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Abstract: Biological neural networks demonstrate remarkable resilience and the ability to compen-
sate for neuron losses over time. Thus, the effects of neural/synaptic losses in the brain go mostly
unnoticed until the loss becomes profound. This study analyses the capacity of electronic spiking
networks to compensate for the sudden, random neuron failure (“death”) due to reliability degra-
dation or other external factors such as exposure to ionizing radiation. Electronic spiking neural
networks with memristive synapses are designed to learn spatio-temporal patterns representing 25
or 100-pixel characters. The change in the pattern learning ability of the neural networks is observed
as the afferents (input layer neurons) in the network fail/die during network training. Spike-timing-
dependent plasticity (STDP) learning behavior is implemented using shaped action potentials with
a realistic, non-linear memristor model. This work focuses on three cases: (1) when only neurons
participating in the pattern are affected, (2) when non-participating neurons (those that never present
spatio-temporal patterns) are disabled, and (3) when random/non-selective neuron death occurs in
the network (the most realistic scenario). Case 3 is further analyzed to compare what happens when
neuron death occurs over time versus when multiple afferents fail simultaneously. Simulation results
emphasize the importance of non-participating neurons during the learning process, concluding that
non-participating afferents contribute to improving the learning ability and stability of the neural
network. Instantaneous neuron death proves to be more detrimental for the network compared to
when afferents fail over time. To a surprising degree, the electronic spiking neural networks can
sometimes retain their pattern recognition capability even in the case of significant neuron death.

Keywords: spiking neural network; spike timing-dependent plasticity; memristor; spatio-temporal
pattern recognition

1. Introduction

Neuron death occurs in biological neural networks (the brain) due to various reasons
such as aging, natural death during migration and differentiation, head injuries, spinal
cord injuries, or neurodegenerative diseases. Cognitive functionality of the human brain
gradually declines with age leading to memory loss, learning slowdown, motor incoordina-
tion, and attention impairment [1,2]. Neurodegenerative diseases also cause a considerable
decline in neuron numbers. Parkinson’s and Huntington’s diseases lead to neuron death in
the basal ganglia region of the brain, and Alzheimer’s affects the neurons in the neocortex
and hippocampus [1,3,4]. It generally takes about 60 years before people notice any measur-
able memory loss or become susceptible to develop neurodegenerative diseases [3]. Thus,
the human brain demonstrates a remarkable ability to compensate for neuron losses over
time, forestalling any noticeable effect until the losses become profound [2,5]. According
to one study from 1998, about 11 million people in the US experienced a stroke, of whom
only approximately 0.77 million (7%) were symptomatic [6]. A vast majority of strokes
are ‘silent’, although they can kill large numbers of cells rapidly [6]. While some work has
shown recurrent networks to be more robust to neuron death, presently, the network-level
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effects of neuron failure (or death) in feed-forward networks are largely not addressed
in the scientific literature [7,8]. This study contributes to filling a gap in neuromorphic
computing research by analyzing the resilience of spiking neural networks (SNNs) in which
neuron death occurs.

Pioneering research has demonstrated artificial neural networks for a broad range
of applications. Future systems are expected to use pulses or spikes instead of analog
signals to communicate and transfer information to achieve higher levels of cognition.
Customized hardware implementations will make these spiking neural networks (SNNs)
not only highly efficient, but also robust and fault-tolerant. SNNs are expected to find
applications in harsh, radiation-filled environments such as space or at nuclear and military
installations. Presently, shielding and hardening are common practices to protect devices
and circuits from radiation, but these techniques are unable to block all particles from
interacting with underlying electronics [9,10]. Radiation in such cases can lead to neuron
circuit failure through various mechanisms including CMOS threshold voltage shift, oxide
breakdown, gate rupture, and displacement damage [11,12].

