based on the LSTM can achieve low prediction error
and delay.

Keywords: action recognition of upper limbs; inertial measurement unit; motion intention prediction;
long short-term memory neural network; control of the assistive prosthetic hand

1. Introduction

The disabled are a special group in contemporary society. Physical defects have
brought many inconveniences to their lives. In order to make up for the missing upper
limbs of the handicapped and improve their self-care ability, upper limb prostheses are
used to replace part of the functions of the lost limbs [1,2]. For the control of upper limb
prostheses, predicting the user’s movement intention is as important as identifying the
type of action of the upper limb. Action recognition usually focuses on the complete action
performed by the upper limb. It is the result of doing the action, such as drinking water,
putting on shoes, and brushing teeth [3]. In contrast, intent prediction not only identifies
the types of actions performed by users, but also focuses on how to perform these actions.
It is the process from “what to do” to “how to do it” [4]. Intention prediction is not only
applied in the field of disability; it also plays an important role in the field of rehabilitation
and healthcare [5–7].

In the human body, information sources that can be used to control the upper limb
prosthesis mainly include electrophysiological signals and mechanical signals [8]. The IMU
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has become one of the main ways to measure mechanical signals. It can be used to measure
the acceleration, angle, and other dynamic information of limbs. With the increasing
perfection and popularization of wearable sensors, IMUs have developed widely in the
field of action recognition and intent prediction [9,10]. Fuan et al. used inertial sensors to
design a human action recognition system and achieved 95% accuracy [11]. Tong et al. put
inertial sensors on the hands of patients with Parkinson’s disease to capture the acceleration
of the wrist. In addition, the neural network model is used to identify hand tremors to
achieve symptom recognition [12].

The use of the IMU to control assistive prosthetic hands has become a hot research
topic. A key problem in controlling the assistive prosthetic hand is choosing an appro-
priate machine learning algorithm. In the face of large amount of data, machine learning
algorithms can improve the efficiency of recognition, to a certain extent. After learning
from a large amount of data, machine learning algorithms can identify and predict current
activities based on new observation data. Liu et al. have designed a motion prediction
system using the IMU. Based on the acceleration and angle data, a support vector machine
is used to classify motion patterns with an average accuracy of 94.25% [13]. Yeaser et al. has
proposed a classification method for predicting rollator user intent using the data collected
by the IMU, and the KNN classification algorithm achieved 92.9% accuracy [14]. Although
classifiers, such as SVM and KNN, can achieve a high action recognition rate, they do not
have the function of memorizing long historical information, and are unsuccessful in exper-
iments predicting human motion. Of course, there are some machine learning algorithms
that can achieve better data predictions. Altan et al. have developed a new hybrid wind
speed prediction model based on the LSTM network and the gray wolf optimizer decom-
position method. The resulting model can capture the nonlinear characteristics of wind
speed time series and has better predictive performance than a single prediction model, in
terms of accuracy [15]. In the financial market, in order to make very high-precision price
predictions for digital currencies, they have developed a new hybrid prediction model
based on the LSTM neural network, empirical wavelet transform decomposition, and the
cuckoo search algorithm. This hybrid model can capture digital, nonlinear properties of
monetary time series [16].

Generally, in addition to the requirement of high accuracy for controlling the assistive
prosthetic hand, the following requirements also need to be met to measure the quality
of the control effect: (1) low prediction delay; and (2) the achievement of a smooth and
continuous transition between different activities [17]. The essence of human activity data is
time series data. That is, subsequent data have a certain correlation with previous data [18].
Therefore, after training the neural network with a large amount of data, based on the
previous observation data, it is helpful to predict the change trend of the subsequent data,
in order to achieve a smooth transition between different activities. In order to meet the
requirement of low prediction delay, in the process of controlling the assistive prosthetic
hand, it is necessary to predict the motion of the upper limb according to the observation
data collected in real time. As time goes on, the volume of observational data is also
increasing. Some machine learning algorithms need to analyze a complete observation
sequence before making an action prediction, and the wide length of observation data will
increase the running time of the algorithm, resulting in a high control delay. Examples of
this are recurrent neural networks (RNN) and dynamic time warping algorithms. Although
these algorithms can achieve high recognition accuracy, they are useless for solving low-
latency problems [19,20].

