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Abstract: In recent years, the methods of controlling electrical machines have been witnessing in-
creasing development to reduce torque and electric current fluctuations in electrical power generation
systems from renewable sources such as wind energy. The generation of electric power from wind
plants imposes the need for an efficient and more robust method in order to obtain fewer ripples in
active and reactive power. In this work, a new fractional-order proportional-integral (FOPI) controller
and intelligent PWM (IPWM) technique are proposed to control an existing asynchronous generator
(AG) in variable-speed multi-rotor wind turbines (VSMRWTs). This proposed method depends on
combining or using two methods, namely nonlinear area and fractional calculus, to obtain a more
robust method and to reduce current and torque ripples. In the framework of this study, the electric
power generation system consists of a 1.5 MW AG and VSMRWTs. The AG is controlled using a
simpler and easily accomplished method called direct vector control, based on FOPI controllers
and the IPWM technique (DVC-FOPI-IPWM). The maximum power point tracking (MPPT) method
is used to generate the maximum energy from the VSMRWTs. The proposed DVC-FOPI-IPWM
technique is modeled in the Matlab/Simulink platform to obtain good quality current and active
power. Simulation results show that the proposed strategy reduces the ripples of torque, current, and
active power compared to the classical technique. Moreover, the reduction ratio is about 85%, 99%,
and 93.33% for the current, active power, and torque, respectively.

Keywords: renewable sources; fractional-order proportional-integral controller; intelligent pulse
width modulation; variable-speed multi-rotor wind power; torque ripple; asynchronous generator;
maximum power point tracking

1. Introduction

In recent times, the demand for world electric energy has been increasing, especially
in more industrialized countries such as China and the USA. Wind energy is among the
different types of renewable energy sources that are widely used. This type of renewable
energy offers a realistic alternative to electric power production. Therefore, to ensure
optimal utilization of this energy, different control strategies have been well studied in the
literature [1–5].

In the field of wind energy, there are several kinds of wind powers that have been
used to generate electric power. As it is known to the private and public, the single-rotor
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turbine is the most widely used and famous [6]. This type of turbine has several problems,
especially concerning the part of the energy gained from wind. In addition, in the case
of wind farms, there is wind generated by the turbines, and the energy gained from the
wind is affected by this wind generated by the wind farms [7]. All these problems made
researchers and those interested in the energy field search for a solution to these problems.
Among the solutions proposed in this field is the multi-rotor turbine.

A multi-rotor wind turbine is a wind turbine that contains several wind turbines in
order to obtain the largest amount of wind energy [8]. However, the wind generated in the
case of wind farms must be overcome. The dual-rotor wind turbine is the most studied and
used type in the field of electric power production, and this is due to the performances of
this system and the results obtained [9]. In addition, the production cost of this system is
lower compared to that of a system with a multi-rotor wind turbine [10]. Many studies have
been carried out in this field to control twin-rotor turbines [11–15]. In [16], a multi-rotor
wind turbine system with multi-generator drive trains is presented. The proposed turbine
uses a multi-rotor configuration with five rotors arranged in a star shape configuration. The
use of this technology has many goals, including reducing the size of the wind farm and
thus reducing the cost of industrialization. Moreover, this technology aims to increase the
proportion of electrical power output. As it is known, wind affects the structure of turbines
and generates vibrations. Moreover, heavy loads on the structure are all negative factors
that affect the turbines. These problems increase the requirements for periodic maintenance
and thus contribute to a high cost of energy production, and this is not desirable [17].

Several generators can be used with this new technology, as it is possible to use an
asynchronous generator as well as a synchronous generator. However, the asynchronous
generator is the most widely used with this new technology, and this is due to the advan-
tages and high efficiency of this type of generator, especially in the case of variable wind
speed [18]. The authors of [19] implemented a nonlinear direct field-oriented control on
an induction generator system using terminal synergetic control, in which the proposed
strategy was to minimize power ripples. Despite the improvements achieved, which were
enhanced in comparison with a traditional integral-proportional (IP), the main drawback
of the synergetic controls is the increase in power consumption. In [20], A new nonlinear
method is used to control an asynchronous generator (AG) in a multi-turbine system. In this
work, the characteristics and effectiveness of direct flux and torque control were improved
by using third-order sliding mode control (TOSMC). The results show that the character-
istics of the designed strategy improve the quality of the active power produced by the
dual-rotor wind turbine system. Another advanced approach is the usage of neural network
algorithms (NNAs) for the tuning of a TOSMC technique of the induction generator-based
multi-rotor wind turbine (MRWT) system. According to the study generated by the authors
of [21], with the latter mentioned structure, the results were contrasted against a fixed-
gain controller, and significant improvements were observed. However, one of the main
drawbacks of using NNA to improve the nonlinear method of the AG is that many input
variables must be used to obtain an accurate result. Another nonlinear control strategy
used to control the AG integrated into the MRWT system is second-order sliding mode
control (SOSMC), which is known for its robustness against disturbances and uncertainties
for large-scale systems as well as its practicality in terms of implementation [22]. The
performance and efficiency of the generator can be increased by using nonlinear methods
and even by using a combination of several methods for controlling a system, as the authors
of [23] did in their study. In this work, a new linear technique is proposed based on the
integration of both sliding mode control and synergetic control. Through the results of the
digital simulation, there is a noticeable improvement in the behavior of the generator in
terms of dynamic response. In fact, it is recommended over techniques such as synergetic
control [24]. In [25], the authors combined fractional-order control and a terminal sliding
mode controller to control an asynchronous generator placed in a wind system. The pro-
posed method improves the quality of electrical energy compared to the classical method.
Moreover, the proposed technique minimizes the total harmonic distortion (THD) of the
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stator current of the AG compared to the traditional strategy. Durability is among the ad-
vantages of this proposed method, as this proposed method is more robust compared to the
proposed method. Moreover, the proposed method reduces effective and reactive power
fluctuations compared to the classical method. A second-order continuous sliding mode
controller and fractional-order control were combined to minimize the active power and
current of the asynchronous generator-based wind turbine system [26]. Another method
is suggested in [27], in which a fuzzy-genetic algorithm and direct power control were
combined to control the effective and reactive power of the AG-based wind turbine. The
results show the effectiveness of the proposed method in reducing ripples and improving
the quality of effective power compared to the classical method. A proportional-integral
(PI) controller based on fractional-order control was used to control distributed generation
(DG) inverter control [28]. Moreover, in addition to using a fractional-order PI controller, a
space vector modulation technique was used to control the active and reactive power of
the DG inverter.

