
Citation: Xia, C.; Wang, Z.; Wang, Z.

The Refinement of Petri Net with

Inhibitor Arcs Based Representation

for Embedded Systems. Electronics

2022, 11, 1389. https://doi.org/

10.3390/electronics11091389

Academic Editors: Nikos Petrellis,

Lambros T. Doulos and George

K. Adam

Received: 29 March 2022

Accepted: 22 April 2022

Published: 26 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

The Refinement of Petri Net with Inhibitor Arcs Based
Representation for Embedded Systems
Chuanliang Xia *, Zhuangzhuang Wang and Zhong Wang

School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China;
w18596360835@outlook.com (Z.W.); wangzhong@sdjzu.edu.cn (Z.W.)
* Correspondence: chuanliang_xia@sdjzu.edu.cn

Abstract: Embedded systems are widely used in various devices. PRES+ (Petri net- based Represen-
tation for Embedded Systems) has been used to model and analyze embedded systems. However,
it cannot characterize the priority of events, and cannot fully express the complex data flow and
control flow. To solve this problem, inhibitor arcs are added to PRES+ and PIRES+ (PRES+ with
Inhibitor arcs) is obtained. However, PIRES+’s state space explosion problem is a handicap when
modeling, verifying, and controlling complex, large embedded systems. To mitigate the state space
explosion problem of PIRES+ and analyze complex embedded systems, we propose the place refine-
ment approach and the place set refinement approach for PIRES+. Under specific conditions, several
important properties of PIRES+, such as timing, functionality, reachability, liveness, and boundedness,
are preserved by using these refinement approaches. In order to illustrate the effectiveness of these
refinement methods, as an example, the modeling and analysis of a network communication system
is proposed. The refinement methods proposed have certain feasibility and practicability and provide
a more practical theoretical basis for the modeling of some embedded systems.

Keywords: Petri nets; refinement; modeling; reachability; embedded system design

1. Introduction

Embedded systems are used in diverse contexts from automobiles to communication
systems, home appliances, and the Internet of Things, and are becoming more and more
complex with increasing requirements. Therefore, higher requirements are put forward for
the reliability, correctness, and timing of the embedded system, so it is important to focus
on both how to model embedded systems and how to guarantee their correctness.

In the literature, there exist many models to represent embedded systems [1,2], such
as finite state machines [3], data flow graphs [4], Petri nets [5], and communicating pro-
cesses [6], etc. These formal modeling methods describe the characteristics of embedded
systems from different aspects, but do not form a unified standard. Petri net has a formal
mathematical definition and standardized derivation rules, which is a more standardized
formal modeling method.

Ordinary Petri nets can describe systems with features such as concurrency, conflict,
and uncertainty. However, there are several drawbacks when it comes to modeling embed-
ded systems: ordinary Petri nets have no hierarchical structure, lack the notion of time,
and have a limited ability to describe data flows. In order to overcome these drawbacks,
several extended Petri nets for an embedded system’s modeling have been proposed, such
as colored Petri net [7], logical delay Petri net, time Petri net [8], hybrid Petri net, fuzzy
Petri net, PRES+ (Petri net-based Representation for Embedded Systems) [9], etc. These
extended forms of Petri nets start from different application requirements and improve the
ability to model and analyze embedded systems.

Among them, PRES+ is an extended Petri net, and has previously been presented to
represent embedded systems. Based on PRES+, Cortés et al. [9] proposed a computation
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model for embedded systems and gave a method to solve the formal verification problem
of the PRES+ model. Karlsson et al. [10] proposed a verification approach for the PRES+ by
using a divide-and-conquer approach. In order to enhance the verification effectiveness of
PRES+, Xia [11] presented transition refinement method. A sharing synthesis approach for
PRES+ is presented in [12]. Under certain constraints, the synthesis PRES+ will preserve
boundedness and liveness. A more formal successor marking definition of PRES+ is
proposed in [13]. In order to analyze complex embedded systems, Xia et al. [14] proposed
two kinds of transition synthesis methods for PRES+.

Although PRES+ can represent the embedded system at different levels, capture the
real-time information of the embedded system, and describe the uncertainty of the system,
the PRES+ model cannot describe the priority of events, and cannot fully express the
complex data flow and control flow.

Adding inhibitor arcs to Petri nets can improve the analysis ability of Petri nets [15].
The Petri net with inhibitor arcs not only has the ability of zero detection, but also can
simulate any random access machine. Inhibitor arcs can be used to control the sequence of
transitions and describe the priority relationship between events. In embedded systems,
some transitions occur successively under certain conditions, which affect the expression of
data flow and control flow. Therefore, it is necessary to introduce inhibitor arcs. In order to
improve the modeling and analysis ability of PRES+, we add inhibitor arcs into PRES+, and
obtain PIRES+ (Petri net with Inhibitor arcs-based Representation for Embedded Systems).

However, when large complex embedded systems are modeled by PIRES+, the state
space explosion problem is a major disadvantage for PIRES+. In the literature, many
authors have investigated Petri net transformation methods to mitigate the problem of state
space explosion. The three popular transformations of Petri net are refinement [11,16–29],
reduction [30–33], and synthesis [12,14,34–39].

Petri net-based refinement is an important method to system design and verification.
As for refinement, Huang et al. [16] presented several refinement conditions to preserve
19 properties for Place/Transition Petri nets. Padberg et al. [17] provided a thorough survey
of refinements based on several nets, namely place/transition nets, predicate/transition
nets, and elementary nets. For colored Petri nets (CPNs), Lakos et al. [18] gave three types
of refinement: node refinement, type refinement, and subnet refinement. Mejía et al. [19]
presented a refinement process for extended attribute time place Petri nets. For workflow
nets, Hee et al. [20] proposed several refinement rules which preserve soundness under
certain conditions. Li et al. [21] defined algebraic steps for refinement and reduction, and
investigated the Petri net property preservation. Xia [22] proposed a place type refinement
method for ordinary Petri nets. Under certain conditions, liveness, boundedness, and
reversibility of these refined nets are preserved.

A top-down methodology achieves a formal specification of the logic control structure,
refines the model so that more system operation details can be included, and consequently
implements the control at a physical level [23]. Choppy et al. [24] investigated a refinement
method of colored Petri net subclass and proved the correctness of this method. For a kind
of well-behaved Petri net, Ding et al. [25] proposed a refinement approach. Wang et al. [26]
proposed a refinement approach which may not require reachability analysis. For sys-
tems specified in Elementary Net Systems, Bernardinello et al. [27] presented a refinement
method for distributed systems. Lacheheub et al. [28] focused on analyzing the transfor-
mation of the business process (BP) to the Petri net and gave the transition refinement
operation to verify soundness, liveness, and boundedness. Based on the UML state machine
and the Petri net model, Łabiak et al. [29] presented a design of digital controllers. Petri
nets were applied for macroplaces’ hierarchy and some elements of modularity.