In order to solve the problem of some algorithms not having the function to memorize
long historical information, this paper designs a prediction model of action intention. With
the memory function of the LSTM neural network, the LSTM is used to predict the motion
data of the upper limbs, so as to reduce the control delay of the manipulator. Therefore,
this paper aims to reduce the delay in controlling the assistive prosthetic hand, and a new
method for predicting the action intention of the upper limb is proposed. This method
can be used to predict the hand movement of the assistive prosthetic hand when the user



Electronics 2022, 11, 1320 3 of 15

completes a foot action. By predicting the angular velocity of the hand to judge the motion
of the upper limb, the delay of controlling the prosthetic hand can be reduced, to some
extent. This paper concerns healthy people performing necessary foot actions in daily
life, including putting on shoes, putting on socks, and tying shoe laces. The IMU is used
to collect the angular velocity data of the upper limb. Based on the motion data of the
healthy people’s upper limbs, the correlation between palm movement and arm movement
is analyzed while they perform foot movements. Based on the motion data of the arm, the
LSTM network is used to predict the motion of the palm to achieve the goal of reducing the
delay of controlling the manipulator. In addition, combined with the motion data of each
part of the upper limb, the LSTM network is used to identify the motion state of the upper
limb. Finally, based on the prediction results of the LSTM, the assistive prosthetic hand is
controlled to reproduce the foot actions.

Section 2 introduces the process of data acquisition and the correlation analysis of
the arm and the hand in detail. Section 3 describes the extraction method of the feature
parameters and the key methods in the long short-term memory neural network model.
Section 4 presents the experimental results in detail and discusses the findings. Finally,
conclusions are given in Section 5.

2. An Overview

Three sets of the IMU were used to acquire the angular velocity of the upper limb
during movement. The IMU was installed on the shoulder, forearm, and palm. Figure 1
shows the installation location of the sensors. The IMU collects data every 20 milliseconds,
and the frequency is 50 Hz. The accuracy of the sensor is 0.2 degrees. The intact upper
extremity of a healthy person usually includes the shoulder, forearm, and palm. The palm
can be seen as an extension of the upper arm, and the movements of the fingers play an
extremely important role in grasping objects.
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Figure 1. Sensor installation location.

The correlation between the movement of the arm and the palm of normal people was
studied while they completed the foot action. The angular velocity data of the three parts
of the upper limb was taken when performing the actions of putting on socks, putting on
shoes, and tying shoe laces. The Pearson correlation coefficient was calculated between the
arm data and the palm data, so as to measure the correlation between the arm and the palm.
Table 1 shows the Pearson correlation coefficient for the arm and the palm. It can be seen
from the table that for different action types, the correlation coefficients between the arm
and the palm are all greater than 0.6, indicating that the degree of correlation between the
movement of the arm and the movement of the palm is strongly correlated. Therefore, this
study uses a machine learning method to infer hand movements based on the movements
of the arms.
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Table 1. Pearson correlation coefficient for arm and palm.

Pearson Correlation Coefficient

Shoulder and Palm Forearm and Palm

Putting on socks 0.7455 0.6761
Putting on shoes 0.8319 0.7053
Tying shoe laces 0.8079 0.8669