In the wind power generation system, there are several faults affecting it, including
those that are electrical and mechanical. These faults affect the torque and affect the
quality of the electrical energy generated by the generator. In addition, these defects
increase the production bill and maintenance cost. In [29], the performance of a wind
power system in the event of failures in the lubrication system is shown. Moreover, a
procedure is proposed to detect malfunctions caused by the lubrication system. This
failure of the lubrication system makes the maximum power point (MPP) of the wind
system smaller than that of normal operation. The difference between the actual and
simulated (estimated) output power of the wind system is an indication of the failure of the
lubrication system. Additionally, two different methods are suggested in [30] to control the
asynchronous generator, in which the first is an integer-order PI controller and the second
is a fractional-order PI (FOPI) controller. The study compares these two methods in terms
of dynamic response, ripple ratio for effective power, and THD value of electric current for
doubly-fed induction generator (DFIG)-based marine tidal current applications. In [31], a
FOPI controller is a better candidate in wind energy applications compared to the integer-
order PI controller. A fractional-order PI controller is employed to control the energy
exchange between a high-temperature superconductor and the system by controlling the
duty cycle of the DC chopper interfacing the high-temperature superconductor with the
DC link [32]. Rating the high-temperature superconductor and the parameters of the FOPI
controller is precisely calculated using the harmony search optimization technique in order
to regulate the DFIG-generated power and to improve its fault ride-through capability
during disturbance events. The results obtained using the FOPI controller are compared
with the results obtained using the conventional PI controller. The results reveal the ability
of the FOPI controller to improve the performance of DFIG-based wind turbines during
wind gusts and short circuit faults at DFIG plants. In [33], fractional-order PI controllers
are simultaneously applied in the internal and external control loops of the RSC to improve
DFIG active power, rotor speed, and rotor current profiles by occurring with various
balanced and unbalanced transient faults. The results obtained from the FOPI controller
are compared with those of the PI controller, and the results show how effective the FOPI
controller is in improving the quality of effective power.

In the field of control, many methods have provided satisfactory results for controlling
electrical machines and especially for controlling electrical generators. Research has mostly
focused on single-rotor wind turbines. As demonstrated in [34], this type of turbine gives
less mechanical energy. Accordingly, the energy gained from wind is weak, and this is
undesirable.

There is a need to gain more energy from wind to rotate the asynchronous generator,
so the technical way to obtain optimum energy from wind is the use of a multi-rotor wind
turbine. The latter helps to gain more wind energy. In addition, control of generators is
essential, as methods of controlling generators are of great importance for the quality of
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the electric current produced. As is known, the use of direct torque control to control the
asynchronous generator is better than the use of the FOC method.

In this paper, a wind electric power generation system using a multi-rotor wind
turbine is studied. An asynchronous generator is used in the studied system to generate
electric current due to its durability and low cost. In this paper, new uses include both
the proposed method of the PWM technique based on the use of artificial intelligence,
as well as the use of a new design of PI controller based on fractional-order control, in
which the proposed method for the fractional-order PI controller is different from that
of published works [35–39]. Moreover, this work is a development of the direct vector
control (DVC) method. The DVC strategy based on the intelligent PWM technique and
the fractional-order PI controller is proposed to control the asynchronous generator and to
obtain fewer ripples for current, torque, and active power. Additionally, the proposed DVC
technique is more robust than the traditional DVC strategy with a PI controller.

The methods proposed in this paper are first-time methods proposed for controlling
an asynchronous generator integrated into a multi-rotor wind turbine system. In addition,
the intelligent PWM (IPWM) technique is used to obtain a fixed-frequency signal at the
output of the inverter, and the proposed fractional-order PI controller is used to obtain
a fast dynamic response and to improve the performance of the asynchronous generator
integrated into the multi-rotor wind turbine system. The proposed DVC method and the
advantages of the proposed FOPI controller and IPWM technique are given in this paper.

In order to confront and overcome the problems and shortcomings of the DVC method,
this paper presents its main contributions as follows:

• Numerical simulation results are presented to validate the advantages of the proposed
DVC method.

• The PI controller is among the most important and most widely applied controllers in
the field of control of electric generators. However, for this kind of controller, several
defects can be improved or eliminated by using artificial intelligence or fractional
calculus. It emerges that the proposed fractional-order PI controller is more convenient
than the classic PI controller.

• The IPWM technique is proposed as a better solution than the classical PWM method
to control the inverter to obtain a signal at its output with a fixed frequency.

• The proposed DVC method is a development of [40] because it gives a new design and
optimum solution to control an asynchronous generator using the method based on
the new FOPI controller, whereas the classic DVC method is based on the PI controller,
which makes the current quality lower. For the same reason, the proposed DVC
method has a higher probability of obtaining a higher quality of electric current and
active power than the previous solution.