In this article, a memristor-based SNN is trained to recognize a spatio-temporal pattern,
and changes in the recognition accuracy of the networks due to the death of neurons are
analyzed. In the SNN, synapses are realized using a memristor behavioral model. Unlike
other non-volatile memories, memristors do not need to be refreshed to maintain their
state, and this decreases the power consumption of the system. Long-term degradation
of memristive devices most often results in off-state resistance changes and not complete
loss of functionality. To a certain degree, many memristors are made from materials that
are relatively resistant to radiation effects [13–16]. The possibility of constant training or
occasional refreshing of synaptic weights along with a typically large number of synapses
per neuron therefore makes memristive synapses less of a concern from a system reliability
standpoint. Spike-timing-dependent plasticity (STDP) is a biological learning process that
alters the synaptic weight depending on pre- and post-synaptic neuron firing time. The
STDP rule is implemented in the presented network using biphasic shaped spikes from
the pre- and post-synaptic neurons that enforce the change in the conductivity/synaptic
weight of the memristor depending on their activity. Although the network uses a single
layer, the results can provide insight into the operation and response of other topologies
such as spiking convolutional deep neural networks [17].

Section 2 in the article describes the SNN design, memristor behavioral models, and
the design of the leaky integrate-and-fire (LIF) post-synaptic neuron circuits. Section 3
outlines the experimental setup and the results obtained from simulations for the three
cases outlined previously. Section 4 concludes by discussing the significance of the results
and the future implications and applications of the work.

2. Simulation Methods

This configuration of the network used for simulations is detailed in Section 2.1.
Section 2.2 describes the modified memristor model used to implement the synaptic behav-
ior (learning rule) in the neural network. Section 2.3 discusses the post-synaptic neuron
designed based on the leaky integrate-and-fire (LIF) circuit behavior. The simulations are
performed in the Cadence Spectre and the memristor and LIF behavioral model is designed
in Verilog-A.

Interventionary studies involving animals or humans, and other studies that require
ethical approval, must list the authority that provided approval and the corresponding
ethical approval code.

2.1. Neural Network Topology

The network used in this study, shown in Figure 1, consists of multiple pre-synaptic
neurons (afferents) and one post-synaptic (output) neuron, all connected through memris-
tive synapses. Synapses act as the memory element and create a connection between the ini-
tial and the final layer of the network. This network topology is a single-layer feed-forward
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network with either 25 or 100 pre-synaptic afferents (N1 to N25 or 100), each connected to a
single post-synaptic afferent via single memristor (M1 to M25 or 100 in Figure 1). The network
uses biphasic shaped pulses to achieve pair-based spike time-dependent plasticity (STDP)
for pattern learning, discussed further in Section 3. More information about the network
architecture can be found in refs. [18–20]. Neuron death in the network is imitated by
disabling pre-synaptic neurons randomly during the simulation (STDP learning happens
constantly). Failure of the output neuron circuit is not considered in any case, since loss of
output would eliminate any ability to perform analysis.
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Figure 1. Memristor-based electronic SNN architecture used in this study for spatio-temporal pattern
recognition. Either 25 or 100 pre-synaptic neurons (afferents) are connected to one post-synaptic leaky
integrate-and-fire (LIF) neuron via single memristors. The network uses biphasic shaped pulses to
achieve pair-based STDP for pattern learning. Random neuron death is simulated by disconnecting
pre-synaptic neurons after 30 s of partial learning.

2.2. Memristor Modeling

Memristors are two-terminal devices that can hold their present resistance state until
sufficient external bias is applied to change their conductivity. This study uses a TiO2 based
voltage controlled ionic drift memristor model, shown in Figure 2a. The TiO2 based non-
linear ionic drift memristor model was proposed by Strukov et al. in 2008 [21]. Although the
model has lower accuracy, it has been widely used in simulations and comparison studies
by Chua et al. for designing networks with memristive bridge synapses and others [22–27].
The model is not purely mathematical, has explicit I-V relationship, includes non-linearity,
and has normalized state variable ( w