In order to grasp objects steadily, a normal person will open or close the fingers when
the upper limb is at rest. It can be seen that finding the time when the upper limb is at
rest is the key to understanding the grasping intention of the upper limb and controlling
the assistive prosthetic hand. When the user has the intention of grasping, the arm will
move towards the target position under the driving of the limb. At this time, the switching
of upper limb of motion state is a direct manifestation of grasping intention. During the
movement of the upper limb towards the target position, the angular velocity of the upper
limb will become larger and larger. Before approaching the target position, the value of
the angular velocity will become smaller and smaller until it is close to 0. Through the
kinematic analysis of the upper limb, the motion states of the upper limb can be divided
into rest, acceleration, and deceleration. In the initial state, the motion state of the upper
limb is at rest by default. Figure 2 shows the switching flow of the upper limb state.
The acceleration state and the deceleration state can be switched with each other, but the
rest state and the acceleration state, or the rest state and the deceleration state, cannot be
switched with each other.
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The moment when the upper limb is at rest is used as a sign to control the assistive
prosthetic hand. In previous research, the motion state of the upper limb according to the
collected observation data was judged. When the motion state of the upper limb was at
rest, the assistive prosthetic hand was controlled. Since it is controlled after the motion
state of the upper limb is at rest, this will increase the delay of controlling the assistive
prosthetic hand. Therefore, according to the current observation data, the user’s motion
state is first identified, and then the subsequent motion state of the upper limb is predicted.
When the predicted result is at rest, the assistive prosthetic hand is controlled.

3. Implementation of Key Model and Methods

Based on the above correlation analysis, this paper uses a long short-term memory
neural network to predict the motion data of the palm. In this section, the extracted time
domain features are introduced in detail, as well as the design process of parameters when
using LMTN.
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3.1. Feature Extraction

Due to bias drift, geomagnetic interference, and other causes, the original data collected
by the inertial sensor is mixed with noise; as a result, this paper uses the moving average
filtering method to filter the original data. Extracting feature parameters is one of the
important ways to characterize sequence data. When analyzing data collected by inertial
sensors, the features that are often extracted are divided into three categories: time-domain
features, frequency-domain features, and time-frequency features [21]. Considering that the
sensor output is a set of time series data, this paper directly uses time domain features to
analyze the angular velocity data of the upper limb. The characteristic parameters include
the variance, difference, and maximum and minimum value of the angular velocity of each
part of the upper limb.

Variance can be used to measure the dispersion of a set of data. When analyzing the
angular velocity of the upper limb, the magnitude of the variance can represent the degree
of fluctuation of a set of data, thus representing the range of movement of the upper limb.
The equation for variance is shown in Equation (1).

VAR =

N
∑

i=1
(ωi − ω)2

N − 1
. (1)

Among them, ωi represents the angular velocity of the i-th sampling point of a certain
part of the upper limb, N represents the length of the signal window, and ω represents the
average value of this set of data.

The magnitude of angular acceleration can characterize the direction of motion. There-
fore, in a set of data, the difference between two adjacent angular velocity data is recorded
as SKi. The magnitude of several differences can characterize the motion state of the upper
limb. The equation for the difference is shown in Equation (2).

SKi = ωi+1 − ωi, i = 1, 2, 3...N − 1. (2)

In a set of data, the magnitude of the difference between the maximum value and the
minimum value can represent the magnitude of the fluctuation of a set of data. The larger
the difference, the larger the fluctuation. Therefore, the maximum and minimum values
of a set of data are obtained, respectively, and the difference is then recorded as MN. The
equation for MN is shown in Equation (3).

MN = max(ωi)− min(ωi). (3)

3.2. Neural Network

The neural network model is an important component of machine learning. Human
activity data are essentially a set of time series data. Recognizing human actions is actually
classifying serialized data. In order to obtain better results of action recognition, it is
necessary to analyze and judge the entire time series. The current action not only depends
on the current data, but also has a relationship to the previous data. RNN can solve the
problem of the traditional neural network model, which does not have the function of
memorizing historical information. In RNN, the output result depends not only on the
current input data, but also on the previous output, so the previous historical information
can be fully utilized. However, some studies have shown that although RNN can handle
the dependence of time series data, it is difficult to learn and preserve long-term historical
information. The effect on processing long series data is not good [22]. The LSTM neural
network, as a special recurrent neural network, effectively solves this problem through a
unique gate structure.