Cortés et al. [9] extended PRES+ by introducing the definition of hierarchy and pro-
posed some concepts of equivalence for the PRES+ model. A strong refinement and a wake
refinement of a certain transition were presented. These refinements preserve equivalence.
In [11], we extended the concepts of refinement in [9] and investigated transition refinement
approaches for PRES+.



Electronics 2022, 11, 1389 3 of 16

In order to model, analyze, and verify large complex embedded systems, and to
resolve PIRES+’s state space explosion problem, the main contributions of this work
include: (1) refinement methods for PIRES+ are proposed; (2) the property preservation of
the refinement methods is investigated.

Compared with several refinement methods for ordinary Petri nets [16,22], Colored
Petri nets [18], and PRES+ [9,11], the refinement methods for PIRES+ can nicely describe
the characteristics of embedded systems.

Specifically, we first give the refinement approaches for PIRES+, and then investigate
their property preservations. Under some constraints, reachability, timing, functionality,
liveness, and boundedness of PIRES+ are preserved. Since these refinement methods can
preserve these important properties, there is no need for using reachability analysis when
the PIRES+ model is expanded. Thus, these refinement approaches can mitigate PRES+’s
state space explosion problem.

The rest of the paper is structured as follows. Basic notions of PIRES+ are presented
in Section 2. Section 3 proposes the refinement methods of PIRES+. Section 4 investigates
reachability, functionality, and timing preservation. Section 5 studies the preservation of
boundedness and liveness of PIRES+. Section 6 illustrates the efficiency of the PIRES+
refinement methods with an applicable example. We conclude by summarizing the contri-
butions of the refinement technique in Section 7.

2. Basic Notions of PIRES+

In the following, we add inhibitor arcs into PRES+, and obtain PIRES+. The PIRES+
model can capture an embedded system’s timing aspects and obtain both control and data
information which fully express complex data flow and control flow.

Definition 1. A Petri net with inhibitor arcs is a five-tuple N = (P, T, F, I, M), where (P, T, F)
represents a net, M0 is the initial marking, I ⊂ P× T is a set of inhibitor arcs, I ∩ F = ∅.

Figure 1 shows an example of the Petri net with inhibitor arcs. For example, there
are inhibition arcs I = {(p3, t1), (p6, t2)} in Figure 1. The initial marking is [1,0,1,0,0,0]T.
At the initial marking M0, for transitions t1 and t2, ∀pεti : M(p) ≥ 1, i ∈ {1, 2}. Since
M0(p3) = 1 and (p3, t1) ∈ I, t1 is not an enabled transition. At the same time, (p6, t2) ∈ I,
and M0(p6) = 0, t2 is an enabled transition.
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Figure 1. A Petri net with inhibitor arcs.

Definition 2. Ref. [9] A PRES+ model is N = (P, T, I, O, M0), where P = {p1 , p2, . . . . . . , pm}
is a finite non-empty set of places, T = {t1 , t2, . . . . . . , tn} is a finite non-empty set of transitions,
I ⊆ P× T is a finite non-empty set of input arcs, O ⊆ T × P is a finite non-empty set of output
arcs, and M0 is the initial marking, k = 〈v, r〉 is a token, where v is the token value, and r is the
token time.
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The inhibitor arcs are added to the PRES+, the PIRES+ (PRES+ with inhibitor arcs)
is obtained.

Definition 3. N = (P, T, FI , FO, I, M0) is a PIRES+ model, where P = {p1 , p2, . . . . . . , pm} is
a finite non-empty set of places, T = {t1 , t2, . . . . . . , tn} is a finite non-empty set of transitions,
FI ⊆ P× T is a finite non-empty set of input arcs, FO ⊆ T× P is a finite non-empty set of output
arcs, I ⊂ P× T is a set of inhibitor arcs, and M0 is the initial marking.

Figure 2 gives an example of a PIRES+ model, where P = {p0, p1, p2, p3, p4, p5},
T = {t0, t1, t2, t3, t4}, FI = {(p0, t0), (p1, t1), (p1, t4), (p2, t2), (p3, t2), (p4, t3), (p5, t2)},
FO = {(t0, p1 ), (t0, p2), (t1, p3), ( t2, p4), (t3, p0), (t4, p3)}, and I = {(p5, t4)}.
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Figure 2. A PIRES+ model.

Definition 4. A token in PIRES+ is k = 〈v, r〉, where v is the token value, and r is the token time,
which is a nonnegative real number describing the time stamp of the token.

In Figure 2, for instance, the token of place p0 is k0 = 〈3, 0〉, where the token value is 3
and the time stamp is 0.

Definition 5. For every transition t ∈ T, there is transition function . f : τ(p1) × τ(p2) ×
. . . . . .× τ(pa)→ τ(q)., where τ is a type function, •t = {p1, p2, . . . . . . , pa}, q ∈ t•.

For instance, in Figure 2, t1 has the function f1 = v1 + 3, where v1 is the value of the
token that will appear in p1, and after t1 fires, the value of the token in p3 will be the value
of the token in p1 plus 3.

Definition 6. For every transition t ∈ T, there are d−, d+ ∈ R+, where d− is a minimum delay,
d+ is a maximum delay, and R+ is the non-negative real number set.

For instance, in Figure 2, the delay of t3 is [2,5].

Definition 7. A transition t ∈ T may have a guard G: τ(p1)× τ(p2)× . . . . . .× τ(pa)→ {0, 1} ,
where •t = {p1, p2, . . . . . . , pa}.

The guard is an important factor to determine whether t can be enabled. In Figure 2,
transition t2 has guard G = TURE if v3 > v2, where v2 and v3 are the values of the tokens
in places p2 and p3, respectively.
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Definition 8. b = (k1, k2, . . . . . . , ka) is a binding of transition t, where ∀pi ∈ •t, ki ∈ M(pi).

Definition 9. Ref. [9] For an enabled transition t, there exists the enabling time et, where et is the
time instant at which t becomes enabled and is given by the maximum token time of the tokens in
the binding.

Definition 10. For an enabled transition t, there exists the earliest trigger time t− = et + d− and
the latest trigger time t+ = et + d+.

As in P/T Petri nets, when a transition is enabled in the PIRES+ model, it can be fired.

Definition 11. The firing of transition t for a binding b changes M into a new marking M′:
(i) Tokens from •t are removed, i.e., ∀pi ∈ •t, M′(pi) = M(pi)− {ki}.
(ii) A new token k = 〈v, r〉 is put into each place of t•, i.e., M′(p) = M(p) + {k} for every

p ∈ •t.
(iii) The marking of places different from •t and t • remain unchanged, i.e., ∀p ∈ P− {•t ∪ t•},

M′(p) = M(p).