In order to understand the work performed in this paper, the design, testing, and
validation stages of the proposed DVC strategy are shown in Figure 1.

This work contains the following main themes: The Section 1 gives an introduction to
this work, mentioning its contributions and goals. In the Section 2, the mathematical form
of the proposed system consisting of a generator and an MRWT system for the generation
of electrical energy is discussed alongside how this is performed. In the Sections 3 and 4,
the proposed IPWM technique and a new fractional-order PI controller are discussed,
respectively. The classical DVC method is briefly discussed in the Section 5. The Section 6
is dealt with in minute detail concerning the proposed DVC-FOPI-IPWM technique used in
the dual-rotor wind energy system. In the Section 7, the simulated results of the proposed
DVC-FOPI-IPWM method are given, where it is compared with the classical DVC method.
Finally, all the conclusions reached from this work are collected in the Section 8.
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2. Multi-Rotor Wind Turbine System

Wind energy is one of the most important power sources used today for several
reasons, including a low cost of production and an absence of toxic gases. In addition, to
generate electricity from wind, we use wind farms. The latter contain wind turbines, which
convert wind energy into mechanical energy. The acquired mechanical energy is used to
rotate the generator, for example, as an asynchronous generator, thus producing electrical
energy.

In conventional farms, a single-rotor turbine is used. This type of turbine has several
problems. The energy gained from wind is not great by using this type of turbine [41].
Moreover, this type of turbine is affected by the wind that is generated by wind farms [42].
In order to overcome these difficulties and to increase the value of the mechanical energy
gained from wind, it is necessary to develop a traditional turbine. Among the solutions
proposed in the past few years is the adding of a second turbine to the main turbine, which
doubles the value of the energy gained from the wind. In this way, new technology is
created to generate electricity from wind with a multi-rotor turbine. This type has been
studied in several scientific works [43–46].

In this work, we study an MRWT system for the generation of electric energy from
wind. Figure 2 illustrates the electrical power generation system used in this work, where
Ps* and Qs* represent the references for active and reactive power. In this way, this system
is almost the same as the normal system used to generate electricity from wind, and the
difference lies in the use of an MRWT system only. The use of an MRWT system leads to
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an increase in the mechanical energy gained from wind, thus obtaining a speed (torque)
sufficient to rotate the asynchronous generator [9].
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In these new wind turbines, two rotors are used. The first is the main rotor, and the
second is the auxiliary rotor [8]. The use of rotors leads to the complexity of controlling this
type. Additionally, this type of turbine is expensive and has a large number of mechanical
parts compared to the old type. Moreover, this new technology requires more maintenance
than the old technology [10].

In an MRWT system, the output torque is the sum of the torques of the main and
secondary turbines, and the same applies to the mechanical energy gained from wind. The
total torque of the turbine can be expressed by relationship (1) [13]:

T = Tm + Ta (1)

where Ta and Tm are the torque of the auxiliary and main rotors [14,15]: Ta =
Cp

2λ3
a
ρ·π·R5

a·w2
a

Tm =
Cp

2λ3
m

ρ·π·R5
m·w2

m
(2)

The energy gained from the dual-rotor wind turbine is the energy generated by the
main wind turbine in addition to the mechanical power produced by the secondary wind
turbine, and it is explained by relationship (3):

P = Pm + Pa (3)

where Pa and Pm are the mechanical power of the auxiliary and main rotors, respectively.
Through Equation (3), the torque relationship can be clarified for each of the main and

secondary wind turbines. It can be seen that the torque for the two wind turbines is related
to both air density (ρ), mechanical speed (wa and wm), power coefficient (Cp), tip speed
ratio (λa and λm), and the blade radius of the auxiliary and main rotors (Rm and Ra).

The relationship of the power coefficient almost remains the same as in the ordi-
nary turbines (single-rotor). Equation (4) represents the relationship through which this
coefficient can be calculated for a dual-rotor wind turbine.

Cp(λ, β) =
1

λ + 0.08·β −
0.035
β3 + 1

(4)
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Equation (4) shows that the pitch angle has a large effect on the power coefficient and
therefore on the power gained, where the smaller that the pitch angle is, the greater that
the coefficient is; therefore, the energy gained from the wind is large. Additionally, the
coefficient’s power is affected by the value of the tip speed ratio. We find that the higher
that the tip speed ratio is, the lower that the tip speed ratio value is; thus, the value of the
energy gained from the dual-rotor wind turbine is lower and vice versa.

The tip speed ratios of the main and auxiliary wind turbines are given by Equation (5)
for a dual-rotor wind turbine: {

λa =
wa ·Ra

V1

λm = wm ·Rm
Vm

(5)

As is well known, determination depends on the wind speed of the auxiliary and main
wind turbines (V1 and Vm), the blade radius of the auxiliary and main wind turbines, and
the mechanical speed of the auxiliary and main wind turbines.

Wind speed (Vw) varies from the main turbine to the secondary. To calculate wind
speed in the secondary turbine, we use relationship (6). This relationship is demonstrated
in [12].

Vx = Vw·
(
−1−

√
(1− CT)

2

(
2x√

1 + 4x2
+ 1
)
+ 1

)
(6)

Wind speed in the auxiliary wind turbine is related to the wind speed before the main
turbine (Vx), the distance from the auxiliary rotor disk (x), and a thrust coefficient (CT). In
the turbine used in this work, the distance between the main and auxiliary turbines is 15 m,
and the thrust coefficient is 0.9 [10–14].