The LSTM neural network consists of an input layer, hidden layer, and output layer.
Among them, the hidden layer with memory function is the core of the LSTM neural
network. Figure 3 shows the structure diagram of the hidden layer unit. The hidden layer
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unit includes an input gate, an output gate, and a forgetting gate, which are represented by
it, ot, and ft:

it = σ(Wxixt + Whiht−1 + bi). (4)

ot = σ(Wxoxt + Whoht−1 + bo). (5)

ft = σ(Wx f xt + Wh f ht−1 + b f ). (6)
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Among them, xt is the input at the current moment, ht−1 is the output of the previous
unit in the hidden layer at the previous moment, Wx is the input weight matrix, Wh is the
weight matrix between neurons in the hidden layer, and b is the bias term.

The steps in which the neural network processes the data are as follows:

(1) According to the output ht−1 at the previous moment and the current input xt, the
sigmoid function is used to calculate which information can pass through ct.

(2) Control the input of saving the previous information and the current information, and
then calculate the ratio of the historical information and the current input through the
tanh function calculation. The updated current unit state can be expressed as:

ct = ftct−1 + it(tanh(Wxcxt + Whchi−1 + bc)). (7)

(3) The output of the sigmoid function does not consider the information ot learned at the
previous moment, and then the new unit state information is filtered and compressed
through the tanh function to make the information more stable. Finally, take the inner
product of ot of the output gate and the new ct to obtain the hidden layer state ht at
the current moment:

ht = ottanh(ct). (8)

(4) When the input of the time series data is completed at the last moment, the hidden
layer state ht of the long short-term memory neural network model is used as the
input to the output layer of the network model. Then use the softmax function to
calculate the final predicted action probability y:

y = so f tmax(Wht + b). (9)

3.3. Model Implementation Details

The action intention recognition of the upper limb includes two contents: (a) Identify
the grasping intention of the upper limb, mainly to identify the motion state of the upper
limb, and find the moment when the upper limb is stationary; (b) Predict the movement of
the upper limb. It mainly predicts the angular velocity data of the subsequent time points
according to the angular velocity of the upper limb. In the process of recognizing and
predicting the movements of the upper limb, the LSTM neural network is used to analyze
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the angular velocity data of the upper limb. The flowchart of action intent recognition is
shown in Figure 4.
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For identifying the grasping intention of the upper limb, based on the training set
data of the upper limb movement, a feature extraction is performed first, which contains
four sets of feature vectors. Therefore, a feature matrix with N rows and four columns can
be formed. The motion states of the upper limb are divided into rest, acceleration, and
deceleration. The LSTM is used to learn the sample data, and the parameters of the neural
network are set as shown in Table 2. Then, the trained network model is used to identify
the observation data to judge the motion state of the upper limb.

Table 2. Parameter settings for network identification.

Parameter Name Parameter Value

Number of hidden units 100
Number of classifications 3

Maximum number of training cycles 100

For predicting the movements of the upper limb, the LSTM neural network is also
used to train the preprocessed sample data, and the weight matrix W and the bias term b are
obtained through continuous iterative learning. Table 3 lists the LSTM network parameter
names and corresponding parameter values. The specific steps are as follows:

(1) Initialization parameters. In the neural network model, the weight matrix and bias
term need to be initialized first. The Gaussian distribution is used for the initialization
of the weight matrix, where the mean of the Gaussian distribution is µ = 0.6 and the
standard deviation σ = 0, which is in line with the general weight distribution, and
the initial bias is set to 0.

