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Abstract: Vulnerabilities represent a constant and growing risk for organizations. Their successful
exploitation compromises the integrity and availability of systems. The use of specialized tools
facilitates the vulnerability monitoring and scanning process. However, the large amount of infor-
mation transmitted over the network makes it difficult to prioritize the identified vulnerabilities
based on their severity and impact. This research aims to design and implement a prioritization
model for detecting vulnerabilities based on their network environment variables and characteristics.
A mathematical prioritization model was developed, which allows for calculating the risk factor
using the phases of collection, analysis, and extraction of knowledge from the open information
sources of the OSINT framework. The input data were obtained through the Shodan REST API. Then,
the mathematical model was applied to the relevant information on vulnerabilities and their envi-
ronment to quantify and calculate the risk factor. Additionally, a software prototype was designed
and implemented that automates the prioritization process through a Client–Server architecture
incorporating data extraction, correlation, and calculation modules. The results show that prioriti-
zation of vulnerabilities was achieved with the information available to the attacker, which allows
evaluating the overexposure of information from organizations. Finally, we concluded that Shodan
has relevant variables that assess and quantify the overexposure of an organization’s data. In addition,
we determined that the Common Vulnerability Scoring System (CVSS) is not sufficient to prioritize
software vulnerabilities since the environments where they reside have different characteristics.

Keywords: prioritization model; probability theory; risk factor; Shodan; vulnerability scanning;
vulnerability detection

1. Introduction

The significant technological advance and the constant use of applications on the
network increase the number of vulnerabilities that cybercriminals exploit daily. Fixing
vulnerabilities requires a lot of effort, time, and resources [1,2]. The cybersecurity analysts
in the CERT/CSIRT of the different organizations have an arduous task at the level of
proactive services whose main objective is to prevent attacks before they happen [3]. Those
responsible for security must also analyze what vulnerabilities affect IT assets. In this
process, they generally face an overwhelming volume of openness, which represents a
high complexity when they have several assets connected to different networks. Resource
limitations prevent mitigating all but a small number of vulnerabilities in an enterprise
network [4–6].

A wide variety of tools help in the vulnerability scanning and detection process [7,8].
Most of the results from these tools are the Common Vulnerabilities and Exposures (CVE)
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records, which are stored in the National Vulnerability Database (NVD) [7]. NVD includes
specific parameters such as solution information, severity scores via CVSS, and impact
scores [4]. The CVSS Score is the global standard for characterizing and measuring the
severity of security vulnerabilities. However, the efficiency of this metric is affected by
additional environment variables present in computer networks. Thus, by itself, it is
not a good predictor of vulnerability exploitation and probability of occurrence [1–3].
Additionally, due to the large number of vulnerabilities that NVD contains and the amount
of information for each exposure, it is essential to maintain an analysis with as many
variables as possible [9].

Vulnerability treatment is a critical process in network and software security man-
agement [10]. The key to success is prioritizing [3], since it speeds up attention to the
vulnerabilities with the most significant impact on assets, optimizing resources and im-
proving security [5]. The prioritization of vulnerabilities is a complex process, where the
order of attention must be defined to remedy and minimize the risk. Various organizations,
companies, and researchers have their own rating systems to classify and prioritize vulner-
abilities based on qualitative and quantitative rating systems. Qualitative rating systems
are an intuitive approach for describing the severity of vulnerabilities. On the other hand,
quantitative rating systems associate a score with each vulnerability [11,12].

To address the prioritization problem focused on the organization and its environment
variables which define a specific risk factor for the IT asset where the vulnerability is
located, this study proposes the development of a prioritization model that uses Shodan as
a vulnerability scanning tool. The input data are collected through its REST API due to the
large amount of information that the tool provides. Therefore, it is necessary to carry out
a process of extracting information related only to vulnerabilities. For the prioritization
process, formulas are proposed that quantify the environment variables to obtain the
probability of occurrence. More precisely, the variables proposed from the collected data
are the following:

• Total number of vulnerabilities identified;
• Average organizational risk;
• Average remediation time;
• Number of vulnerabilities per IP;
• Open ports of the organization;
• Ports opened by IP;
• Query Tags by IP that Shodan crawlers have identified;
• Total number of references;
• Probability of exploiting a vulnerability.

To achieve a quantitative qualification, values must be assigned to the qualitative
variables; in this way, the order of attention can be prioritized. Finally, a starting point
is achieved for the review and remediation of vulnerabilities based on the probability
of occurrence of the vulnerabilities in each network IP, accounting for the information
available to any attacker.

Among the main contributions of this study, we can mention:

(i) The creation of a mathematical prioritization model that allows for assigning a risk
factor to each vulnerability identified within a set of IPs for the same organization.

(ii) The design and implementation of the proposed model following a client/server
architecture based on variables of the network environment and variables extracted
from the set of identified vulnerabilities. This prototype has three modules that
include data extraction, correlation, and prioritization algorithms.

The remainder of this article is organized as follows: in Section 2, related work is briefly
overviewed. Section 3 explains the methodology for the prioritization process. Section 4
presents the methods and relevant aspects in developing the prototype that automates the
prioritization process. In Section 5, the results achieved during the prototype execution and
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the main findings are discussed. Finally, Section 6 ends with the conclusions and outlines
future work.

2. State of the Art of Current Vulnerability Prioritization

The global standard used by organizations worldwide is CVSS, which has constantly
evolved and improved. However, its constant development and research is proof of the
difficulty of standardizing risk and impact in a way that can be applied to all organizations.
CVSS consists of three groups of metrics: base, temporal, and environmental [13]. The
first works in this area tried to leverage the characteristics of the vulnerability to determine
the probability of exploitation [14]. Dondo [5] presented a fuzzy system approach based
on vulnerability attributes that help assess the relative potential risk of computer network
assets. The CVEs obtained through vulnerability databases known as NVDs are used
as input data. Furthermore, fuzzy rules are employed to infer risk exposure and attack
probability; this allows vulnerabilities to be classified and the priority of attention to be
defined. He also mentions that the prioritization approach demonstrates more significant
severity values than those calculated by the CVSS.