3. Refinement Operations for PIRES+

In this section, we will investigate the refinement operation for the PIRES+ model. First,
several relevant concepts will be proposed. Then, we propose the refinement operations.

Definition 12. Suppose N = (P, T, FI, FO, I, M0) is a PIRES+ model. Np = (Pp, Tp, FIp, FOp, Ip, Mp,0)
is called a place subnet of N if and only if:

(i) Pp ⊂ P, Tp ⊂ T and Pp 6= ∅, Tp 6= ∅;
(ii) FIp = FI ∩

(
Pp × Tp

)
and FOp = FO ∩

(
Tp × Pp

)
;

(iii) •Tp ∪ Tp• ⊆ Pp;
(iv) Ip ⊆ I;
(v) Np is connected, {pin, pout} ⊆ Pp, where pin is the only input place of Np, pout is the only

output place of Np;
(vi) ∀t ∈ TP, ∃ f : τ(p1)× τ(p2)× . . . . . .× τ(pa)→ τ(q) (where q ∈ t•,•t = {p1, . . . . . . , pa });
(vii) ∀t ∈ TP, ∃d−, d+ ∈ R+, where d− is a minimum delay, d+ is a maximum delay, R+ is the

set of non-negative real numbers, and d− ≤ d+.

Definition 13 For the transition set Tp of Np, there is a minimum delay d−p and a maximum delay
d+p , i.e., ∃d−p , d+p ∈ R+ such that d−p ≤ d+p .

Definition 14. For the transition set Tp of Np, there exists a transition set function fp, i.e.,
∃ fp : τ(p1)× τ(p2)× . . . . . .× τ(pa)→ τ(q) , where •Tp = {p1, p2, . . . . . . , pn} and q ∈ Tp•.

In order to investigate property preservations in Sections 4 and 5, we propose the
following supposition for the PIRES+ subnet.

Supposition 1. Suppose that PIRES+ subnet Np =
(

Pp, Tp, FIp, FOp, Ip, Mp,0
)

satisfies:

(i) In a process, i.e., tokens flow from outside of Np into pin, through Np, then flow out from pout,
the tokens’ number flowing into pin is equal to that flowing out from pout.

(ii) pin is the unique place of Pp which may contain tokens.

In this subsection, we present the PIRES+ refinement operations.

Definition 15. PIRES+ refinement operation Re fp
(

pp, Np
)
: let the refined PIRES+ N′ =

(P′, T′, FI
′, FO

′, I′, M0
′) be obtained from N = (P, T, FI , FO, I, M0) using Np = (Pp, Tp, FIp,

FOp, Ip Mp,0) to replace pp where,

(i) P′ = Pp ∪ P−
{

pp
}

; T′ = Tp ∪ T; I′ = I ∪ Ip;
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(ii) If (p, t) ∈ FIp ∪ FI , then (p, t) ∈ FI
′; If (t, p) ∈ FOp ∪ FO, then (t, p) ∈ FO

′;
(iii) If

(
t, pp

)
∈ FO, then (t, pin) ∈ FO

′; If
(

pp, t
)
∈ FI , then (pout, t) ∈ FI

′;

(iv) M0′ =


(

M(P−{pp})0, θp

)
M0
(

pp
)
= 0(

M(P−{pp}), θp0

)
M0
(

pp
)
> 0

(where M(P−{pp}) is the projection of M on

P−
{

pp
}

, and θp is 0-vector of Mp);
(v) fp ◦ f•pin = f•pp , fout• = fpp•;
(vi) d−•pin

+ d−p = d−•pp , d+•pin
+ d+p = d+•pp ; d−pout• = d−pp• , d+pout• = d+pp•.

Note that, although in Definition 15, only pp of N is replaced by a subnet Np, this
refinement operation can be extended to the place set refinement operation. Let the place
set Pset have a finite number of places. Every place of Pset may not be in conflict with other
places of Pset, i.e., ∀p1, p2 ∈ Pset, •p1 ∩ •p2 = ∅ and p1• ∩ p2• = ∅ (where p1 6= p2). In other
words, every place of Pset may not share output transitions and input transitions with other
places of Pset.

Supposition 2. Suppose (i) Pset = {p1, p2, . . . . . . , pm}(m ≥ 2) is a place set of N, with •pi ∩•pj
= ∅ and pi• ∩ pj• = ∅ for ∀pi, pj ∈ Pset (where i 6= j); (ii) Nset =

(
Np1, Np2, . . . . . . , Npm

)
,

where Npi(i = 1, 2, . . . . . . , m) is the subnet of N.

Definition 16. PIRES+ place set refinement operation Re fpset(Pset, Nset) : let the refined PIRES+
N′ = (P′, T′, FI

′, FO
′, I′, M0

′) be obtained from N = (P, T, FI , FO, I, M0) using place subnets
Np1, Np2, . . . . . . , Npm to replace p1, p2, . . . . . . , pm of Pset, respectively.

Note that, since every place of Pset may not share output transitions and input transi-
tions with other places of Pset, the specific execution process of this place set operation is as
follows. First, let N1 = (P1, T1, FI1, FO1, I1, M1,0) be obtained from N = (P, T, FI , FO, I, M0)
using Np1 to replace p1 of N; second, let N2 = (P2, T2, FI2, FO2, I2, M2,0) be obtained
from N1 = (P1, T1, FI1, FO1, I1, M1,0) using Np2 to replace p2 of N1; . . . ; last, let N′ =
(P′, T′, FI

′, FO
′, I′, M0

′) be obtained from Nm−1 = (Pm−1, Tm−1, FI,m−1, FO,m−1, Im−1, Mm−1,0)
using Npm to replace pm of Nm−1.

4. Preservation of Reachability, Timing, and Functionality for PIRES+

In this section, we investigate the preservation of reachability, functionality, and timing
of the refined PIRES+ model by using the refinement operations. First, we propose the
concepts of the property preservations of PIRES+. Second, we study the reachability, timing,
and functionality preservations of PIRES+.

Definition 17. PIRES+ subnets Np1 and Np2 are said to have the same reachability iff:

(i) The input place’s number and the output place’s number of Np1 are the same as those of Np2;
(ii) The tokens’ number within the input places of Np1 is equal to that of Np2, and when these

tokens go through Np1 and Np2, respectively, the number of tokens of Np1 is the same as that
of Np2.

Definition 18. PIRES+ subnets Np1 and Np2 are said to have the same functionality iff:

(i) The reachability of Np1 is the same as that of Np2 ;
(ii) If when the token type of tokens in the input places of Np1 is equal to that of Np2, then the

token type of tokens in the output places of Np1 is equal to that of Np2.