D ).
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Figure 2. (a) Diagram of a TiO2 resistive memory (memristor) device. The TiO2 insulator layer of
thickness D (Roff) is between two conductive electrodes. The presence of oxygen vacancies resulted
in the formation of the varying conducting channel of width ‘w’ as Emem in the model. (b) Circuit
representation of two variable resistors, Ron (less resistive region of width w) and Roff (high resistive
region of width, D−w). (c) Synaptic memristive circuit implementation with dependent source Emem

and resistance Roff and auxiliary circuit with Imem dependent current source Gx and 1 F capacitor Cx.
The voltage across Cx controls Emem.
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The model effectively treats the instantaneous total resistance of a memristive device
Rmem as two variable resistors connected in series, as represented in Figure 2b. One of
these resistors represents a conductive region of thickness w inside a device with physical
thickness D. The other resistor corresponds to a less conductive region of thickness D−w.
When w is almost equal to the device thickness, D, the device is in its lowest resistance state
with resistance value Rmem equal to Ron. The device is in a high resistance state with Rmem
equal to Roff when w is much lesser than total device thickness D. The memristor model is
accompanied by a window function (f(x)) in Figure 2c that is used to add device-specific
non-linearity to the model and also to force the physical boundary of the device [28]. More
about the memristor model is detailed in ref. [29].

2.3. Post-Synaptic Neuron Design

The post-synaptic neuron used in the biphasic spiking neural network in Figure 1
implements leaky integrate-and-fire (LIF) behavior. The LIF circuit is often realized using
operational amplifiers and MOSFETS [30–32]. This work uses an equivalent behavioral
model designed in Verilog-A to capture critical aspects of circuit operation (Figure 3a). The
LIF circuit fires a bi-directional biphasic spike (toward the dendritic and axonic synapses)
when a certain threshold is reached, as in Figure 3b. The schematic depiction of the LIF
circuit is presented in Figure 3a. The input of the circuit VPostIn is the node connected to the
output of all the memristors in the fully connected network presented in Figure 1. VPostIn
depends on the conductivity of the memristors in the network and the spike timing of the
pre-synaptic afferent neurons.
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Figure 3. (a) Leaky integrate-and-fire (LIF) post-synaptic neuron circuit schematic. The circuit is
implemented in Verilog-A. Voltage source Vfire produces the desired shape of the post-synaptic
biphasic spike. CLIF, Rcharge, and Rdischarge mimick membrane leakage in the biological synapse.
(b) As the circuit sees the input spikes overtime (VPostIn), there is an increase in the voltage across
capacitor CLIF. Vfire produces the output spike as the VC reaches threshold voltage VCth (= 0.5 V in
this case).

3. Results and Analysis

The following section presents transient simulations of the neural network and sub-
sequent analysis of changes in its learning capability and pattern recognition accuracy
in the event of neuron death. Section 3.1 discusses the spatio-temporal pattern learning
approach using correlated and uncorrelated spiking. Section 3.2 provides the general
details of neuron death in the simulations for which the results are presented in Section 3.3.
Specifically, changes in the pattern recognition ability of the network are tracked when a
certain percentage of afferent neurons fail during learning.

3.1. No Neuron Death (Control Case)

Before simulating situations in which neuron death occurs, typical network operation
is described in this section. Pre-synaptic afferent neurons (N1 to N25 or 100) in the following
simulations fire 10 ms biphasic spikes at an average rate of 5 Hz for the 100 s transient
simulation time. Figure 4a shows the time at which spikes arrive for a 25-pixel pattern ‘B’.
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Afferents that are part of the pattern such as N12 and N13 fire mutually correlated spikes
at regular 200 ms intervals. Although the firing interval is regular for these participating
neurons, the exact position of the spike within the 200 ms window is chosen randomly.
Non-participating afferents fire uncorrelated (random) spikes with Poisson distributed
inter-spike intervals (ISIs), as shown by N14 and N15 in Figure 4a [33,34]. Lighter color
pixels in Figure 4b (at 60 s) are participating neurons and darker ones are non-participating
neurons firing uncorrelated spikes. Figure 4b shows the synaptic weight evolution of all
the memristors (M1 to M25) as the network tries to learn the 25-pixel letter ‘B’. Initially, all
the weights are set in a highly conductive state. After 30 s of the training, the network
was able to depress most of the uncorrelated neurons by decreasing the conductivity of
their corresponding memristors, and the desired pattern is very recognizable. At 60 s, the
network is in a stable state with post-synaptic neuron firing at a constant rate. Figure 4c
shows the synaptic weight distribution of the memristors and corresponding decrease in
weight of uncorrelated synapses during learning. More about the network behavior in
absence of neuron death can be found in refs. [18,19].
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Figure 4. (a) Scatter plot of spike timing. N12 and N13 fire mutually correlated spikes at regular 200 ms
intervals (participating afferents), while N14 and N15 (non-participating afferents) fire with random,
Poisson distributed inter-spike intervals. (b) The synaptic weight evolution of all the memristors (M1