One of the fundamental objectives of prioritization models is to create automated
processes that obtain high effectiveness percentages. Amankwah et al. [1,15] propose a
new automated framework for assessing the severity of vulnerabilities in open-source
web scanners. This study mentions that CVSS is criticized for its high sensitivity but low
specificity for the exploits used and, therefore, the inconsistency in the severity score. For
this reason, they propose four evaluation references metrics: impact, exploitability, preva-
lence, and detectability. The framework of this study has three components: vulnerability
detection, vulnerability assessment based on the references mentioned above, and, finally,
vulnerability prioritization according to the determined severity. The results show a more
centralized approach achieving greater risk precision that allows prioritizing attention
to vulnerabilities.

Sharma and Singh [12] propose a hybrid approach derived from the combination of
Vulnerability rating and scoring system (VRSS) and CVSS with two temporary metrics:
remediation level and vulnerability index. The input data are collected from NVD and
consider the level of remediation and the rate at which a particular vulnerability grows
over time, called the vulnerability index. The vulnerability index raises the static score to
account for the rate of change in exposure over time. A quantitative score is obtained from
qualitative variables for prioritization in this study.

Spanos et al. [9] propose a text mining process, which analyzes the description issued
by NVD regarding known vulnerabilities. They apply three classification methods: decision
trees, neural networks, and support vector machines. This study concluded that the
description itself is a very accurate and reliable source of information for prioritizing
vulnerabilities. Sharma et al. [11] also perform a similar process using a convolution neural
network (CNN). Specifically, the authors try to prioritize the vulnerabilities based on
keywords emitted in the description.

Deb and Roy [16] present a mathematical formulation through a Bayesian network in
the software-defined networking (SDN) environment to identify the status of the different
hosts on the network. The CVSS and the Bayesian network are robust methodologies for
determining the mutual relationship between vulnerabilities and prioritizing the effective
care process. On the other hand, Hu et al. [17] propose two algorithms, the threat prediction
algorithm based on a dynamic Bayesian graph and the security risk quantification algorithm
based on threat prediction. The first algorithm aims to provide comprehensive predictive
information under a specific threat scenario. The second algorithm quantifies the threat
in the first algorithm based on the security risk at two levels: host and network. The
framework proposed in his study contains three components: situational factors collection,
threat scenario prediction, and security risk situation quantification.

Chen et al. [18] mention that the average time it takes for NIST to issue a result on
the risk of discovered vulnerabilities is around 132.7 days. To mitigate this long delay,
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they propose a Vulnerability Analysis and Scoring Engine (VASE) system. The system is
based on the results issued in cybersecurity forums on Twitter to collect the possible scores
and average them, yielding tentative results about the vulnerability rating in question.
VASE adopts the convolutional graph network (CGN) model, where the nodes correspond
to CVEs. VASE consists of three main components: graph construction based on basic
natural language processing methods, attention-based input embedding, and transductive
inference with GCN-AE.

It is essential to note that the input data are massive for several studies described
above. That is, the applied models focus on all vulnerabilities and their characteristics.
Our study tries to contribute additional evaluation values to the CVSS model, making it
more specific when defining risk and impact. Moreover, the studies analyzed so far lack an
approach that addresses organizational variables. CVSS remains a generic model that does
not address the specificity necessary for successful prioritization in organizations [1–3].

Aiming to address the aforementioned problem, Farris et al. [10] present a software
called VULCON, which has a strategy based on two fundamental performance metrics:
time-to-vulnerability remediation (TVR) and total vulnerability exposure (TVE). The au-
thors use a mixed-integer multi-objective optimization algorithm to prioritize vulnerabili-
ties. Their study analyzes the environment variables where vulnerabilities are found and
detected. The different variables contained in the vulnerabilities, such as the year shown in
the CVE-ID, are essential when prioritizing. In addition, the ports corresponding to the
network’s IPs are considered since there is a greater probability of use and exploitation.
VULCON tries to add environment variables that improve the prioritization quality each
time. The achieved results demonstrate higher quality in prioritization with the additional
environment variables.

One of the fundamental factors when forming a correct prioritization is the quality of
the information. The more specific it is, the greater the likelihood of successful prioritiza-
tion. The objective is to propose generic vulnerability prioritization models that evaluate
the organization, leveraging and relying on the information provided by the collected
data [11,12]. This approach means that prioritization is not biased in any direction, provid-
ing a justification panorama according to which cybersecurity experts in organizations do
not address vulnerabilities that represent a “lower risk”. Finally, the data identified in the
scanning processes will only predict an organization’s actual risk.

Compared to our study, the analyzed works provide relevant information about
certain network environment variables and how they are quantified [10,18]. They also
allow the definition of validation rules based on the results obtained in [5,14,17]. On the
other hand, one of the approaches is to propose improvements in the CVSS model [1–3].
However, keeping CVSS as a variable has been identified to help optimize prioritization
time as it extensively describes the impact of vulnerability [10–12]. Some studies focus
on proposing prioritization models that have as input a set of specific test vulnerabilities
extracted from NVD [1,9,12,16]. Unlike these works, our study focused on calculating the
risk factor to prioritize vulnerabilities identified for any organization by understanding the
environmental variables included in the data. For this reason, the order of prioritization
that we propose is generic and easily adaptable to changes in the continuous vulnerability
detection process since it can correlate the data of the same organization.

3. Research Methodology

We employed the OSINT framework for data collection, analysis, and knowledge
extraction. This search process aims to prioritize the vulnerabilities exposed to any user on
the Internet, which can be collected openly. Similarly, we use the Shodan search engine to
obtain relevant information about existing vulnerabilities of different IPs of the computers
within the same domain or organization. Due to the large amount of data that a query
can return through Shodan’s REST APIs, we have applied specific algorithms that allow
us to extract information regarding only the vulnerabilities and characteristics of the
environment where they have been identified. Later, we apply mathematical formulas to
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quantify the qualitative variables. Once the environment variables have been mapped to
the vulnerabilities, attention can be processed and prioritized. In this way, an added value
is included in the management of vulnerabilities, taking into account that the actions of
cyber criminals begin with the data and information collected openly. A brief description
of the methodological process followed is presented below.

3.1. OSINT Framework

Open Source Intelligence (OSINT) is a framework that allows collecting, processing,
and correlating information from open sources from all over cyberspace to generate knowl-
edge. Technological advances make OSINT evolve at a dizzying pace, providing innovative
applications driven by data and Artificial Intelligence for different areas such as politics,
the economy, or society. This framework also offers new lines of action against cyber threats
and cybercrime [19]. OSINT has three representative phases that define the information
processing methodology. Figure 1 describes these phases.

Figure 1. OSINT Phases [19,20], sequential phases for open-source information processing. The
objective of this process is to generate knowledge from the data collected.