Among the components of the electricity generation system using dual-rotor wind
turbines, we find the asynchronous generator and two inverters. Inverters are used to feed
the rotor of the asynchronous generator [6]. The first inverter aims to convert alternating
current to continuous, whereas the second inverter converts direct current to alternating
voltage.

To study this system, it is necessary to have the mathematical form of the AG-based
MRWT system. As is well known, the generator has two parts; one is static, and the other
is movable. The static part is called the stator and contains coils, and the rotating part
is called the rotor, which is also composed of coils. The mathematical model of the AG
uses the Park transform, in which both direct and quadrature flux and voltage are given.
Equations (7) and (8) represent the direct and quadrature rotor voltage and flux of the AG,
respectively [7]: {

Vdr = Rr Idr +
d
dt ϕdr − wr ϕqr

Vqr = Rr Iqr +
d
dt ϕqr + wr ϕdr

(7)

{
ϕdr = Lr Idr + MIds
ϕqr = Lr Iqr + MIqs

(8)

Through these two equations, the direct and quadrature rotor voltage (Vdr and Vqr) is
related to the direct and quadrature flux (ϕdr and ϕqr), the direct and quadrature rotor current
(Idr and Iqr), and the resistance value (Rr). Additionally, the flux is related to both direct and
quadrature rotor current and to the rotor/mutual inductance of the rotor (M and Lr).

The direct and quadrature stator voltages (Vds and Vqs) of the generator are shown in
Equation (9): {

Vds = Rs Ids +
d
dt ϕsd − ws ϕqs

Vqs = Rs Iqs +
d
dt ϕqs + ws ϕds

(9)

These voltages are concerned with quadrature and direct stator flux (ϕds and ϕqs), and
this flux can be expressed by Equation (10) [12]:{

ϕds = Ls Ids + MIdr
ϕqs = Ls Iqs + MIqr

(10)
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Equation (11) represents the mechanical equation of the AG-based MRWT system:

Te − Tr = J
dΩ
dt

+ f Ω (11)

This equation shows the relationship between torque and mechanical rotor speed, and
it explains how velocity changes in relation to torque. Through this equation, the change in
mechanical rotor speed (Ω) is related to the load torque (Tr), electromagnetic torque (Te),
viscous friction coefficient (f ), and inertia (J).

Torque is given by Equation (12) [3,5]:

Te =
3
2

p
M
Ls

(
ϕsq Ird − ϕsd Irq

)
(12)

Equation (12) shows that change in torque is related to change in both direct/quadrature
rotor current and direct/quadrature stator flux. Moreover, change in torque can be per-
formed by changing the number of pole pairs (p).

Active and reactive power can be expressed by Equation (13):{
Ps =

3
2
(
+Vqs Iqs + Vds Ids

)
Qs =

3
2
(
+Vqs Ids −Vds Iqs

) (13)

Through Equation (13), it is possible to control the active and reactive power from
direct and quadrature stator current and voltage. A change in stator voltages or stator
current leads to a change in both the reactive power and the active power.

There are several ways to control the AG-based MRWT system, some of which are
linear and some of which are nonlinear techniques. Among the most popular methods used
in controlling electrical machines, there is DTC strategy, DPC technique, and vector control.
In this work, the focus is on direct vector control, and this is because of its simplicity and
ease of implementation. In this work, a new algorithm is given for this method, depending
on both the proposed IPWM technique and the fractional-order PI controller. The proposed
IPWM technique is explained in the third part of the article, and in the fourth chapter, a
new fractional-order PI controller is addressed.

3. Proposed IPWM Technique

In electrical machines, the PWM technique is among the oldest and most widely
used modulation methods for controlling electric motors due to its simplicity and ease of
implementation [47]. Figure 3 (on the left) represents the conventional PWM technique
of the two-level inverter. In the PWM technique, two signals of different frequencies are
compared, and a triangular signal with a frequency much greater than the frequency of the
sinusoidal signal that represents the network’s voltage is used. Moreover, three hysteresis
controllers are used to create the control signals (Sa, Sb, and Sc) of the inverter. The use of
these conventional controllers causes variable frequencies at the output level of the inverter,
where the inverter gives a sinusoidal signal of variable frequencies. Variable frequency is a
major problem that affects the performance of electrical machines such as asynchronous
generators. In addition, the use of a sinusoidal signal with variable frequencies leads to a
decrease in the life of electrical machines [48].

In order to overcome this problem and to obtain a sinusoidal signal with a fixed
frequency, a method of artificial intelligence was used. In this proposed IPWM technique,
classical hysteresis comparators are compensated by an intelligent method based on an
adaptive neuro-fuzzy inference system (ANFIS) algorithm. Using this method leads to
obtaining a high-quality sinusoidal signal (fixed frequency), thus overcoming the disad-
vantages of the traditional PWM method. Figure 3 (on the right) represents the proposed
IPWM technique in this work for controlling the inverter of the asynchronous generator.
Through this figure, the proposed IPWM method is reverted to the classical PWM method
with the substitution of the hysteresis controller by the ANFIS algorithm. In addition, the
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proposed IPWM method is simple and uncomplicated, does not require a specialist, and
can be easily accomplished.
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The ANFIS algorithm is one of the most important algorithms of artificial intelligence
spread in recent times. In this type of algorithm, the advantages of neural networks are
combined with the advantages of fuzzy logic. In this algorithm, rules are compensated by
neural networks [49]. Figure 4 represents the internal structure of the ANFIS algorithm.
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Among the advantages of this algorithm are that it is simple, unrelated to the system,
and can be applicated and implemented easily [50]. However, among its downsides, there
is no mathematical theory that explains how each of the rules selects the number of neurons
within the middle layer of the neural network. Therefore, this algorithm depends on the
experience of the user and on the extent of its application to automated systems. On the
other hand, the ANFIS controller is very understandable and easy. It can also be applied
to any system, regardless of its complexity, as it is not related to the studied system. The
ANFIS controller is able to provide the most effective solution to complex issues. The
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system can be easily modified to improve or modify performance. Moreover, the ANFIS
controller helps deal with engineering uncertainties.