to M25) as the network is learning the ‘B’ pattern. (c) Histograms of the synaptic weight distributions
in weight bins that are 0.05 wide. After 30 s, uncorrelated neurons are separated and moved to a
lower weight.

The neural network used for the remaining parts of this study has 100 pre-synaptic
neurons with 60 participating (firing mutually correlated spikes) and 40 non-participating
(firing Poisson distributed uncorrelated spikes) afferents. Figure 5 shows the spiking
characteristics of the 40 uncorrelated/non-participating pre-synaptic afferents individually
and collectively over time. Figure 5a represents the firing times of the 40 uncorrelated
afferents for the first 20 s of the simulation. The random ISI distribution is notable. Figure 5b
shows the random distribution of firing frequency for each of the 40 uncorrelated afferents
with a mean of 5 Hz. Figure 5c captures the population firing rate of all 40 non-participating
neurons over the full 100 s stimulation. In this case, frequency is measured in 1 s increments
(bin size).

Figure 6 presents the firing frequency of the network over 100 s of simulation. In
this case, the population firing rate is measured over reduced 100 ms bins to observe a
finer distribution. The 40 non-participating afferents in Figure 6a show random frequency
distribution as they are firing Poisson distributed noise. On the other hand, the frequency
distribution of 60 participating afferents in Figure 6b is not random, as they are firing mutu-
ally correlated spikes at 5 Hz, although at different times relative to the start of each pattern
presentation window. Figure 6c shows the population frequency distribution of the whole
network over 100 s of the simulation in 100 ms time bins. These data demonstrate that there
are no instances of very high afferent population firing rate that would cause overexcitation
of the output neuron. It can be noted that, on average, all afferents (participating and
non-participating) are firing at the rate of 5 Hz.
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Figure 6. Population firing frequency using 100 ms time bins. (a) Frequency distribution for
the 40 non-participating afferents with Poisson distributed ISIs. (b) The frequency distribu-
tion of 60 participating afferents is not random, since they are firing mutually correlated spikes.
(c) Frequency distribution of all afferent neurons over the entire 100 s transient simulation.

Figure 7 shows the response of the post-synaptic LIF neuron during the 100 s learning
period. As can be seen in Figure 7a, the post-synaptic neuron is firing periodically every
0.2 s (200 ms) after 30 s, except a few misses which result in 0.3 s, 0.5 s, and 0.6 s intervals.
Figure 7b shows the frequency response over 100 s of simulation with a bin size of 5 s.
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Initially, the post-synaptic LIF neuron was overexcited due to high equivalent synaptic
conductance (strong weights), but stabilized over time to approximately 5 Hz as the network
suppresses connections of non-participating afferents.
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Figure 7. (a) Post-synaptic neuron firing frequency settles to 0.2 s periods after 30 s, except a few
misses. (b) Frequency response of the post-synaptic neuron over the 100 s transient simulation (bin
size of 5 s) displays how the network stabilizes network over time as non-participating afferent
synaptic weights are suppressed.