Definition 19. PIRES+ subnets Np1 and Np2 are said to have the same timing iff:

(i) The reachability of Np1 is the same as that of Np2;
(ii) The token time of tokens in the input places of Np1 is equal to that of Np2, and the token time

of tokens in the output places of Np1 is equal to that of Np2.
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In the following, reachability, functionality, and timing preservations of these refine-
ment operations will be investigated.

Theorem 1. Let PIRES+ N′ = (P′, T′, FI
′, FO

′, I′, M0
′) be obtained from N = (P, T, FI , FO, I, M0)

using PIRES+ refinement operation Re fp
(

pp, Npp
)
. Then, N’ and N have the same reachability,

functionality, and timing.

Proof. Suppose subnet N1 = (P1, T1, FI1, FO1, I1, M1,0), where P1 = {• (•pp), pp,
(

pp•
)
•
}

,
T1 =

{
•pp

}
∪
{

pp•
}

, FI1 =
{(

pp, t
)∣∣t ∈ pp•

}
∪
{
(p, t)

∣∣p ∈ •(•pp
)
∧ t ∈ •pp

}
, FO1 ={

(t, p)
∣∣t ∈ pp• ∧ p ∈

(
pp•
)
• ∪

{(
t, pp

)∣∣t ∈ •pp
}

, I1 = ∅, Mpp,0 = M0

∣∣∣Ppp .

Suppose subnet N2 = (P2, T2, FI2, FO2, I2, M2,0) where P2 =
{
•
(
•pp
)
,
(

pp•
)
•
}
∪ Ppp,

T2 =
{(
•pp
)
,
(

pp•
)
∪ Tpp

}
, FI2 = FIpp ∪

{
(p, t)t ∈ •pp ∧ p ∈ •

(
•pp
)
∪
{
(pout, t)t ∈ pp•

}}
,

FO2 = FOpp ∪
{
(t, pin)t ∈ •pp ∪

{
t, p)p ∈

(
pp•
)
• ∧ t ∈ pp•

}}
, I2 = Ipp ∪ I1. If p ∈ Ppp, then

M2,0(p) = Mpp,0(p). If p ∈
{
•
(
•pp
)
,
(

pp•
)
•
}

, then M2,0(p) = Mpp,0
({(

pp•
)
• ∪ •

(
•pp
)})

(p).
�

We can see that N1 and N2 have the same input places and output places. According
to Definition 15, the number of tokens in input places of N1 is the same as that of N2. Since
PIRES+ N′ is obtained from N by using N2 to replace pp, by Supposition 1, Definitions 12,
15, the number of tokens in output places of N1 is the same as that of N2. By Definition 17,
N′ and N have the same reachability.

According to Definition 15, the type of tokens in input places of N1 is the same as that
of N2. Since fpp ◦ f•pin = f•pp , fpout• = fpp• , then the type of tokens in output places of N1
is the same as that of N2. By Definition 18, N′ and N have the same functionality.

By Definition 15, the time of tokens in input places of N1 is the same as that of N2.
Since d−•pin

+ d−pp = d−•pp , d+•pin
+ d+pp = d+•pp , d−pout• = d−pp• and d+pout• = d+pp•, by Definition

15, the time of tokens in output places of N1 is the same as that of N2. By Definition 19, N′

and N have the same timing.
Since N′ − N2 = N− N1, then N′ and N have the same reachability, functionality, and

timing. �
Note that, by Supposition 2, Definitions 15, 16, and Theorem 1, we can analyze the

reachability, timing, and functionality preservations of the place set refinement operation.

Theorem 2. Suppose Pp = {p1, p2, . . . . . . , pm} (m ≥ 2) is the place set of PRES+ N, and
∀pi, pj ∈ Pp (where i 6= j), •pi ∩ •pj = ∅ and pi• ∩ pj• = ∅. Let N′ = (P′, T′, FI

′, FO
′, I′, M0

′)
be obtained from N = (P, T, FI , FO, I, M0) using place set refinement operation Re fPp

(
Pp, Np

)
.

Then, N′ and N have the same reachability, functionality, and timing.

Proof. Since Pp = {p1, p2, . . . . . . , pm} (m ≥ 2) is the place set of N, and ∀ pi, pj ∈ Pp (where
i 6= j), •pi ∩ •pj = ∅ and pi• ∩ pj• = ∅, we can refine these places one by one. First, let
N1 = (P1, T1, FI1, FO1, I1, M1,0) be obtained from N = (P, T, FI , FO, I, M0) using Npp1 to
replace p1 of N, by the proof process of Theorem 1, N1 and N have the same reachability,
functionality, and timing. Second, let N2 = (P2, T2, FI2, FO2, I2, M2,0) be obtained from
N1 = (P1, T1, FI1, FO1, I1, M1,0) using Npp2 to replace p2 of N2, by the proof process of
Theorem 1, N2 and N1 have the same reachability, functionality, and timing. In the case of
p3, . . . . . . , pm, we can prove it in the same way. Thus, N′ and N have the same reachability,
functionality, and timing. �

5. Preservation of Liveness and Boundedness for PIRES+

In Petri net system, liveness and boundedness are the two important behavior proper-
ties. The liveness reflects that the net system can complete any part of work in any state.
This means that there is no local deadlock in the Petri net system. The boundedness reflects
the overflow resistance of the Petri net system.
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Some studies have been conducted in the field of Petri net refinement aiming to real-
ize the preservation of liveness and boundness [11,16,17,22]. Huang et al. [16] proposed
several refinement approaches for Place/Transition Petri nets to preserve liveness and
boundedness. Xia [22] presented a refinement operation for ordinary Petri nets and in-
vestigated the preservation of reversibility, boundedness, and liveness of the refined nets.
In [11], we analyzed a kind of transition refinement method for PRES+ to preserve liveness
and boundedness.

In this section, we investigate the refinement method of PIRES+, and propose certain
constraints to preserve liveness and boundedness of PIRES+.

To explore the preservation of liveness and boundedness of the refinement approaches,
the concepts of the state, liveness, and boundedness of PIRES+ should be presented.

Definition 20. S = (Mv, J) is said to be a state of PIRES+ model N = (P, T, FI , FO, I, M0),
where Mv ∈ R(M0) (where R(M0) is the marking reachable set), and J : T → R+ ∪ {#} (where
# denotes the unusable status).

Definition 21. S0 = (M0, J0) with J0(t) =

{
0 M0 (p) ≥W(p, t) ∀p ∈ •t

#, otherwise
(where W(p, t)

denotes the weight function on (p, t)) is called the initial state of N.

Definition 22. Let Z = (P, T, FI , FO, I) be the skeleton of N = (P, T, FI , FO, I, M0). Σ = (Z, S0)
(where S0 = (M0, J0)) is called the PIRES+ net system of N = (P, T, FI , FO, I, M0).