The rules shown in Figure 4 were used to implement the ANFIS algorithm. Regarding
the membership functions (MFs) used to implement the ANFIS algorithm, they are shown
in Figure 5, where the same functions are used in the two inputs (error and change in
error). In order to give more accuracy and to obtain excellent results, 49 rules were used.
In addition, these rules were chosen based on experience, expert knowledge, and the
dynamics of the process, whereby the greater that the number of these rules is, the slower
that the system is.
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Regarding the neural networks, eight cells were selected in the inner layer, and in the
outer and front layer, one cell and two cells were selected, respectively. The characteristics
of the neural network used to perform ANFIS algorithms are shown in Table 1. In order to
implement the neural networks, a conjugate gradient with Beale–Powell restarts was used.
The following functions were also used to obtain the neural networks: tansig, purelin, and
traincgb.

Table 1. Features of neural networks used.

Parameters Values

Training Conjugate gradient with Beale–Powell restarts
Train Param.eposh 100
Coeff. of acceleration of convergence(mc) 0.9
Number of neurons in hidden layer 50
Performances Mean Squared Error (mse)
Train Param.mu 0.8
Functions of activation Tansig, purelin, traincgb
Number of neurons in layer 1 2
Train Param.goal 0
Train Param.show 50
Train Param.Lr 0.05
Number of neurons in layer 2 1

The ANFIS algorithm training of the hysteresis comparators is shown in Figure 6.
Figure 7 shows the training plot of the ANFIS algorithm for the hysteresis comparators.
In this figure, the best training performance is 9.0749 × 10−5 at epoch 10 for traditional
hysteresis comparators. The error plot of the ANFIS algorithm is shown in Figure 8, where
the targeting field is [–140 –40], the training value is R = 1, and the output for hysteresis
comparators is given by output = 1 × Target + 0.00014. Additionally, gradient, mu, and



Electronics 2022, 11, 1340 11 of 26

validation checks are shown in Figure 9, and they represent the characteristics of the ANFIS
algorithm of the traditional hysteresis comparators. In this figure, the best gradient, step
size, and validation checks are 0.0040475, 0, and 0 at epoch 11, respectively.

The internal structure of the neural network of the ANFIS controller is shown in
Figure 10. In this figure, the inner form of a neural network consists of two main parts:
Layer 1 and Layer 2.
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4. Proposed Fractional-Order PI Controller

In the fields of control theory and dynamical systems, a fractional-order system is
a dynamical system that can be modeled by a fractional differential equation containing
derivatives of non-integer order. Such systems are said to have fractional dynamics. How-
ever, fractional-order calculus (FOC) is one of the most popular and emerging mathematics
branches that deals with differentiation and integration of real or complex order [51]. More-
over, the FOC technique provides efficient tools for many situations related to chaotic
behavior, infinite memory, and fractal dimensions [52]. Additionally, fractional calculus is a
mathematical method for improving the performance of classical methods, and it was used
to improve the performance and effectiveness of the traditional PI controller. The use of
this method gives great effectiveness in automated systems, especially in electrical power
generation systems [53–56].

A combination of fractional calculus and the PI controller results in the creation of the
FOPI controller, which is more robust compared to the classical PI controller. Using the
FOPI method in wind power generation systems leads to a significant improvement in the
quality of the current and the active power. Equation (14) shows the mathematical form of
the FOPI controller, which is frequently used in wind power generation systems [51]:

u = Kp·e(t) + Ki·D−λ
t ·e(t) (14)

where Ki is the integrating constant, e(t) is the error, Kp is the proportional constant, and λ
is the fractional order of the integrating action.

The difference between the FOPI controller and the traditional PI controller lies in
the use of fractional calculus (D−λ

t ). By changing the value of the fractional order, the
automated systems are well controlled, i.e., a good way to smooth the results is possible. In
the case of λ = 1, the FOPI controller is the traditional PI controller.

In this work, we present a new form of fractional-order PI controller in order to
improve the performance and efficiency of the DVC strategy of the asynchronous generator-
based multi-rotor wind turbine system. In this part, a new form of the FOPI controller is
given in order to reduce torque and active power ripples. In addition, the quality of the
current is improved by decreasing the value of the THD. The proposed FOPI controller is
different from the proposed FOPI controller in [51,53–56].

The proposed mathematical form for the FOPI controller is shown in Equation (15):

w = (Kp·e(t) + Ki·e(t))−λ (15)

where the fractional calculus of the FOPI controller is changed to calculus that is both
integral and proportional. This suggested method is simple and easy. Additionally, the
proposed FOPI controller can be applied to any linear or non-linear system. Figure 11
shows the proposed FOPI controller in this paper. Based on this figure, the proposed FOPI
controller is a simple structure and can be easily accomplished. Furthermore, the response
of the proposed FOPI controller can be smoothed out by changing only one element (λ).
Moreover, this proposed FOPI controller is not complicated.

This designed FOPI technique is used in this paper in order to improve the quality of
both the current and the active power of an asynchronous generator controlled by direct
vector control. In the next section of the paper, the necessary information and explanation
of the DVC strategy are given.
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Figure 11. Proposed FOPI controller.