(2) Calculate the error between the actual value and the predicted value. The LSTM
neural network is used to predict the observed value, and the predicted value y of
the output layer of the network is obtained through a series of formula calculations.
Calculate the cross-entropy of the predicted value y and the true value ŷ as the error.
The loss is as follows:

loss = − 1
n

n

∑
i=1

[y(i) ln(ŷ(i)) + (1 − y(i)) ln(1 − ŷ(i))]. (10)
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(3) Determine the weight matrix and bias term. Calculate the gradient of the loss function
loss to the weight matrix W and the bias term b, and backpropagate the obtained
gradient to the front end of the network to adjust the parameters of each part of the
network. Iteratively train the reduced loss function through momentum stochastic
gradient descent until convergence is reached.

Table 3. Parameter settings for network prediction.

Parameter Name Parameter Value

The size of the training set 16,875
The dimension of the input data 1

Number of hidden layers 1
Number of hidden units 200

Number of training 250
The number of iterations 15

The way of gradient descent SGDM
Learning rate 0.005
Loss function Cross entropy

Weight initialization method Gaussian distribution

The paper uses MATLAB software to compile the code program of the LSTM neural
network. MATLAB software has a neural network toolbox. The TrainNetwork function is
used to train the parameters of the LSTM. The LSTM network model is implemented using
the MATLAB toolbox. Based on the visual studio 2019 platform, the host computer software
for data acquisition and analysis was developed. Training and testing are run on a PC with
Intel Core i7-6500U CPU, 12 Gb DDR-III 2400 MHz RAM, and NVIDIA GeForce 940MX.

4. Experiment and Result Analysis
4.1. Experimental Equipment

The acquisition of upper limb movement data is completed by the data glove, and
the experimental equipment is shown in Figure 5. The data glove can be worn on the
shoulder, forearm, and palm of the upper limb, and each part integrates the MPU6050
inertial sensor, which can directly output angular velocity data with a sampling frequency
of 50 Hz. Another piece of experimental equipment is the assistive prosthetic hand, which
is connected to the single-chip microcomputer. When the single-chip computer receives the
control command from the PC, it will immediately output high or low levels to control the
fingers of the assistive prosthetic hand to open or close.
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4.2. Activity Classification Results

First, the effect of our experiments on identifying the motion states of the upper limb
is discussed. The rest state of the upper limb is recorded as “0”, the acceleration state is
recorded as “1”, and the deceleration state is recorded as “2”. The experimental data of a
volunteer putting on socks were randomly selected, with a total of 791 sampling points.
The sample data are identified by using the LSTM. The recognition results are shown in
Figure 6.
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In order to compare the feasibility of the methods more effectively, the recognition
results of the LSTM with those of SVM, KNN, and LDA are compared. For the same dataset,
the experimental data are first preprocessed. Then, feature extraction is performed on the
processed data to construct feature vectors and state vectors. Then, the feature vector and
state vector are divided into ten parts, of which seven are used as the training set and three
are used as the test set. The training set was used to train the model, and the test set was
used to test the classification effect of the model. The recognition accuracy of each classifier
is shown in Figure 7.

By analyzing Figure 7 and Table 4, it can be found that:

(1) For the same type of action, the four classifiers all obtained high accuracies. This is
due to the fact that the feature extraction on the sample data is performed, instead of
directly using the sequence data. Of the four classifiers, it was unable to determine
which one performed the best, because for the same classifier, its recognition effect
was also different. For example, in the LSTM, in the action of tying shoelaces, the
classifier has a good recognition result, but in the action of putting on socks, the
recognition result of the classifier is not as expected. However, in general, the LSTM
neural network model can maintain a high accuracy rate.

(2) The recognition result of the classifier has nothing to do with the specific action type.
For the same classifier, in different types of actions, the classification effect of the
classifier cannot be consistent. For example, in the action of putting on shoes, the
recognition accuracy of SVM is lower; in the actions of putting on socks and tying
shoelaces, the recognition accuracy of SVM is the same. However, for the LSTM, the
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recognition accuracy of the LSTM is low in the action of putting on socks. From this, it
can be shown that the action type does not affect the recognition result of the classifier.