Definition 23. Let S be a reachable state, and t ∈ T. If ∀ S′ ∈ RN(S), ∃S”∈ RN(S′), such that
S” t→, then t is said to be live. If ∀t, t is live, then Σ = (Z, S0) is said to be live.

Definition 24. If S ∈ RN (S0), ∃K > 0 (where K is a natural number) such that M(p) ≤ K, then
p is called bounded. For ∀ p, if p is bounded, then the PIRES+ net system Σ = (Z, S0) is said to
be bounded.

In order to investigate liveness and boundedness preservations of the refinement
operations, the concept of the PIRES+ place-closed net system should be proposed.

Definition 25. Σ = (Zp, Sp0) is called a place-closed PIRES+ net system if we add a tran-

sition tp (where its transition delay is
[
d−tp

, d+tp

]
, and the transition function is ftp ) and arcs{(

p, tp
)∣∣p ∈ (pp•

)
•
}

,
{(

tp, p
)∣∣p ∈ •(•pp

)}
, to

(
Zp, Sp0

)
and the marking of

(
Zp, Sp0

)
is

preserved.
In the following, the preservation of liveness and boundedness for PIRES+ will be studied.

Theorem 3. Suppose PIRES+ net system Σ′ = (Z′, S0
′) is obtained from Σ = (Z, S0) by the

refinement operation Re fp
(

pp, Np
)
. If •

(
•ppin

)
∈
{

p
∣∣M′0(p)

〉
0∧ p ∈ P′

}
, then Σ′ = (Z′, S0

′)

is live iff Σ = (Z, S0) and Σ = (Zp, Sp,0) are live.

Proof. (If) ∀t′ ∈ T′, there exists t′ ∈ T or t′ ∈ Tp in Σ′ = (Z′, S0
′). According to Supposition

1, for ∀S′ ∈ R(M0
′) (where S′ =

[
M(P−{pp}), Mp

]
), there exists M ∈ R(M0) and Mp ∈

R
(

Mp,0
)
. If t′ ∈ T, according to Definition 23, ∃M ∈ R(M), S t′→ for M ∈ R(M0). Accord-

ing to Definition 23, Definition 15, and Supposition 1, ∃S0
′ =

((
M(P−{pp}), Mp

)
, J0
′
)
∈

R(M′), such that S t′→ (where M ∈ R(M), Mp ∈ R
(

Mp
)
). So, in Σ′ = (Z′, S0

′), t′ is live. If

t′ ∈ Tp, according to Definition 23, ∃Mp ∈ R
(

Mp
)
, such that Sp

t′→. According to Definition

23, Definition 15, and Supposition 1, ∃S0
′ ′ =

((
M′(P−{pp}), Mp

)
, J0
′
)
∈ R(M′), such that

S′ ′ t′→. Then, t′ is live in Σ′ = (Z′, S0
′).
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(Only-if) Let Σ′ = (Z′, S0
′) be live. Suppose that Σ = (Z, S0) is not live, that is,

∃S ∈ R(S0), ∃t ∈ T, ∀S ∈ R(S), such that ¬
(

S t→
)

. Suppose S{P−pp},0
σ,τ→ S σ,τ→ S, where

σ, σ ∈ T, and S{P−pp},0 is the projection of S′ ′ on P−
{

pp
}

. Next, we add corresponding

transition step σp of Σp =
(
Zp, Sp,0

)
and obtain σ′, σ∗ ∈ T′′ , S{P−pp},0

σ,τ→ S{P−pp}
σ,τ→

S{P−pp}. According to Definition 23, Definition 15, and Supposition 1, S0
′ σ′ ,τ′→ S′ ′ σ′′ ,τ′′→

S′ ′, the projection of S′ ′ on Σ is S, then ∃t′ ∈ T′, S′ ′ ∈ R(S0
′ ′), ∀S′ ′ ∈ R(S′), such that

¬(S t′→)→ ¬(S′ ′ t′→) . That conflicts with the liveness of Σ′ = (Z′, S0
′). Hence, there exist

S0
′ ′, S0

′ ′ ′ ∈ R(S0
′), such that Σ = (Z, S0) obtained from (Z′, S0

′ ′) is live and Σp =
(
Zp, Sp,0

)
obtained from (Z′ ′, S0

′ ′ ′) is live. Since •
(
•ppin

)
∈
{

pM′0(p) > 0∧ p ∈ P′
}

, then Σ = (Z, S0)

and Σ = (Zp, Sp,0) are live. �

Theorem 4. Suppose that the PIRES+ net system Σ′ = (Z′, S0
′) is obtained from Σ = (Z, S0)

by refinement operation Re fp
(

pp, Np
)
. Σ′ = (Z′, S0

′) is bounded iff Σ = (Z, S0) and Σ = (Zp,
Sp,0) are bounded.

Proof. (If) Since Σ = (Z, S0) is bounded, ∀p ∈ P, ∃k1 > 0 such that ∀S ∈ R(S0), M(p) ≤ k1.
Obviously, ∀p ∈ P−

{
pp
}

, M(P−{pp})(p) ≤ k1. Since Σ = (Zp, Sp,0) is bounded, then for
every p ∈ Pp, ∃k2 > 0, such that ∀SP ∈ R

(
Sp0

)
, MP(p) ≤ k2. Let k = k1 + k2, by Definitions

12–15 and Supposition 1, ∀p ∈ P′, ∀S′ ∈ R(S′0), M′(p) =
(

M(P−{pp}), Mp

)
(p) ≤ k. By

Definition 24, Σ′ = (Z′, S0
′) is bounded.

(Only-if) Without loss of generality, suppose Σ = (Z, S0) is not bounded, such that
∃p ∈ P, ∀k > 0, ∃S ∈ R(S0), M(p) > k. By Definitions 12–14, and Supposition 1,
∀k > 0,∃S′ ∈ R(S′0), M′(p) > k. That conflicts with the fact that Σ′ = (Z′, S0

′) is bounded.
Note that, by Supposition 2, Definitions 15, 16, and Theorems 3 and 4, we can inves-

tigate the preservation of liveness and boundedness of the PIRES+ place set refinement
operation. �

Theorem 5. Suppose Pp = {p1, p2, . . . . . . , pm}(m ≥ 2) is the PIRES+ place set of N, and
∀pi, pj ∈ Pp (where i 6= j), •pi ∩ •pj = ∅ and pi• ∩ pj• = ∅. Let Σ′ = (Z′, S0

′) be obtained from

Σ = (Z, S0) using the PIRES+ place set refinement operation Re fpset(Pset, Nset). If •
(
•pppjin

)
∈

{p|M′0(p)〉0∧ p ∈ P′} (where j = 1, 2, 3, . . . . . . , m), then Σ′ = (Z′, S0
′) is live if and only if

Σ = (Z, S0) and Σpj =
(
Zpj, Spj0

)
(where j = 1, 2, 3, . . . . . . , m) are live.