5. Direct Vector Control

Traditionally, the DVC strategy is among the easiest and most widely used control
methods that are available, and it depends on the use of a traditional PI controller, as
we use this method in our PI controller. The use of the latter leads to a fast dynamic
response and to a reduction in ripples at the level of both current and torque compared
to hysteresis comparators. However, simplicity is one of the most important features of
this strategy. The working principle of the classical DVC strategy is explained in [57]. In
this paper, this method is used to control a large power 1.5 MW AG-based MRWT system.
Equations (16)–(19) illustrate the working principle of this method, which is based on the
stator flux given by Equation (16):

ϕds = 0 and ϕqs = ϕs (16)

In an asynchronous generator, the stator flux is related to stator voltage. The expres-
sions for both direct and quadrature voltages are shown in Equation (17):{

Vqs = Vs = ws·ϕs
Vds = 0

(17)

Based on Equations (16) and (17), the direct and quadrature currents are represented
in Equation (18): {

Iqs = −M
Ls

Iqr

Ids = −M
Ls

Idr +
ϕs
Ls

(18)

Regarding reactive and active power, they are related to both rotor current and stator
flux, as we find that active power is related to both quadrature rotor current and stator flux.
On the other hand, reactive power can be changed by changing both the direct current and
the flux. Equation (19) shows both the active and reactive power of the AG [19]: Qs = −1.5

(
ωs ϕs M

Ls
Idr −

ωs ϕs
2

Ls

)
Ps = −1.5 ωs ϕs M

Ls
Iqr

(19)

The torque represented in Equation (12) becomes as follows:

Tem = −1.5 Iqr·ϕds·p·
M
Ls

(20)
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Direct and quadrature rotor voltages can be expressed by Equation (21). A PI controller
is used to give reference values for both direct and quadrature rotor voltages [19]:{

Vdr
∗ = Kp·e(t) + Ki

∫
e(t)dt + g M·Vs

Ls

Vqr
∗ = Kp·e(t) + Ki

∫
e(t)dt− Rr ·Vs

M·ws

(21)

where Vdr
∗ and Vqr

∗ are the reference direct and quadrature rotor voltages.
In order to give a more illustrative picture of the working principle of the traditional

DVC method and to facilitate the understanding of this method, the following figure
(Figure 12) shows the working principle of the traditional DVC method.
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This figure was drawn based on Equation (21). The traditional DVC technique is very
simple compared to the DTC strategy or to direct power control.

Despite its ease of implementation and simplicity, this traditional DVC technique
gives unsatisfactory results or fewer results compared to both the DTC strategy and to the
indirect FOC technique. Through the results shown in [19], the classical DVC method gives
more fluctuations at the level of current, torque, flux, and reactive power. Moreover, in this
method, the THD value of electric current is higher compared to that of the DTC technique,
the indirect FOC strategy, and direct power control, and this is because of using both a PI
controller and the traditional PWM technique. As it is known, the use of the traditional
PWM technique results in an electrical signal with a variable frequency, thus obtaining an
unstable speed, and this is a big consequence of using this traditional DVC method. To
overcome these obstacles found in the classical DVC method, a new idea for this classical
DVC method is proposed, which is shown in the next section.

6. Proposed DVC Strategy

In order to ameliorate the performance and effectiveness of the classical DVC technique
and to improve the quality of the electric current produced by the asynchronous generator
placed in the multi-rotor wind electric power generation system, a new algorithm is given
to the classical DVC method, using both the proposed FOPI controller and the proposed
IPWM technique, which are used to keep the simplicity and ease of implementing the
classical DVC technique. Moreover, the designed DVC technique is a change in the classical
DVC method, in which the same shape is maintained with a change in both the traditional PI
controller and the PWM technique by replacing them with the proposed FOPI controller and
the proposed IPWM technique, respectively. All of this is performed to obtain satisfactory
results in a simpler and more durable method. The proposed DVC method based on the
FOPI controller using the IPWM technique of the AG integrated into an MRWT system is
shown in Figure 13.
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In this proposed DVC method, the same level of estimation of both reactive and active
power is used in the traditional method. Moreover, the reference value of the reactive
power is set to zero, the reference value of the active power is related to the wind speed,
and the maximum power point tracking (MPPT) technique is used to obtain the reference
value of the active power.

In order to estimate both the reactive power and the active power, we need the stator
flux. The latter is related to both current and voltage.

Equations (22) and (23) show how to obtain the stator flux.{
ϕsα =

∫ t
0 (Vs − Rsisα)dt

ϕsβ =
∫ t

0 (Vs − Rsisβ)dt
(22)

|ϕs| =
√(

ϕ2
sβ + ϕ2

sα

)
(23)

The reference value for both direct and quadrature rotor voltages using the proposed
DVC method is represented by Equation (24):{

Vdr
∗ = (Kp·ed(t) + Ki

∫
ed(t)·dt)λ

+ g M·Vs
Ls

Vqr
∗ = (Kp·eq(t) + Ki

∫
eq(t)·dt)λ − Rr ·Vs

M·ws

(24)

where λ is the fractional order (λ 6= 0), which can take both positive and negative values.
The reference values of both the direct and quadrature rotor voltages are related to the

reactive and active power references, respectively.
The errors of the reactive and active power are given by Equation (25):{

ed = Q∗s −Qs
eq = P∗s − Ps

(25)

If the value of λ is 1, the proposed DVC method becomes the classical DVC method.
This is a positive aspect concerning the proposed method, as it is possible to cross from one
method to another, and this is performed by changing the value of λ only.
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Figure 14 represents the proposed DVC method for improving the performance and
effectiveness of the classical DVC method.
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In Table 2, a comparison is given between the proposed DVC-FOPI using the ANFIS-
PWM technique and the traditional DVC strategy. Through this table, the proposed
DVC-FOPI using the ANFIS-PWM technique is more robust and reduces power ripples
compared to the traditional DVC strategy. In the next section, the results are confirmed,
and the robustness of the proposed DVC-FOPI with the ANFIS-PWM technique is verified
using the Matlab/Simulink software.