3.2. Collection Phase

We use Shodan, a cloud-based computer security scanner for the collection phase.
Shodan is a security software with several search algorithms and relies on various Open
Source tools that provide extensive information about the hosts detected by its crawlers [20].
It is regarded as the world’s first search engine for Internet-connected devices [21]. In
Shodan, all one has to do is enter the org code: “Organization _Name” and a series of IP
addresses begin to be collected, from which information will be obtained.

3.2.1. Shodan

Shodan provides valuable information to cybersecurity researchers in organizations,
but also to users with malicious intentions since, being a search engine, it is available to
the general community [22]. It has a database that stores all the information collected by
its crawlers about the different IPs that they track on the Internet. Due to the information
collected from Shodan, many experts choose to use techniques that hide the different IPs
of the crawlers; in this way, they avoid being detected. On the other hand, some experts
use this valuable information to apply corrective measures that improve the security of
their networks.

Shodan provides a REST API to make general or specific queries according to the needs
of the developers. It returns a JSON response that facilitates the manipulation and extraction
of data. In addition, it has an automated notification process, which alerts and notifies the
different results that it monitors, complying with an early detection service. Shodan can
display 11 general variables via a banner provided by the REST API, depending on the
scanned IP and its detection. These variables, in turn, contain other properties, resulting in
more than 50 variables in total. Table 1 lists the 11 general variables that are relevant to this
analysis process; this information is directly related to the knowledge and understanding
of vulnerabilities and the environment where they have been identified.
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Table 1. Variables of Shodan Banner Specification.

Variable Description

domains An array of strings containing the top-level domains for the hostnames of the
device.

hostnames An array of strings containing all of the hostnames that have been assigned to
the IP address for this device.

org The name of the organization that is assigned the IP space for this device.

data Contains the banner information for the service.

city The name of the city where the device is located.

isp The ISP that is providing the organization with the IP space for this device.
Consider this the “parent” of the organization in terms of IP ownership.

last_update Date and time of the last IP update/revision

vulns An array of strings containing the CVE code of the detected IP vulnerabilities.

country_name The name of the country where the device is located.

ip_str The IP address of the host as a string.

ports The port number that the service is operating on.

During this phase, an attempt is made to obtain the details of each vulnerability
identified. The variables that a vulnerability contains are described below:

Common Vulnerabilities and Exposures (CVE)

CVE is a list of records released by MITER Corporation in 1999. Each record has an
identification number, a description, and at least one public reference for publicly known
vulnerabilities. CVE records are used in numerous cybersecurity products and services
around the world. The CVE ID syntax is made up of CVE + year + sequence number. It is
important to mention that the year does not indicate when the vulnerability was discovered
but only when it was made public or assigned. At the same time, the number sequence
is the unique identifier by year. Additionally, CVE includes a unique description, which
generally contains details such as the name of the affected product and vendor, a summary
of the affected versions, the type of vulnerability, the impact, the access required by an
attacker to exploit the vulnerability, and the code components or important inputs that are
involved [23]. In Table 2, we present a representative CVE comprised of two fields, CVE ID
and description.

Table 2. Example of CVE.

Field Value

CVE ID CVE-2017-9798

CVE Description Apache HTTPD allows remote attackers to read secret data from process
memory if the Limit directive can be set in a user’s .htaccess file, or if
httpd.conf has certain misconfigurations, aka Optionsbleed. This affects
the Apache HTTP Server through 2.2.34 and 2.4.x through 2.4.27. The at-
tacker sends an unauthenticated OPTIONS HTTP request when attempting
to read secret data. This is a use-after-free issue and thus secret data are
not always sent, and the specific data depend on many factors including
configuration. Exploitation with .htaccess can be blocked with a patch to the
ap\_limit\_section function in server/core.c.

Common Vulnerability Scoring System (CVSS)

Each CVE is assigned a value by a scoring system designed to provide an open and
standard method for estimating the impact derived from vulnerabilities. It also helps
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to quantify the severity that vulnerabilities may represent. This scoring system obtains
standardized vulnerability values for CVEs ranging from 0 to 10, with 0 being the lowest
and 10 considered critical. In this way, consistent criteria can be maintained for managing
weaknesses in hardware and software that have been evaluated.

The CVSS score is calculated by combining several vulnerability characteristics called
CVSS metrics [24]. By using an open framework, it is possible to know the characteristics
of each vulnerability. However, being a general overview, there are no variables specific
to the environment where they have been identified. A method of this nature contributes
to having a broad picture of an organization’s exposure to risks, which can arise from
vulnerabilities that have already been identified and assessed.

3.3. Analysis Phase

An organization can have i vulnerabilities, with each vulnerability having j variables.
In addition, the set of vulnerabilities can be stored as an IP with k variables, which al-
lows collecting and defining information regarding the environment where they have
been detected.

The collected dataset allows the understanding of the environment variables of the
organization in question. For this study, prioritization variables are analyzed, extracted
directly from the set of vulnerabilities and data detected in the collection phase. Next, the
environment variables extracted from the collected data are presented.

3.3.1. Global Variables

The set of vulnerabilities found in the same network is an indicator of quantitative
values to extract knowledge of the environment variables where they have been detected.
Below are mathematical formulas that allow us to assign global values to vulnerabilities.

Total Vulnerabilities (TV)

Any public discussion of information about vulnerabilities can help a hacker. An
organization uses many resources and works to protect its networks and fix all possible
holes. It is easier for a hacker to find a single vulnerability, exploit it, and compromise the
network. About 52% of exploited vulnerabilities are discovered by the direct action of the
cybercriminal [25–28].

More and more highly sophisticated vulnerability exploit tools are being made public.
For example, the National Security Agency (NSA) security tools leaked in 2016 contained
hundreds of sophisticated exploits and back doors to vendor systems [29,30]. At the
same time, patching or quickly updating vulnerabilities is impractical in domains such
as critical infrastructure networks due to their high availability demands. In addition, an
organization’s risk increases when it has many unaddressed vulnerabilities. Considering
that the global average cost to organizations for a data breach and vulnerability exploitation
is USD 86 million [25,26], it can be determined that the number of vulnerabilities increases
the risk of the organization because of the exploitation probability increases.

Shodan displays the number of vulnerabilities identified on each IP it tracks. For this rea-
son, this variable is the growth or decrease rate of the general risk of an organization [12,23,31].
For this reason, in Equation (1), the following summation is presented:

tv =
N

∑
i=1

vi (1)

where N is the number of scanned IPs, and vi represents the number of vulnerabilities
identified in the IP.