3.2. Neuron Death Setup

The networks analyzed in the following section all use 100 pre-synaptic neurons, out
of which 60 neurons are participating/correlated (forming the part of letter B, brighter
pixel, firing correlated spikes) and 40 are non-participating/uncorrelated (not the part of
letter B, darker pixel, firing uncorrelated spikes). Three neuron death cases are examined in
this work. The first case observes the changes in the pattern learning ability of the network
when random neurons that fail are all from the set of 60 participating afferent neurons
(“participating neuron death”). The second case is that in which random neurons that fail
are all from the set of 40 non-participating afferent neurons (“non-participating neuron
death”). The third case is most realistic, in which failing neurons are chosen randomly from
the set of all 100 neurons, participating and non-participating (“random neuron death”).
There are no simulations in which neuron death is initiated prior to 30 s, which gives the
network time to at least partially train on the pattern (as depicted in Figure 4b,c). In each
case, five sets of randomly chosen afferents are killed to improve the statistical validity of
the conclusion.

For each of the three cases in which the described populations of neurons die, two
different failure mechanisms are examined which exhibit vastly different timing characteris-
tics. The first is when the given percentage of neurons fail simultaneously at 30 s. Physically,
this kind of failure could be caused by an electromagnetic pulse, or from a brief exposure to
high fluence ionizing radiation (for example from detonation of a nuclear weapon). On the
other hand, a more typical situation would be slow, random failure over time. This could
be caused by deployment of the neural network in harsh environments, such as in space or
at nuclear waste facilities.

3.3. Neuron Death Simulations

One way to examine differences in network response to neuron failure is to examine the
inter-spike interval (ISI) of the output (post-synaptic) neuron versus time. Figure 8a shows
the ISI produced by the post-synaptic neuron in the case when no neuron death occurs.
After 30 s of training, the ISI is essentially always a multiple of 200 ms, at either 0.2 s or 0.4 s.
The latter case is indicative of the output neuron failing to respond during a pattern interval,
and could be improved by further tuning and training of the network. Figure 8b,c shows
the output ISI over time when one neuron fails in the non-participating and participating
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groups, respectively. Figure 8d shows a failure of a single neuron occurring from either the
participating or non-participating (referred to as combined) groups. After 30 s, the ISI is
still approximately 0.2 s or 0.4 s in each of the cases, and almost no change is the pattern
learning behavior of the network is observed. However, Figure 8e–g presents the output
ISI over time when 50% of randomly selected afferents fail simultaneously at 30 s in the
non-participating, participating, and combined groups. After the neuron death at 30 s, no
spiking in the post-synaptic neuron is observed and the network was not able to learn the
pattern in any of the cases, which is a catastrophic outcome.
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Figure 8. Post-synaptic neuron ISI over the learning period for simultaneous neuron death occurring
at 30 s, the time following which is indicated by the pink shading. (a) ISI is about 0.2 s or 0.4 s in the
case when no neuron death occurs. (b–d) The ISI when one neuron (in groups of non-participating,
participating, and combined) fail, in which the network shows no degradation in pattern detection
ability. (e–g) The ISI over time when 50% of randomly selected afferents die (within the participating,
non-participating, and combined groups). The network exhibits no post-synaptic neuron activity in
any case, thus indicating complete network failure.

The same situation in Figure 8 was simulated five total times with each simulation
having a different set of randomly selected afferents disabled (set 1 to set 5) while the input
spiking patterns were kept the same. Figure 9a–c shows the ISI over time when 5% afferents
in each of the participating, non-participating, and combined groups failed simultaneously
at 30 s. Interestingly, failure of either participating and non-participating neurons by
themselves did not significantly destabilize the system, as shown in Figure 9a,b. However,
network instability is notable in Figure 9c in which neurons from both participating and
non-participating groups were eliminated. This is observable in the scatter of the ISIs up
to much higher values than 0.2 or 0.4 s. Figure 9d–f shows the ISI over time when 10%
of the afferents in the participating, non-participating, and combined groups failed. It is
observed in Figure 9e, perhaps unsurprisingly, that non-participating afferent death keeps
the system relatively stable. In the case of random neuron death shown in Figure 9f, after
30 s, the post-synaptic neuron is not learning the pattern and the system becomes unstable,
as the ISI is again randomly distributed with overall large values. Similarly, Figure 9g–i
shows the ISI of a post-synaptic neuron when 25% pre-synaptic neurons in the participating,
non-participating, and combined groups failed. Random combined neuron death shows
the most instability in this case, as well.
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Figure 9. Post-synaptic neuron ISI over the 100 s simulation period. Pink shading indicates time
after simultaneous neuron death at 30 s. (a–c) The ISI when 5% of randomly selected neurons fail
(grouped as non-participating, participating, and combined). The network was able to recover in
both cases (a,b), but not in (c) (random death of both participating and non-participating neurons).
(d–f) The ISI over time when 10% of randomly selected afferents die (within the same three groups).
Overall, network stability decreases as afferent death percentage increases, although neuron death
in the combined group of participating or non-participating neurons creates the highest degree of
network instability. (g–i) The ISI distribution for each of the three cases when 25% of neurons fail.