Table 2. A comparative study between the traditional and proposed DVC strategies.

Conventional DVC Strategy Proposed DVC Strategy

Type modulation used PWM Intelligent PWM
Type controller used PI controller FOPI controller
Robustness Low High
Rise time High Low
Response dynamic Slow Quick
Degree of complexity Low Low
Ease Low Medium
Simplicity of implementation Low Low
Power ripple High Low
THD High Low
Quality of current Low High

7. Numerical Results

In this part, the designed technique is verified using a simulation in the Matlab
program. In this work, the proposed fractional-order DVC (FODVC) strategy based on the
ANFIS-PWM strategy (FODVC-ANFIS-PWM) is compared with the classical DVC strategy
in terms of THD, ripples of torque, reactive power, current, and active power. A generator
with a large amount of power is used to verify the proposed FODVC-ANFIS-PWM method.
The generator’s parameters are taken from [7,19]: Rs = 0.012 Ω, Psn = 1.5 MW, 380/696 V,
Lr = 0.0136 H, Lm = 0.0135 H, J = 1000 kg·m2, Rr = 0.021 Ω, 50 Hz, Ls = 0.0137 H, p = 2, and
fr = 0.0024 Nm/s.
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The robustness of the proposed FODVC-ANFIS-PWM method of the asynchronous
generator integrated into an MRWT system is verified by using two tests, and this is always
in comparison with the classical DVC method. The first test is used to study the behavior
of the follower of the references, and the second test is used to study the change in the
behavior of the proposed FODVC-ANFIS-PWM method in the event of a change in the
generator’s parameters.

A. First test

The results of this test are shown in Figure 15. Figure 15 represents current, reactive
power, torque, and active power. In this figure, we find that the designed FODVC-ANFIS-
PWM technique gives good results in terms of dynamic response. In addition, reactive and
active power follow the references well, and this is for both the proposed and the traditional
DVC method (see Figure 15a,b). The active power changes according to the change in
wind speed, by which we find that the greater that the wind speed is, the greater that the
value of the active power is, and vice versa. The proposed FODVC-ANFIS-PWM technique
gives satisfactory results in terms of its dynamic response to active power compared to
the classical DVC strategy. Regarding the reactive power, it is zero, with the presence of
ripples. Through these results, the proposed FODVC-ANFIS-PWM technique has a much
better dynamic response to reactive power than the traditional DVC technique.

Figure 15c represents the torque of both strategies, and it takes the form of active power,
as its value is affected by wind speed. Moreover, torque is related to active power, and its
value increases as the value of the active power increases, as we find the value of the torque
ranging between 0 Nm and −9000 Nm. Concerning the current, it is shown in Figure 15d,
where it is a sinusoidal current and where it is also related to wind speed. The change in
current is related to the change in wind speed. Moreover, the current takes the form of active
power, and its value increases as the value of the active power increases. We find that the
largest value of the current is about 3000 A, and the lowest value is about 3000 A.

Figure 15e,f show the THD value of the stator current of both techniques. In Figure 15e,f,
it can be observed that the THD value is reduced for the proposed FODVC-ANFIS-PWM
technique (0.10%) in comparison to the DVC technique (1.18%). The proposed FODVC-ANFIS-
PWM technique minimizes the THD value of stator current by about 91.52%.

Figure 16 represents the ripples of the reactive power, torque, active power, and stator
current of the traditional and proposed FODVC-ANFIS-PWM strategies. In this figure,
the proposed FODVC-ANFIS-PWM strategy minimizes the ripples in the torque, reactive
power, stator current, and reactive power in comparison to the classical DVC strategy.

B. Robustness test

In this test, the values of Rs, Ls, M, Lr, and Rr are changed to new values in order to
study the behavior of the proposed method compared with the classical method. Moreover,
this is performed in order to know the extent to which the proposed method is affected
compared to the classical DVC technique in case the parameters of the studied system
change. In this test, the values of Ls, Lr, Rs, Lm, and Rr become 0.00685 H, 0.0068 H, 0.024 Ω,
0.00675 H, and 0.042 Ω, respectively. The results obtained are illustrated in Figure 17a–f.
Figure 17 represents the current, reactive power, torque, and active power of the proposed
and traditional techniques. In these figures, the reactive power and the active power follow
the references well, with a preference for the proposed FODVC-ANFIS-PWM method in
the aspect of the speed of response time (see Figure 17a,b).
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Figure 15. Simulated results from the first test.
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Figure 16. Zoom in the reactive power, torque, active power, and current.
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Figure 17. Simulated results from the second test.

The current and torque are represented in Figure 17c,d, and each of them takes the
same form as the active power, for which the greater that the value of the active power is,
the greater that the values of both current and torque are. The maximum torque is 100 Nm,
and the minimum value is −10,000 Nm for both DVC methods. The proposed FODVC-
ANFIS-PWM method in this test gives an excellent value of THD (0.45%) compared to the
DVC method (12.47%), and the reduction ratio is about 96.45%. Despite a change in some
parameters of the generator, the proposed FODVC-ANFIS-PWM technique gives excellent
results in terms of the value of the ripples’ amplitude of torque, current, reactive power,
and active power compared to those of the traditional DVC method (See Figure 18a–f).