Average Organizational Risk (AOR)

The CVSS scoring system is widely researched and used in most organizations world-
wide, representing the risk for each vulnerability [32,33]. However, as mentioned, its score
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is focused on vulnerabilities. For this reason, organizations use their additional evaluation
criteria to be able to define the actual impact on their environment [1–3].

Since CVSS has a quantitative scoring system, vulnerabilities can be grouped according
to their criticality range as shown in Table 3. Using Equation (2), it is possible to obtain the
score that demonstrates the organizational risk based on the vulnerabilities contained. In
addition, an average value of the risk to which the organization is exposed can be obtained
since all the identified vulnerabilities are immersed in the same environment.

Table 3. Correspondence between CVSS score and qualitative value (severity).

Score Severity

0 Null

0.1–3.9 Low

4.0–6.9 Medium

7.0–8.9 High

9.0–10.0 Critical

More precisely, the average risk of the organization defined by CVSS is calculated
as follows:

aor =

N

∑
i=1

vi

∑
j=1

(CVSSij)

tv
(2)

where N represents the number of IPs in the organization and vi is the number of vulnera-
bilities contained in each IP. As can be seen, it is necessary to add each CVSSij that contains
a vulnerability. The resulting AOR value is mapped to the ranges presented in Table 3 to
measure the severity of the organizational risk.

Average Vulnerability Time (AVT)

The remediation time reflects the extent to which an organization is prepared to deal
with a vulnerability. The level of preparedness of an organization for a vulnerability can
significantly affect the severity associated with the vulnerability. Therefore, it is an essential
variable for prioritizing vulnerabilities [12]. It is important to note that generally there is
no security patch available when the vulnerability is released. For this reason, the severity
score of a vulnerability is adjusted downward, suggesting a decreasing level of urgency
as the remediation becomes final. The less official the fix, the higher the vulnerability
score [23]. However, this logic allows for defining that, if this repair is not applied in the
organizations, the risk of that environment will remain adjusted to discharge because the
initial impact scenario is maintained.

The average time to exploit an unpatched vulnerability in systems is rapidly decreas-
ing. According to reports submitted by different industries, it takes about 15 days to exploit
a vulnerability by cybercriminals since its discovery [34]. The organizations targeted by
cybercriminals require a more significant effort to correct attack vectors. For this reason, it
is not recommended to have a vulnerability exposed for a long time period. The average
time it took for an organization to detect and remediate a vulnerability was 180 days in
2018, and, for 2020, it was 280 days, indicating that it is increasing [26,27]. On the other
hand, the vulnerabilities in the respective CVE ID offer information regarding the year they
were made public. This helps to identify the extent to which the organization is dealing
with known vulnerabilities. Regardless of the year in which a specific technology has
been implemented, the CVE-ID will demonstrate that said service or software has been
vulnerable for some time; therefore, it is advisable to update it. If good security practices
are ignored, the probability of being attacked increases [34]. Therefore, this time variable is
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essential in the prioritization process. The average time of the vulnerabilities is calculated
as follows:

avt =

N

∑
i=1

vi

∑
j=1

(Currentyear − CVEyearij) ∗ 365)

tv
(3)

Since the resulting AVT value corresponds to an average in days, it must be adjusted
to a range of values between 0 ≤ avt ≤ 1. In this way, the probability can be evaluated,
taking the average detection and remediation time for the organizations described above
as a reference. Accordingly, the following conditions are proposed:

• avt ≥ 280→ avt = 1
• 140 < avt < 280→ avt = 0.5
• avt ≤ 140→ avt = 0.1

The average detection time with which the comparison is made is referential and will
change over the years. It is vital to consider when executing the prioritization process since
the average time is the one previously proposed for the ongoing process of this study.

3.3.2. IP Variables

These variables are generated from the information obtained only from the scanned IP
and directly affect the set of vulnerabilities identified within the IP.

Probability of Occurrence of an Event in the IP (POE)

Given that each IP in the network is independent [10] and assuming that the probability
of occurrence of an event is independent of the IP, we define Equation (4):

poeip =
vip

tv
(4)

where vip represents the number of vulnerabilities in the IP. As can be seen, the greater the
number of vulnerabilities, the greater the probability of an event occurring, regardless of
the impact it represents.

Probability of Open Ports (POP)

The protection of information and the high availability of services require excellent
technical and technological effort. Losing or exposing information or leaving services inac-
tive harms organizations, both at a functional and a reputational level [35]. The rapid digital
transition exposes vulnerabilities that are being exploited by cybercriminals [36,37]. Com-
mon security incidents include malware infection, ransomware, exploit exploits, improper
access to applications, social engineering attacks, and denial of services [38,39].

Shodan detects the different open ports that a given IP has. The ports represent
information exchange and communication vectors; they identify the process to which
messages within the machine should be delivered. For this reason, the ports that are open
and exposed directly to the public on the Internet represent a greater risk and, therefore, a
greater priority for attention and control since they allow the exchange of information. In
order to obtain a quantitative value, the following equations are defined:

top =
N

∑
i=1

opi (5)

where op is the number of open ports in an IP; therefore, top represents the total number of
open ports in the organization with N IPs.

Since each IP is independent in the network, the risk of open ports is defined for each
IP as follows:

popip =
opip

top
(6)
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Probability for Query Tags (PQT)

While collecting IP addresses of the target organization of this study, it was observed
that Shodan returns a variable called “tags”. This variable contains character strings that
refer to the service found or hosted on the scanned IP. For the target IPs of this study,
“tags” such as “database” and “self-signed” were demonstrated. This field was taken as a
prioritization variable because, when a “tag” is detected in an IP, the Shodan variable “data”
contain more specific information about the service—for example, versions, technologies,
Operating Systems, and among other characteristics hosted on that IP.

Figure 2 illustrates the trend in the IPs presenting this variable. When the IPs have the
“tag” variable, there are more data items. The number of vulnerabilities is greater because
Shodan knows more specific organization data and can relate a more significant number of
known vulnerabilities.

Figure 2. Number of data items and vulnerabilities when Query Tag is displayed in Shodan. The
trend is directly proportional.