Proof. Since Pp = {p1, p2, . . . . . . , pm}(m ≥ 2) is the place set of N, and ∀pi, pj ∈ Pp (where
i 6= j), •pi ∩ •pj = ∅ and pi• ∩ pj• = ∅, we can refine the places of Pp one by one. First, let
Σ1 = (Z1, S1,0) be obtained from Σ = (Z, S0) using Np1 to replace p1 of Σ = (Z, S0). Since

•
(
•ppp1in

)
∈ {pM0′(p) > 0∧ p ∈ P′}, by the proof process of Theorem 3, Σ1 = (Z1, S1,0) is

live if and only if Σ = (Z, S0) and Σp1 =
(
Zp1, Sp10

)
are live. Second, let Σ2 = (Z2, S2,0) be

obtained from Σ1 = (Z1, S1,0) using Np2 to replace p2 of Σ1 = (Z1, S1,0). Since •
(
•ppp2in

)
∈

{pM10
′(p) > 0∧ p ∈ P′}, by the proof process of Theorem 3, Σ2 = (Z2, S2,0) is live if and

only if Σ1 = (Z1, S1,0) and Σp2 =
(
Zp2, Sp20

)
are live. In the case of p3, . . . . . . , pm, we

can prove it in the same way. So, Σ′ = (Z′, S0
′) is live if and only if Σ = (Z, S0) and

Σpj =
(
Zpj, Spj0

)
(where j = 1, 2, 3, . . . . . . , m) are live. �

Theorem 6. Suppose Pp = {p1, p2, . . . . . . , pm}(m ≥ 2) is the place set of N, and ∀pi, pj ∈ Pp
(where i 6= j), •pi ∩ •pj = ∅ and pi• ∩ pj• = ∅. Let Σ′ = (Z′, S0

′) be obtained from Σ = (Z, S0)
using the PIRES+ place set refinement operation Re fpset(Pset, Nset). Σ′ = (Z′, S0

′) is bounded if
and only if Σ = (Z, S0) and Σpj =

(
Zpj, Spj0

)
(where j = 1, 2, 3, . . . . . . , m) are bounded.
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Proof. Since Pp = {p1, p2, . . . . . . , pm}(m ≥ 2) is the place set of N, and ∀pi, pj ∈ Pp (where
i 6= j), •pi ∩ •pj = ∅ and pi• ∩ pj• = ∅, we can refine these places p1, p2, . . . . . . , pm one
by one. First, let Σ1 = (Z1, S1,0) be obtained from Σ = (Z, S0) using Np1 to replace p1 of
Σ = (Z, S0). By the proof process of Theorem 4, Σ1 = (Z1, S1,0) is bounded if and only if
Σ = (Z, S0) and Σp1 =

(
Zp1, Sp10

)
are bounded. Second, let Σ2 = (Z2, S2,0) be obtained

from Σ1 = (Z1, S1,0) using Np2 to replace p2 of Σ1 = (Z1, S1,0). By the proof process of
Theorem 4, Σ2 = (Z2, S2,0) is bounded if and only if Σ1 = (Z1, S1,0) and Σp2 =

(
Zp2, Sp20

)
are bounded. In the case of p3, . . . . . . , pm, we can prove it in the same way. So, Σ′ = (Z′, S0

′)
is bounded if and only if Σ = (Z, S0) and Σpj =

(
Zpj, Spj0

)
(where j = 1, 2, 3, . . . . . . , m)

are bounded. �

6. Application

The contribution of this work is to propose the place refinement operation and the
place set refinement operation and verify the relevant important properties. To demonstrate
the effectiveness of these refinement approaches, we use the refinement approaches for
PIRES+ to model and analyze an embedded control system.

With the rapid development of communication technology, the frequency of commu-
nication technology innovation is gradually accelerating. 5G, as a new generation cellular
mobile network, has its advantages of excellent wide area coverage, good mobility, low
price, and high sharing of WLAN. In the actual network, cellular communication network
and WLAN are two independent systems.

As we all know, WLAN is the product of the combination of computer network and
wireless communication technology. It uses radio frequency technology (RF) to replace
the old twisted pair to form a local area network. WLAN has many corresponding access
specifications, all of which are in IEEE 802.11 standard. There is mainly a/b/ac/ad/n/ac.
At present, 802.11.ac is widely used. When a piece of information is received through the
wireless network, these information data are processed and decoded by the physical layer,
data link layer, network layer, transport layer, and application layer, then restored to the
most original information transmitted by the sender. We have simplified the structure
of the transmission process, analyzed the whole information processing process from a
macro perspective.

In order to effectively realize the real integration between heterogeneous networks,
this section applies the refinement method of PIRES + proposed above to the modeling
and analysis of mobile terminal network communication system. The refined operation
of the network system can effectively achieve the integration of heterogeneous networks
and accurately respond to the system workflow, and facilitate the future improvement and
migration of the system. Next, the cellular mobile communication, WLAN network, and
digital signal processing process of the mobile terminal network communication system
will be modeled and analyzed.

6.1. Constructing a PIRES+ Model

We will construct an embedded control system’s PIRES+ model using the place set
refinement operation. First, an abstract PIRES+ model of an embedded control subsys-
tem will be presented. Second, the refined PIRES+ model is obtained using the PIRES+
refinement operations. The embedded control system’s abstract model (N) is illustrated in
Figure 3.

In Figure 3, p1: cellular network signal processing part; p7: digital signal processing
part; p11: WLAN signal processing part. t1: convert electromagnetic wave to RF-Radio
Frequency; t2: the baseband information is obtained by adjusting the filter; t3: start digital
signal processing; t4: finish digital signal processing; t5: pulse code modulation; t6: ver-
ify WLAN signal password; t7: the signal received from the antenna is converted into
AC signal.
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Figure 3. The abstract model N.

The subsystem N1 is displayed in Figure 4. N1 is the PIRES+ model of cellular network
signal processing part. tp11: adjust audio; tp12: perform human-computer interaction;
tp13: finish current signal processing and initialize the system; tp14: the antenna receives
the electromagnetic wave signal sent by the base station. There exist transition functions
fp11, fp12, fp13, fp14 associated with transitions tp11, tp12, tp13, tp14, respectively. There exists
transition set function fp1 of subnet N1, where fp1 = fp11◦ fp12 ◦ fp13 ◦ fp14. [ap11, bp11],
[ap12, bp12], [ap13, bp13], [ap14, bp14], are transition delay intervals associated with transitions
tp11, tp12, tp13, tp14 respectively. [d−p1, d+p1] is the transition delay interval of subnet N1, where
d−p1 = ap11 + ap12 + ap13 + ap14, d+p1 = bp11 + bp12 + bp13 + bp14.
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Figure 4. The subnet model N1.