The results obtained from the two tests are shown in Table 3. In this table, the designed
FODVC-ANFIS-PWM technique gives excellent results in terms of reducing the ripples of
reactive power, torque, active power, and current, and this indicates the robustness of the
designed strategy. Moreover, the proposed FODVC-ANFIS-PWM technique minimizes the
active power ripple’s amplitude compared to the DVC method by about 99.99% and 99.96%
in the first and second tests, respectively. Regarding the reactive power, the percentages are
99.93% and 99.97% in the first and second tests, respectively.
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Figure 18. Zoom in the reactive power, active power, torque, and current.

Table 3. A comparative study between the two techniques.

Reactive Power (VAR) Torque (Nm) Current (A) Active Power (W)

DVC strategy First test 60,000 150 100 30,000
Second test 309,000 800 200 100,000

FODVC-ANFIS-PWM
strategy

First test 40 10 15 10
Second test 80 20 20 40

Ratios First test 99.93% 93.33% 85% 99.99%
Second test 99.97% 97.50% 90% 99.96%

In the case of electromagnetic torque, the reduction rates are 93.33% and 97.50%
in the first and second tests, respectively. The same applies to the stator current. The
proposed FODVC-ANFIS-PWM method provides excellent ratios in the case of the two
tests compared to the DVC strategy.

The proposed FOPI controller allows for smoother control of active and reactive
power, and it minimizes the ripples of the torque, active power, and current of the AG-
based MRWT system. The results show a significant reduction in electric current ripples
and an improvement in the quality of the energy produced. It has already been shown that
the FOPI controller is superior to the PI controller during sudden changes in wind speed,
and this is in the case of either changing or not changing the parameters of the generator. In
this paper, the RSC control method is implemented separately using the PI and proposed
FOPI controller to compare their performances in the case of variable wind speed. The
simulation results are shown in Figures 15 and 17 and in Table 3. The results show that,
using a proposed FOPI controller, the amplitude of the ripples of torque, current, and
active power is reduced. Therefore, the proposed FOPI controller has better performance
and is more efficient in DFIG power control compared to other consoles. This indicates
the robustness of the designed FODVC-ANFIS-PWM strategy in improving the quality of
active power and electric current.

In Table 4, the THD ratio of the electric current of the asynchronous generator obtained
by the proposed FODVC-ANFIS-PWM method is compared with that obtained in some
papers published in the most prestigious scientific journals. In this table, the designed
FODVC-ANFIS-PWM technique provides a better THD value than several techniques, such
as DTC, DPC, and indirect field-oriented control.
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Table 4. A comparative study between the designed FODVC-ANFIS-PWM strategy and other works
in terms of the value of THD.

Techniques THD (%)

Ref. [58] Direct torque control 2.57

Ref. [59] Power control
Strategy 1 5.6817

Strategy 2 3.1873

Ref. [60] Field-oriented control 3.7

Ref. [61]
Classical direct torque control 6.70

Fuzzy direct torque control 2.40

Ref. [62] Direct power control with IP controllers 0.43

Ref. [63] Indirect field-oriented control 6.5

Ref. [64] 12 sectors direct power control 0.40

Ref. [65] Fuzzy sliding mode control 1.15

Ref. [66]
Direct torque control 7.83

Neural direct torque control 3.26

Ref. [22] Second-order sliding mode control 3.13

Ref. [67]
DTC technique using L-filter 10.79

DPC strategy using LCL-filter 4.05

Ref. [68] DPC strategy with STA controller 1.66

Ref. [23] DVC with synergetic sliding mode controller 0.50

Ref. [69]
Integral sliding mode control 9.71

Multi-resonant-based sliding mode controller 3.14

Ref. [70]
Two-level direct torque control 8.75

Three-level direct torque control 1.57

Ref. [71] Genetic Algorithm Least Squares Wavelet Support Vector
Machines (GA-LS-WSVM) method 3.39

Designed FODVC-ANFIS-PWM technique
First test 0.10

Second test 0.45

8. Conclusions

In this work, an electric power generation system using multi-rotor wind energy is
presented, in which an asynchronous generator is used to generate electric current due to
its durability. In order to control the generator, a new, more robust direct vector control
strategy is proposed based on the use of both the proposed FOPI controller and the designed
intelligent PWM technique. The proposed FODVC-ANFIS-PWM technique is compared
with the classical DVC technique, and the designed FODVC-ANFIS-PWM technique is
implemented in the Matlab program. The simulation results show the characteristics of
the designed FODVC-ANFIS-PWM technique in the case of changing the generator’s
parameters and in the case of changing wind speed. The proposed FODVC-ANFIS-PWM
method reduces the ripples of active power, torque, current, and reactive power compared
to the classical DVC method. Moreover, the THD ratio of the current is reduced compared
to the DVC technique.

The results obtained from this work can be summarized in the following points:

• A new fractional-order PI controller is presented and applied to the DVC strategy.
• A novel PWM strategy based on an ANFIS algorithm was presented to control the

inverter of the generator to reduce torque, active power, current, and reactive power
ripples.
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• A robust strategy is proposed that reduces the THD value of the current.
• A new robust control strategy is proposed and presented.

In future work, a new way to control an asynchronous generator by integrating
between nonlinear methods and artificial intelligence methods, such as the PSO algorithm
and genetic algorithm, can be tested. Additionally, experimental testing of the method
proposed in this paper can be considered.
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