Because Shodan is a secure software and its documentation only describes the variable
“tag” for the query processes and not in the response processes, we have limited ourselves to
verify its existence in order to assign a risk value for the prioritization process [21,40]. Since
the quality of information exposed in Shodan provides more significant value in knowledge
and investigation for cybercriminals [20,22], the risk increases when this variable called
“tags” has some content. In order to obtain quantitative values, the following conditions
are proposed:

• IF (tags > 0)→ pqt = 1
• IF (tags = 0)→ pqt = 0

3.3.3. Vulnerability Variables

These types of variables are generated from the information of each vulnerability and
affect only the vulnerability in question.

Total References (TR)

Each CVE record includes references where a broader context about the vulnerability
can be understood. References should point to content relevant to the vulnerability and
include at least all the details included in the CVE record. A key feature is that the references
must also be publicly available [23].

There are two approaches to this variable. On the one hand, references are sources of
valuable information when proceeding with the correction or mitigation of a vulnerability.
On the other hand, this same information allows the attacker to know first-hand which
products and versions are affected. In several cases, it has also been identified that the
reference presents the exploits with which these vulnerabilities can be exploited [4,12].

For our case study, we employ the second approach mainly because, when applying
OSINT techniques, we propose obtaining the most significant amount of information that
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allows for compromising the organization’s integrity, availability, and confidentiality. In
addition, we maintain the attackers’ point of view, where all this information is accessible
without any limitation and allows them to carry out an intelligence process to understand
the technological infrastructure. Based on the proposed approach and considering that
the average number of references of a vulnerability with broad understanding is more
significant than 8 [18], the following conditions are proposed:

• IF (Vreferences ≥ 10)→ tr = 1

• IF (Vreferences < 10)→ tr =
(

Vreferences
10

)
Exploitation Probability (EP)

For the identification and detection of vulnerabilities, researchers use exploits, which
are codes that show the existence of a flaw; that is, confidentiality, integrity, or availability
may be compromised. A CVSS score is indicative of the severity of the vulnerability but
does not help predict the delay of the exploit [29].

According to Frei [41], while 94% of exploited vulnerabilities had an exploit available
within 30 days, only 72% of patches were available within that period. Therefore, this is
an indicator that there is an exploit available for the vast majority of old vulnerabilities.
CVSS scores do not allow efficient discrimination between the probability of exploitation
and non-exploitation [14,42]. However, studies have shown that high-risk vulnerabilities
are more likely to be exploited [29,43]. In other studies, this variable is also known as the
age of vulnerability [10]. Given that CVEyear ≤ Currentyear, the following conditions are
proposed to prioritize attention to vulnerabilities:

• IF (CVSS ≥ 7.0)→ ep = 1
• IF (4 ≤ CVSS ≤ 6.9)→ ep = 0.5
• IF (0 ≤ CVSS ≤ 3.9)→ ep = 0.1

3.3.4. Knowledge Extraction Process

Prioritization algorithms, models, and mathematical formulas cause many difficulties
when applied to a real-world environment due to the organizations’ multiple and conflicting
objectives. More precisely, the different problems at the prioritization level have enormous
practical implications since they produce a set of solutions based on the importance assigned
to each of the business objectives [10].

According to the target organization, this study proposes a prioritization model based
on the knowledge that the vulnerabilities themselves and the specific characteristics of the
environment where they reside can offer us. Based on the set of vulnerabilities detected,
the quantitative variables presented above are obtained, which contain hidden knowledge
about the management and risk of the organization in question.

In order to quantify each vulnerability based on the identified environment variables,
the risk factor that each one represents for the organization is calculated. The corresponding
calculation process is described below:

Risk Factor (RF)

Two vectors define the risk factor, namely the probability of occurrence and the
impact [2,44,45]. The following equation determines the RF:

RF = Probability o f occurrence(po) · Impact(i) (7)

In this study, three types of variables are distinguished:

• Global Variables;
• IP Variables;
• Vulnerability Variables.

Determining the probability of occurrence by grouping the variables according to the
type to which they belong is essential to keep the calculation focused on the level of impact,
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i.e., whether it affects the vulnerability, IP, or network level. Considering that, for this case
study, importance or superiority has not been defined by the type of variable, it is possible
to average the values as presented in Equation (8):

Probability of occurrence:

po =

(
tr + ep

2

)
·
(

poe + pop + pqt
3

)
· avt (8)

The impact is a widely researched and studied parameter in the CVSS framework,
where various metrics are established to assess vulnerabilities and how these would affect
the elements of the IT security environment if they materialize [13,46,47]. Considering that
the objective of this study is to rely on the CVSS score to approximate a more exact value
focused on the affected environment, the following equality i = CVSS is determined.

Finally, the prioritization values assigned to the vulnerabilities after calculating the
RF, are grouped according to a criticality range presented in Table 3. In Figure 3, the RF is
graphically presented by ranges.

Figure 3. Risk Factor. The risk factor increases the criticality of a vulnerability when the probability
of occurrence and impact is close to 1 [44].

Illustrative Example

After processing the information for our case study, the Risk Factor represents knowl-
edge. When this process is applied to the total set of vulnerabilities, a quantitative prioritiza-
tion is achieved that is close to the organizational reality due to incorporating environmental
variables. For illustrative purposes, the calculation of a specific vulnerability is detailed. For
this case, we will take the vulnerability CVE-2017-9798 determined in the previous section.

The organization that was the object of this study presented the following variables:

• Global Variables

– tv = 541
– avt = 1

• IP Variables

– poe =
( 96

541
)
= 0.18

– pop =
( 9

14
)
= 0.64

– pqt = 1

• Vulnerability Variables

– tr = 1
– ep = 0.5
– CVSS = 5

10 = 0.5

RF =
(

1+0.5
2

)
·
(

0.18+0.64+1
3

)
· 1 · 0.5

RF = 0.23
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Finally, taking the information available to the attacker as evaluation parameters, the
RF of the previously presented vulnerability is less than the reference value that CVSS has
assigned. This scenario will be discussed in detail in the Results section.

4. Prototype Development

The number of vulnerabilities detected in organizations is constantly increasing. The
rapid digital transition organizations face forces staff to make hasty configurations and
deployments, subject to continuous testing and change. These processes are constant,
which explains why vulnerabilities appear and disappear with each phase of work.

The mitigation and treatment of vulnerabilities make the technological infrastructures
improve or maintain their levels of security. The scanning, detection, and prioritization of
vulnerabilities must be continuous and automated since the environment variables change
according to the values obtained. Without a doubt, it is a great challenge for organizations
to maintain these processes in such changing environments.