The subsystem N2 is displayed in Figure 5. N2 is the PIRES+ model of the digital signal
processing part, where tp21, tp22, tp23, tp24, tp25, tp26, represent a series of signal processing
processes, such as acquisition, filtering, transformation, spectrum analysis, estimation,
recognition, etc. There exist transition functions fp21, fp22, fp23, fp24, fp25, fp26, associated
with transitions tp21, tp22, tp23, tp24, tp25, tp26, respectively. There exists transition set func-
tion fp2 of subnet N2, where fp2 = fp21 ◦

((
fp23 ‖ fp22

)
◦
(

fp24 ‖ fp25
))
◦ fp26. [ap21, bp21],

[ap22, bp22], [ap23, bp23], [ap24, bp24], [ap25, bp25], [ap26, bp26] are transition delay intervals asso-
ciated with transitions tp21, tp22, tp23, tp24, tp25, tp26, respectively. There exists transition de-
lay interval [d−p2, d+p2] of subnet N2, where d−p2 = ap21 + max

(
ap23 + ap24, ap22 + ap25

)
+ ap26,

d+p2 = bp21 + max
(
bp22 + bp25, bp23 + bp24

)
+ bp26.
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The subsystem 𝑁  is displayed in Figure 6. 𝑁  is the PIRES+ model of the WLAN 
signal processing part, where 𝑡 : human-computer interaction part; 𝑡 : finish the cur-
rent signal processing and initialize the system; 𝑡 : the terminal receives WLAN sig-
nals from different sources. There exist transition functions 𝑓 , 𝑓 , 𝑓 , associated 
with transitions 𝑡 , 𝑡 , 𝑡 , respectively. There exists transition set function 𝑓 of 
subnet 𝑁 , where 𝑓 = 𝑓 ∘ 𝑓 ∘ 𝑓 . There exist transition delay intervals [𝑎 , 𝑏 ], 
[𝑎 , 𝑏 ], [𝑎 , 𝑏 ] associated with transitions 𝑡 , 𝑡 , 𝑡 , respectively. [𝑑 , 𝑑 ] is 
the transition delay interval of subnet 𝑁 , where 𝑑 = 𝑎 + 𝑎 + 𝑎 , 𝑑 = 𝑏 +𝑏 + 𝑏 . 
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Figure 5. The subnet model N2.

The subsystem N3 is displayed in Figure 6. N3 is the PIRES+ model of the WLAN
signal processing part, where tp31: human-computer interaction part; tp32: finish the current
signal processing and initialize the system; tp33: the terminal receives WLAN signals
from different sources. There exist transition functions fp31, fp32, fp33, associated with
transitions tp31, tp32, tp33, respectively. There exists transition set function fp3 of subnet N3,
where fp3 = fp31 ◦ fp32 ◦ fp33. There exist transition delay intervals [ap31, bp31], [ap32, bp32],
[ap33, bp33] associated with transitions tp31, tp32, tp33, respectively. [d−p3, d+p3] is the transition
delay interval of subnet N3, where d−p3 = ap31 + ap32 + ap33, d+p3 = bp31 + bp32 + bp33.
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The subsystem 𝑁  is displayed in Figure 6. 𝑁  is the PIRES+ model of the WLAN 
signal processing part, where 𝑡 : human-computer interaction part; 𝑡 : finish the cur-
rent signal processing and initialize the system; 𝑡 : the terminal receives WLAN sig-
nals from different sources. There exist transition functions 𝑓 , 𝑓 , 𝑓 , associated 
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Figure 6. The subnet model N3.

The refined PIRES+ model N′ (Figure 7) is obtained using the refinement method. Place
p1, p7, and p11 of N (Figure 3) are replaced by place subnet N1, N2, and N3, respectively.

In Figure 7, corresponding to place subnet N1, the transition function of t5 is f5
′, where

fp1 ◦ f5
′ = f5. There exists a transition delay interval [a′5, b′5] associated with transition

t5, where d−•pp11
+ d−N1

= d−•p1, d+•pp11
+ d+N1

= d+•p1, that is a′5 + d−N1
= a5, b′5 + d+N1

= b5.
By place subnet N2, the transition function of t3 is f3

′, where fp2 ◦ f3
′ = f3. There ex-

ists a transition delay [a′3, b′3] associated with transition t3, where d−•pp21
+ d−N2

= d−•p7,

d+•pp21
+ d+N2

= d+•p7, that is, a′3 + d−N2
= a3, b′3 + d+N2

= b3. Corresponding to place subnet
N3, the transition function of t6 is f6

′, where fp6 ◦ f6
′ = f6. There exists a transition delay in-

terval [a′6, b′6] associated with transition t6, where d−•pp31
+ d−N3

= d−•p11, d+•pp31
+ d+N3

= d+•p11,

that is a′6 + d−N3
= a6, b′6 + d+N3

= b6.

6.2. Property Analysis of the PIRES+ Model

The preservation of several properties will be analyzed in this section.

6.2.1. Preservation of Reachability, Functionality, and Timing

Let PIRES+ subnet N11 = (P11, T11, FI1, FO1, I1, M1,0) of N (Figure 3), where P11 =
{p1, p2, p3, p8}, T11 = {t1, t5}, FI1 = {(p1, t1), (p8, t5)}, FO1 = {(t1, p2), (t1, p3), (t5, p1) },
I1 = ∅, M1,0(p8) 6= ∅. Let N12 = (P12, T12, FI2, FO2, I2, M2,0), where P12 = {pp11, pp12, pp13,
pp14, pp15, pp16 , p2, p3, p8}, T12 ={t1, tp11, tp12, tp13, tp14, t5}, FI2 = {(pp11, tp11), (pp12, tp12),
(pp13, tp12.)(pp14, tp13), (pp15, tp14), (pp16, t1), (p8, t5)}, FO2 =

{
(t1, p2), (t1, p3),

(
t5, pp11

)
,(

tp11, pp12
)
,
(
tp11, pp13

)
,
(
tp12, pp14

)
,
(
tp13, pp15

)
,
(
tp14, pp16

)}
, I2 = ∅, M2,0(p8) 6= ∅.