(3) For the three different motion states, no matter which classifier is used, the recogni-
tion result of the rest state is higher. This is in line with our expectations, because,
compared to the acceleration state and the deceleration state, the main effort was put
into the moment of the rest state. The control of the assistive prosthetic hand occurs
at the moment when the upper limb is at rest. The recognition of the acceleration
state and the deceleration state helps to eliminate the influence of bad factors, thereby
improving the recognition rate of the rest state.
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Figure 7. The recognition results of each classifier.

Table 4. The recognition results of each classifier.

LSTM SVM KNN LDA

Putting on
socks

Static 99.11% 99.55% 99.55% 99.11%
Acceleration 98.73% 99.15% 99.57% 98.73%
Deceleration 99.15% 98.73% 99.15% 98.31%

Total 99.02% 99.23% 99.45% 98.80%

Putting on
shoes

Static 99.65% 98.60% 99.65% 99.30%
Acceleration 99.45% 98.35% 99.45% 99.45%
Deceleration 99.36% 98.73% 99.36% 98.73%

Total 99.52% 98.56% 99.52% 99.20%

Tying shoe
laces

Static 99.73% 99.60% 99.07% 99.60%
Acceleration 99.57% 99.15% 98.94% 98.94%
Deceleration 99.15% 99.36% 98.30% 98.73%

Total 99.53% 99.23% 98.82% 99.12%

4.3. Action Prediction Results

Figure 8 shows the predicted results of leg movements. Among them, the red curve is
the predicted value of the palm angular velocity, and the blue curve is the actual value of
the palm angular velocity. In the second section, the paper discusses the strong correlation
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between arm movement and palm movement. Therefore, based on the motion data of the
arm, the LSTM neural network is used to predict the motion data of the palm. And the
palm angular velocity collected by the inertial sensor is saved in real time. The root mean
square error is used to represent the error between the true value and the predicted value.
The root mean square errors of the three actions are shown in Table 5.
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Table 5. Root mean square error of three actions.

Putting on Socks Putting on Shoes Tying Shoe Laces

RMSE 1.2347 1.4424 3.6361

It can be seen from the error curve graph in Figure 8 and Table 5 that:

(1) The predicted value of the LTSM network and the actual value collected by the sensor
almost coincide, indicating that, based on the motion data of the arm, the LSTM
network can better predict the motion data of the palm.

(2) In the actions of putting on socks and putting on shoes, the root mean square error
is less than 1.5 rad/s. Due to the increase in the amount of data, the amount of data
of tying shoe laces is twice that of the former, and the root mean square error is less
than 4 rad/s. It can be seen that with the increase in motion data, the prediction error
of the LSTM also increases, which is inevitable. Due to the process of prediction, the
algorithm always uses the previous prediction output to predict the subsequent data.
If there is a certain error in the previous prediction output, the subsequent prediction
output will continuously enlarge the error. That is to say, without correcting the
previous prediction data, the root mean square error of the LSTM neural network will
increase with the increase in motion data.

(3) It can be found in the error diagram that most of the errors occur in the peak and
trough sections, which are the switching points between the acceleration state and the
deceleration state. This also explains the low accuracy of identifying the acceleration
state and the deceleration state. However, these two errors will not affect the control
of the manipulator.
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4.4. Experimental Verification

This experiment verifies the feasibility of the method by reproducing the hand move-
ments of the assistive prosthetic hand. Using the LSTM to predict the angular velocity data
of the hand, the delay in controlling the assistive prosthetic hand was reduced. This paper
concerns foot actions in daily life, such as putting on socks, putting on shoes, and tying
shoelaces. It reproduces these selected actions in the way that a normal person holds an
assistive prosthetic hand, which is used as a substitute for a human hand. For the three
different actions, this paper selects a frequently used step accordingly, as shown in Figure 9,
where the first row is the flow chart of putting on socks, the second row is the flow chart of
putting on shoes, and the third and fourth rows are the flowchart for tying shoelaces.
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60 volunteers were recruited to complete the experiments. Of the volunteers, there
were 30 males and 30 females, ranging in age from 20 to 50. The motion experiments of
putting on socks, putting on shoes, and tying shoelaces were all performed by 20 volunteers,
including 10 men and 10 women. Each volunteer wore data gloves as required and repeated
the experimental action 50 times. 1000 datasets were collected for each action type, and a
total of 3000 datasets were obtained. All volunteers underwent proficiency training before
the experiment.