Previous studies have identified no methodologies or development processes defined
for this type of system. However, the methodologies applied for the development process
must show rapid results, constant changes, and evaluations during their construction.
Due to being a complex data treatment process, it is essential to seek increasingly efficient
results. On the other hand, from several studies analyzed, we conclude that 48% apply
prototypes to evaluate the proposed processes because it reduces costs and time; the results
are continuously evaluated and adjusted with the required changes. Figure 4 shows the
phases proposed in our previous study, which we will follow for the development of
the prototype.

Figure 4. Development Process Phases. The six-phase process allows us to constantly evaluate the
software, control complexity and risks, and increase its functionality throughout the process.

The screening approach for this study has been presented in detail in Section 3.
However, it is crucial to consider that, according to the classification made in our pre-
vious study, we propose a mixed approach that takes advantage of information from
known vulnerabilities and characteristics of information overexposure at the network
level. Because Shodan provides extensive information and the approach for this study is
mixed, we use its variables in a combined way to prioritize the order of attention of the
vulnerabilities detected.

Shodan’s documentation mentions that all their websites are entirely built on the same
public API; this means that anything that can be done through the website can also be done
programmatically using the API. Figure 5 shows a high-level diagram illustrating the flow
of data on the Shodan platform.

According to the operating concept of Shodan’s websites, we can see that Shodan itself
is a server where the data found by its crawlers are stored. In this way, the data already
present a preprocessing and mapping. However, it is still very scattered information, so the
official website does not show all the API returned information.
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Figure 5. High-level diagram showing the flow of data in the Shodan platform [21]. Shodan’s
communication is unidirectional as it only allows client-side data queries.

In Figure 6, we propose a Client/Server architecture, where we make the necessary
queries to Shodan to obtain the information corresponding to the IPs of the same organi-
zation. The queries start with a data extraction and analysis process, presented in a web
service through three modules that show the correlated information about the detected
vulnerabilities. The objective of these modules is to provide knowledge to the client about a
specific organization. The correlation of vulnerabilities and network characteristics avoids
the dispersion of data that have no relevance and require human capital to be interpreted
and analyzed. It is possible to optimize resources, especially when knowing, interpreting,
and prioritizing the vulnerabilities that Shodan has detected.

Figure 6. Architecture of the prototype’s resource consumption and data processing diagram.

The prototype was developed in React, an open-source Javascript library designed
to create user interfaces to facilitate the development of applications on a single page.
Facebook and the free software community maintain it. We have published the source
code of the individual modules and complete framework for further use by the respective
community in a public repository (https://github.com/jorgereyesn/prioritization--model-
shodan-jreyes-web-app.git (accessed on 2 December 2021). The ease of interacting with
frontend and backend code allows dynamic testing quickly.

Shodan returns the information in JSON format; thus, a mapping process is neces-
sary for its presentation and interpretation. In this study, we focus on the extraction of
vulnerabilities following the architecture presented in Figure 6, which defines a process
for extracting only the vulnerabilities found within all the collected data. To that end,
Algorithm 1 was developed for extracting all the information related to the CVEs from the
resulting JSON of Shodan.

https://github.com/jorgereyesn/prioritization--model-shodan-jreyes-web-app.git
https://github.com/jorgereyesn/prioritization--model-shodan-jreyes-web-app.git
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Algorithm 1: Extract Vulnerabilities.
Data: Variable data and vulns of Shodan
Result: Vulnerabilities with description, CVSS and references (returnData)
tempValue← Array[empty];
returnData← Array[empty];
count← 0;
for i← 0 , data.length do

if data[i].vulns 6= undefined then
tempValue.push(data[i].vulns);

end
end
for i← 0 , data.length do

count← 0;
for j← 0 , tempValue.length do

if tempValue[j][vulns[i]] 6= undefined then
if vulns[i].index = tempValue[j][vulns[i]].index and count < 1 then

tempValue[j][vulns[i]].cve← vulns[i];
returnData.push(tempValue[j][vulns[i]]);
count ++;

end
end

end
end

Once the vulnerability extraction function has been defined, the function responsible
for connecting to Shodan is called. Algorithm 2 is in charge of connecting, mapping, and
extracting the information by making use of the algorithm mentioned above—Algorithm 1.
The objective of this process is that, after Shodan returns the information to us, two
values can be separated and returned that will contain only the necessary information
on vulnerabilities and network, which facilitates the treatment and correlation for the
prioritization and presentation processes on the screen.

Algorithm 2: Shodan Data Acquisition.
Data: shodanData in JSON format from

https://api.shodan.io/shodan/host/ip?key=API_KEY where ip is input
variable

Result: Network and Vulnerabilities values ({network, vuln})
vuln← Array[empty];
network← Array[empty];
if shodanData.vulns 6= undefined then

network.push(shodanData);
vuln.push(extractVulnerabilities(shodanData.data , shodanData.vulns));

end

Finally, the formulas presented in Section 3 were transformed into algorithms for the
prioritization process, applying cyclical flow control structures to calculate the necessary
values and assign them as variables to each vulnerability. Algorithm 3 is in charge of as-
signing the RiskFactor to each vulnerability to finally order them, achieving a prioritization
based on the information that has been detected as available to the attacker.
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Algorithm 3: Risk Factor Calculation
Data: in f o = {network, vuln} with tr, ep, poe, pop, pqt and avt values
Result: vulnerabilities with risk factor value (in f o)
for i← 0 , info.length do

for j← 0 , info.vuln.length do
info[i].vuln[j].po← ((info[i].vuln[j].tr + info[i].vuln[j].ep)/2) *
((info[i].network.poe + info[i].network.pop + info[i].network.pqt)/3) * avt;

info[i].vuln[j].impact← info[i].vuln[j].cvss /10;
info[i].vuln[j].rf← info[i].vuln[j].po * info[i].vuln[j].impact;

end
end

5. Results Analysis

This section describes the input data to check the operation of the prototype. In
addition, the results obtained in the prioritization process are analyzed according to the
proposed model.

5.1. Validate Software Operation

Considering that the prioritization model is based on the data available to the attacker,
some variables related to the case study organization will not be shown for security reasons.
This study proposes a generic model that can be applied to any organization. As such, in
order to begin with detecting and analyzing vulnerabilities, it is enough to know a group
of IP addresses that are part of the technological infrastructure.