Let PIRES+ subnet N21 = (P21, T21, FI3, FO3, I3, M3,0) of N (Figure 3), where P21 =
{p4, p5, p6, p7, p9, p8, p10}, T21 = {t3, t4}, FI3 = {(p4, t3), (p5, t3), (p6, t3), (p7, t4)}, FO3 =
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{(t3, p7 ) (t4, p8), (t4, p9), (t4, p10), I3 = ∅, M3,0 = ∅; Let N22 = (P22, T22, FI4, FO4, I4, M4,0),
where P22 =

{
p4, p5, p6, p9, p10, pp21, pp22, pp23, pp24, pp25, pp26, pp27, pp28, p8 }, T22 ={

tp21, tp22, tp23, tp24, t3, tp26, t25, t4,
}

, FI4 =
{
(p4, t3), (p5, t3), (p6, t3),

(
pp28, t4

)
,
(

pp21, tp21
)
,(

pp22, tp23
)
,
(

pp23, tp22
)
,
(

pp24, tp24
)
,
(

pp25, tp25
)
,
(

pp26, tp26
)
,
(

pp27, tp26
)}

, FO4 =
{(

t3, pp21
)
,

(t4, p8) , (t4, p9), (t4, p10), (tp21, pp22),
(
tp21, pp23

)
,
(
tp23, pp24

)
, (tp22, pp24),

(
tp22, pp25

)
,(

tp24, pp26
)
, (tp25, pp27),

(
tp26, pp28

)
}, I4 =

{(
pp23, tp23

)
,
(

pp25, tp24
)}

, M4,0 = ∅.
Let PIRES+ subnet N31 = (P31, T31, FI5, FO5, I5, M5,0) of N (Figure 3), where P31 =

{p10, p9, p11 , p12}, T31 = {t6, t7}, FI5 = {(p10, t6), (p9, t6), (p11, t7)}, FO5 = {(t6, p11),
(t7, p12)}, I5 = ∅, M5,0 (p11) 6= ∅. Let N32 =(P32, T32, FI6, FO6, I6, M6,0), where P32 ={

p12, pp31, pp32, pp33, p9, pp34, pp35 , p10}, T32 =
{

tp31, tp32, tp33, t6, t7) , FI5 =
{(

pp35, t7
)
,(

pp31, tp31
)
,
(

pp32, tp32
)
, (p10, t6) ,

(
pp34, tp33

)
,
(

pp33, tp33
)
, (p9, t6)}, FO5 =

{(
tp31, pp32

)
,(

tp32, pp33
)

, (tp32, pp34),
(
tp33, pp35

)
, (t7, p12),

(
t6, pp31

)}
, I6 = ∅, M6,0

(
pp31

)
6= ∅.

N′ is obtained from N by the place set refinement method, that is, p1 is replaced
by N1, p7 is replaced by N2, and p11 is replaced by N3. According to Figures 3–7, 1©
fp1 ◦ f5

′ = f5, fp2 ◦ f ′3 = f3 , and fp3 ◦ f6′ = f6; 2© d−•pp11
+ d−N1

= d−p1, d+•pp11
+ d+N1

= d+p1,

d−•pp21
+ d−N2

= d−p4, d+•pp21
+ d+N2

= d+p4, d−•pp31
+ d−N3

= d−p7, d+•pp31
+ d+N3

= d+p7; 3©
•p1 ∩ •p7 = ∅, •p1 ∩ •p11 = ∅, •p7 ∩ •p11 = ∅, p1• ∩ p7• = ∅, p1• ∩ p11• = ∅,
p11• ∩ p7• = ∅. By Theorem 2, N′ and N have the same reachability, functionality,
and timing.
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Figure 7. The refined model 𝑁′. 
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Figure 7. The refined model N′.

6.2.2. Preservation of Liveness and Boundedness

Obviously, Σ = (Z, S0) of N (Figure 3) is live and bounded. According to the PIRES+
place set refinement operation, Σ′ = (Z′, S0

′) of N′ (Figure 7) is obtained from Σ = (Z, S0),
i.e., p1 is replaced by place subnet N1, p7 is replaced by place subnet N2, and p11 is
replaced by subnet N3. Let Σp1 =

(
Zp1, Sp1,0

)
be the place-closed PIRES+ net system of N1,

Σp2 =
(
Zp2, Sp2,0

)
be the place-closed PIRES+ net system of N2, Σp3 =

(
Zp3, Sp3,0

)
be the

place-closed PIRES+ net system of N3, By Definition 25 and the characteristics of subnets
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N1, N2 and N3, Σp1 =
(
Zp1, Sp1,0

)
, Σp2 =

(
Zp2, Sp2,0

)
and Σp3 =

(
Zp3, Sp3,0

)
are live and

bounded. By Theorem 5 and Theorem 6, Σ′ = (Z′, S0′) is live and bounded.

6.3. Summary of the Modeling

The above system has clear structural hierarchy, time characteristics, and task priority
requirements, so it is difficult to model with ordinary Petri net, colored Petri net, or PRES+.
First, this example establishes the overall simplified model of mobile terminal communica-
tion network system, cellular mobile communication model based on embedded system,
WLAN network model, and other component models. Then, the refinement operation
is carried out to obtain the overall system model. Finally, through formal analysis, it is
proven that the refined net system preserves the reachability, functionality, timing, liveness,
and boundedness of the original net system. This modeling method solves the problem of
direct modeling difficulty caused by the complexity of the system and the portability loss of
some components in the overall modeling. The example effectively illustrates the feasibility
and practicability of the refinement operation proposed in this paper and provides a more
practical theoretical basis for the modeling of some embedded systems.

7. Conclusions

Embedded systems are widely used in various devices and are becoming more and
more complex with increasing requirements. To facilitate the verification and design of
embedded systems, PIRES+ is introduced. PIRES+ has great expressive power and many
applications in verification, modeling, and analysis of embedded systems.

However, the problem of state space explosion is a disadvantage for PIRES+’s ability
to model, analyze, and verify large, complex systems. In order to resolve the state space
explosion of Petri nets, there are three popular transformations in the literature, namely
synthesis approach, refinement approach, and reduction approach. In order to model,
analyze, and verify large complex embedded systems, and to solve PIRES+’s state space
explosion problem, we have proposed the place refinement approach and the place set
refinement approach for PIRES+. Compared with refinement methods for ordinary Petri
nets, CPNs, and PRES+, these refinement methods can nicely describe certain characteristics
of embedded systems. We have also investigated the property preservation of these
refinement approaches. During the refining process, under certain constraints, reachability,
timing, functionality, liveness, and boundedness will be preserved. The refinement methods
for PIRES+ can be used to nicely resolve design problems of embedded systems.

Of course, the refinement operation methods proposed in this paper are only applicable
to the operation of place in PIRES+, without considering the refinement operation of
transition in PIRES+. At the same time, this paper only carries out qualitative research from
the formal aspect, and lacks certain quantitative analysis and system simulation.

In the future, some quantitative analysis and system simulation for the PIRES+’s
refinement operation should be studied. Other more general refinement, synthesis, or
reduction approaches for PIRES+ should also be investigated, for example, a place-bordered
refinement operation, or synthesis operation methods for PIRES+ and their applications.

Fuzzy linear programming [40,41] is a generalization of classical linear programming,
which blurs the boundary of linear constraints. Under loose constraints, we can obtain
the optimization conditions and optimization extremum. The combination of the fuzzy
linear programming and the refinement operation may become another interesting research
direction in the future.
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