In the experiment, the moments when the upper limb was stationary and when the
assistive prosthetic hand was opened or closed were recorded, in order to calculate the
delay of controlling the assistive prosthetic hand. This was then compared with the delay
time generated by our previously designed control method. The latency data for the
two methods are shown in Table 6. Compared with the previous control methods, the
control method based on the LSTM neural network has greatly reduced the delay. The
average delay time is around 0.65 s.
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Table 6. Delay time generated by two control methods.

Participant ID 1 2 3 4 5 6 7 8 9 10 Mean

Method 1
Putting on socks 0.66 s 0.57 s 0.55 s 0.61 s 0.72 s 0.68 s 0.59 s 0.58 s 0.64 s 0.72 s 0.632 s
Putting on shoes 0.72 s 0.64 s 0.65 s 0.71 s 0.75 s 0.68 s 0.61 s 0.67 s 0.55 s 0.59 s 0.657 s
Tying shoe laces 0.64 s 0.66 s 0.58 s 0.68 s 0.64 s 0.72 s 0.64 s 0.59 s 0.63 s 0.66 s 0.644 s

Method 2
Putting on socks 1.31 s 1.32 s 1.27 s 1.33 s 1.35 s 1.38 s 1.45 s 1.29 s 1.22 s 1.34 s 1.326 s
Putting on shoes 1.25 s 1.22 s 1.33 s 1.28 s 1.52 s 1.38 s 1.33 s 1.28 s 1.32 s 1.44 s 1.335 s
Tying shoe laces 1.18 s 1.18 s 1.22 s 1.35 s 1.41 s 1.47 s 1.36 s 1.33 s 1.25 s 1.27 s 1.302 s

5. Conclusions

In order to reduce the delay in controlling the assistive prosthetic hand, this paper
proposes a new method for predicting the action intention of the upper limb. Based on the
correlation between the angular velocity of the arm and the angular velocity of the palm
when a normal person completes a foot action, the LSTM is used to predict the angular
velocity of the hand. The motion information of the upper limb is collected by the IMU,
including the angular velocity of the shoulder, forearm, and palm. Whether the upper
limb is still or not is used as a sign to control the assistive prosthetic hand. The motion
states of the upper limbs are divided into acceleration, deceleration, and rest. The LSTM
neural network is used to identify the motion state of the upper limb, by up to 99%. In the
action prediction of the upper limb, the LSTM is used to predict the angular velocity data
of the palm, and the error between the actual value and the predicted value is calculated
by the root mean square error. For the actions of putting on shoes and putting on socks,
the root mean square error is less than 1.5 rad/s; for the action of tying shoelaces, the
root mean square error is less than 4 rad/s. Finally, the neural network model is applied
to the experiment of controlling the assistive prosthetic hand. The delay in controlling
the assistive prosthetic hand is recorded and compared with the delay produced by our
previous control method, with an average delay time of 0.65 s. Based on the analysis of
the experimental data, it can be concluded that the LSTM neural network can achieve low
prediction error.

Taking the motion information of the upper limb of the human body as the information
source for judging the intention of the upper limb can avoid the influence of factors, such
as age, gender, and degree of amputation on the control of the prosthesis. The experimental
results of this paper are of great help to research on the control method of assistive prosthetic
hands. The research in this paper is limited to the design of the method, and there is still a
long way to go for generalization to the applications needed by people with disabilities.
In the future research, it is necessary to focus on the design of the upper limb prosthetic
system, combine the control method and hardware device more effectively, and apply
results to services for the disabled.
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