To define the input data, it is necessary to carry out previous research in Shodan
through its official website, where the following search string must be entered: org :
”Organization_Name”. Once the different IPs that are visible in Shodan have been collected,
we enter them into the prototype to perform the necessary queries and map the information
to be displayed in the modules. For this case study, nine IP addresses have been discovered,
containing vulnerabilities and belonging to the same organization. As previously men-
tioned, the three component modules and the overall employed architecture are presented
and described in Figure 6.

The Vulnerability Overview Dashboard Module shows general information related to
the network and the detected vulnerabilities. This is achieved by applying Algorithm 1,
which is responsible for extracting vulnerability and network information to be analyzed
and mapped into fields. The objective of this module is to provide a global vision of the
resulting data. Of the nine IPs scanned, 541 vulnerabilities have been detected, the same
ones verified in Shodan directly through its website. The set of vulnerabilities shows an
organizational risk of 5.29, which, according to Table 3, corresponds to medium severity. In
addition, the average time of the identified vulnerabilities exceeds 2300 days.

After obtaining the general information about the set of detected vulnerabilities, it is
important to have detailed information on how they were detected, i.e., the vulnerabilities
for each specific IP. The Detailed Vulnerability Banners by IP Module contains in detail the
information related to each scanned IP and the vulnerabilities that have been identified
in it. Furthermore, the links of the vulnerabilities are referenced towards NVD for a more
detailed investigation, the IP plus the ports are concatenated for a review of the content
hosted in each port, and a link is generated according to the detected hostname, also for
investigative purposes.

Finally, the Prioritization Table Module contains every vulnerability and the correspond-
ing calculated prioritization variables. This is achieved using Algorithm 3 plus some simple
calculations to obtain the values of the environment variables. The detected vulnerabilities
have been ordered from highest to lowest (i.e., according to the risk factor evaluated)
to suggest the user’s order of review. In Table 4, an extract of the module found in the
prototype is presented. It is important to mention that all modules are intended to provide
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correlated and calculated information for cybersecurity experts to analyze and define their
own conclusions about the organization under investigation. However, the prioritization
process needs further analysis that will be presented in the following section.

Table 4. Prioritization table: Extract of 11 vulnerabilities with calculated values shown through the
prioritization table in the prototype.

ip cve tr ep poe popI pqt po Impact rf

IP-6 CVE-2012-2688 1 1 0.25 0.73 1 0.66 1 0.66

IP-5 CVE-2016-2842 1 1 0.2 0.73 1 0.64 1 0.64

IP-5 CVE-2016-0799 1 1 0.2 0.73 1 0.64 1 0.64

IP-5 CVE-2016-0705 1 1 0.2 0.73 1 0.64 1 0.64

IP-9 CVE-2016-0799 1 1 0.2 0.73 1 0.64 1 0.64

IP-9 CVE-2016-2842 1 1 0.2 0.73 1 0.64 1 0.64

IP-9 CVE-2016-0705 1 1 0.2 0.73 1 0.64 1 0.64

IP-6 CVE-2011-3268 0.8 1 0.25 0.73 1 0.59 1 0.59

IP-6 CVE-2012-2376 0.6 1 0.25 0.73 1 0.53 1 0.53

IP-6 CVE-2011-3192 1 1 0.25 0.73 1 0.66 0.78 0.51

IP-5 CVE-2016-6304 1 1 0.2 0.73 1 0.64 0.78 0.5

Because the data are correlated to achieve a resulting value of RiskFactor, it was
possible to validate the value obtained for the illustrative example in Section (Illustra-
tive Example) with the value obtained in the prototype, ensuring the correctness of the
calculation process prototype.

5.2. Prioritization Analysis

To analyze the prioritization process by calculating the RiskFactor, it is essential to
know the data resulting from the environment variables since they are the ones that define
the prioritization order. According to the point of view of an attacker, the vectors and
ways of compromising a network are various and very ingenious. However, all attack
processes begin with investigating the information that is available in the wide world of
the Internet [35–37,48]. The previous process of knowing how difficult it is to compromise
an organization is decisive for an attacker or group of attackers to spend their resources
and time. For this reason, all the information that organizations allow to be leaked on the
Internet is of vital importance to become a target or not [34,38,39].

Initially, it is essential to know the number of vulnerabilities the organization presents
in general. The variable tv is responsible for providing us with this information. It is the
initial parameter to define whether an automated prioritization process is needed or if the
expert in charge has sufficient knowledge.

This variable reflects the time factor since a greater number of vulnerabilities sug-
gests a greater analysis time. If so, our prioritization model applies; otherwise, it is not
needed [49,50]. Environment variables can be correlated based on the characteristics and
number of vulnerabilities presented by each scanned IP. In Figure 7, the corresponding
details are shown. It can be seen that the maximum number of vulnerabilities that an
IP contains is 123, and the lowest is 6. These values are essential because they allow for
defining whether the number of vulnerabilities establishes the trend of the risk factor; that
is, the higher the number of vulnerabilities, the higher the risk factor score.

The vulnerability CVE-2017-9798 presented throughout this study is found in
IP-5, IP-7, IP-9, and the prioritization values are 0.23, 0.07, and 0.22, respectively. Con-
sequently, for IP-5, the probability of this vulnerability occurring is higher, giving it a
higher priority for attention. If we look at Figure 8, we can see that the existence of
the variable pqt indicates that the risk factor increases in an IP. Regarding this parame-
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ter, we confirm that the model works according to the theoretical approach presented in
Section (Probability for Query Tags (PQT)), where it is explained that, when Shodan offers
this variable, it shows more information about the place where the vulnerability resides,
giving the attacker a more extensive knowledge [20,22,51,52].

In addition, we have the variables of vulnerability. In Figure 9, we can see the trend of
the variables tr and ep that are inversely proportional. We have many vulnerabilities in
IPs that maintain a high percentage of referrals. Therefore, the probability of exploitation
is adjusted downwards as the correction is final [4,12,18]. In addition, a particular case is
observed in IP-2, which presents a total of six vulnerabilities, none of which contains more
than ten references. In addition, the CVSS scores on three of the six vulnerabilities are one
high and two critical. Despite having the last year in the CVE-ID, an increased risk is still
identified, which indicates that vulnerabilities do not constantly adjust downward over the
years. This shows that the reference year in the CVE-ID is an unpredictable variable. It will
depend on the context of interpretation and the additional information that allows it to be
correlated with the probability of exploitation. Therefore, it is concluded that it does not
have a fixed trend that indicates lower importance in older vulnerabilities.

According to this study, we can define the IPs’ predominant variables. As can be seen
in Figure 10, if only CVSS would be used to prioritize vulnerabilities, IP-2 would be the first
to be addressed. However, this IP is the lowest priority based on the risk factor calculation.
Amankwah et al. [1], Dobrovoljc et al. [3], and Keramati [2] mention that CVSS is usually
very generic and does not meet the specificity necessary for an accurate prioritization,
which is demonstrated by the trend in Figure 10. Furthermore, if we look at Figure 11,
it is clear that CVSS would have a very dysfunctional prioritization order in terms of the
organization where the examined vulnerabilities are found.

Figure 7. Number of Vulnerabilities per IP. A total of 541 vulnerabilities were identified across nine
IPs of the same organization.



Electronics 2022, 11, 1334 19 of 24

Figure 8. Variable IPs. When the pqt variable is present in an IP, the poe and pop variables tend to
increase as Shodan reveals more information. The IPs with high levels of sensitive and confidential
information are exposed, allowing the collection of a more significant number of environment
variables. Therefore, the risk and the probability of occurrence of an event are greater; that is, it is a
directly proportional relationship.

Figure 9. Variable vulnerabilities. The relationship between these variables is inversely proportional.
When the number of references is low, the vulnerability maintains a high ep since there is a lack of
knowledge about the containment and mitigation of the vulnerability.

Figure 10. CVSS trend and risk factor by IP. The environment variables evaluated and applied for
calculating the r f differ from the value assigned by CVSS to a vulnerability since the additional
values mean that a vulnerability does not maintain a total impact on the organization. This graph
shows that, even with a high CVSS score, the risk factor can be different; i.e., there is no absolute
consistency in prioritizing through CVSS.
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Figure 11. CVSS trend and risk factor by vulnerability. If an organization relies only on CVSS, it
runs the risk of wasting much time, evaluating vulnerabilities that do not represent a priority risk
because environmental variables mitigate the impact and probability of occurrence. This waste of
time generates economic losses and increases the organization’s risk.

6. Discussion

The present prioritization model allows for identifying characteristics of the information-
security vulnerabilities and their environment. Case in point, Dondo [5] mentions that
systems based on vulnerability attributes help assess the relative potential risk of computer
network assets. For their part, Farris et al. [10] analyze the environment variables where
vulnerabilities are found and detect vulnerabilities. The different variables contained in the
vulnerabilities, such as the year shown in the CVE code and the ports configured in the IPs
of the network, are essential when prioritizing since they can indicate a greater probability
of exploitation. It is essential to infer risk exposure and the probability of attack; this allows
for the classification of vulnerabilities and defining the priority of attention more effectively
than CVSS. According to our results, we identify that this approach is fulfilled both for
each vulnerability as shown in Figure 11, and for the set of vulnerabilities identified for
each IP as shown in Figure 10.

Within the same context, Amankwah et al. [1] mention that CVSS is criticized for its
high sensitivity but low specificity for the exploits used and, therefore, the inconsistency in
the severity score. For this reason, the vulnerability variables tr and ep allow us to evaluate
the probability of exploitation from these two vectors. The vectors are based on identifying
the existence of an exploit for the vulnerability, according to the information that the NIST
presents about the CVE. The results show a more centralized approach as shown in Figure 9
and a higher risk precision that allows for prioritizing attention to vulnerabilities.

As previously mentioned, Sharma and Singh [12] propose a hybrid approach derived
from the combination of Vulnerability rating and scoring system (VRSS) and CVSS with
two temporal metrics. A quantitative score is obtained from qualitative variables for
prioritization in this study. The correction level adjusts the severity score downward,
leading to less urgency as the correction becomes definitive. Frei [41] mentions that
vulnerabilities are exploited within 30 days of their appearance; therefore, it is correct that
a vulnerability is adjusted downward. However, it is adjusted downward as there is a
definitive correction. However, when this correction is not applied, the risk remains and
grows since it also increases the probability of an exploit. For this reason, we use this
approach in reverse, achieving a prioritization that assesses an organization’s inability to
address legacy vulnerabilities.

Likewise, Deb and Roy [16] present a mathematical implementation to identify the
status of the different hosts on the network. On the other hand, Hu et al. [17] propose two
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algorithms. The first algorithm aims to provide comprehensive predictive information
with the threat scenario. The second algorithm quantifies the threat in the first algorithm
at the security risk from the host and network levels. Furthermore, the authors mention
that CVSS is a good predictor of impact. Based on this network scenario, the environment
variables that Shodan provides us about the IP help us to refine the risk factor; as seen in
Figure 8, the IP variables mark the prioritization trend since it is the environment where
the impact can materialize.

Finally, our model takes CVSS as a reference point plus an additional analysis on the
environment variables, which allows us to define a higher quality in the prioritization since
the actual environment is analyzed. However, it is not enough to generate an adequate
prioritization value that focuses on the technological infrastructure environment variables
where vulnerabilities are identified [14,16,53–55]. Thus, the studies that focused only on
improving the CVSS model tend to be complex mathematical models that focus on adding
variables that define and characterize vulnerability.

7. Conclusions and Future Work

In this study, it was possible to define a prioritization model that focused on the
attacker’s information to compromise an organization through the exploitation of a vul-
nerability. CVSS is very useful for quantifying environment variables because its metrics
allow comparisons with additional information that an organization presents. In addition,
it is essential to have an initial risk based on which the criticality of the vulnerabilities
can be addressed on their own. When vulnerabilities are not addressed in organizations,
they become easy targets for even moderately skilled hackers. Furthermore, if there is
overexposure of information on the technological infrastructure, the probability of an event
occurring increases.

The risk factor calculated from the information available to an attacker allows for
prioritizing vulnerabilities that are visible to any user on the Internet and allows for
evaluating the type of information and its sensitivity. Shodan is a powerful search engine
with lots of relevant information when using its APIs. The data extraction, treatment, and
correlation process become dynamic, achieving continuous monitoring, which allows for
evaluating and improving the security of technological infrastructures. Finally, it has been
shown that the environment variables indicate that each organization must evaluate the
prioritization of vulnerabilities. However, prioritization is best adjusted when a tailored
risk factor is calculated for each environment.

As future work, we plan to refine the environment variables presented in this study
with historical values. The objective will be to correlate the results of the vulnerabilities
that affected the organization and adjust a generic prioritization model that leverages the
data to understand its environment through Artificial Intelligence.
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