Figure 10 shows the normalized average synaptic weight evolution of all the 100 synaptic
memristors in the network. Deviation of weights can be observed in the case of random
afferent failure Figure 10a) as the 10%, 25%, and 50% failure rates all show deviation from
the no-death case. For participating afferent failure Figure 10b), the 25% and 50% failure
rates exhibit significant deviation from the no-death case. Finally, non-participating afferent
death (Figure 10c) seems to destabilize the system least. In this case, both the 25% and 50%
failure rates deviate initially, but the 25% case evolves back towards the no-death situation
as the system regains stability (with continued training via presentation of the patterns).
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Figure 10. Normalized average synaptic weight evolution of all the 100 synaptic memristors in
the network. (a) In the case of random combined afferent death, 10%, 25%, and 50% death weight
evolutions show significant deviation from the no death case. (b) In the case of participating afferent
death, only the 25% and 50% death weight evolutions show deviation from the no death case.
(c) Finally, in the case of non-participating afferent death, only 50% death weight evolution shows
deviation from the no death case. The 25% death case in fact deviates initially, but then recovers to
regain system stability.
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The recovery seen in the average synaptic weight in the network with 25% non-
participating neuron death in Figure 10c may be explained by early post-synaptic firing,
which keeps the network from depressing too heavily. When neuron death occurs, the total
average activity exciting the output neuron significantly decreases, resulting in an interval
where no post-synaptic spike occurs and excess pre-synaptic spikes depress the network.
This may also explain why networks where random neurons were killed failed to recover.
The activity of participating neurons was relatively evenly distributed within a pattern
window, as was that of non-participating neurons. However, when both sets of neurons
die, it is more likely that correlation between spikes in participating and non-participating
branches resulted in a significant dip in overall activity which prolongs the time until
the next post-synaptic spike. Indeed, Figure 9i shows that when both participating and
non-participating branches die together, the post-synaptic neuron sees significantly longer
ISIs, if it even manages to fire at all.

Figure 11 shows the analysis of the network when random neurons from the entire
population die simultaneously after 30 s of learning. Figure 11a presents the post-synaptic
neuron ISI over time, with the left frame looking identical to Figure 8a. As expected, the
network quickly loses pattern recognition capability as the % of dead neurons increases, and
even struggles in the 5% death case. Figure 11b presents the number of true positive and
false positives recognized by the network. The network stops recognizing the pattern and
the post-synaptic neuron stops firing almost entirely at 10% afferent death. Interestingly,
set 3 in the 5% death case in Figure 11b also shows significant impact, where the other
cases maintain a reasonable level of output neuron firing. Figure 11c shows the time of
death for the randomly selected afferents. Finally, Figure 11d shows the distribution of
dead participating and non-participating afferents in each of the five sets in each case.
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Figure 11. (a) Post-synaptic neuron ISI over time when all afferent death occurs simultaneously at 30 s.
As the % of dead neurons increases, the network loses the pattern recognition capabilities. (b) The
number of true positive and false positives recognized by the network; the network stops recognizing
the pattern and post-synaptic neuron stops firing as neuron death increases. (c) All afferents are dead
instantaneously at 30 s. (d) The distribution of dead participating and non-participating afferents in
each of the five sets in each case.

Figure 12 shows a similar analysis of the network as Figure 11, except the pre-synaptic
neuron death time occurs randomly (as opposed to simultaneously) starting at 30 s and
lasting until 60 s. Figure 12a presents the post-synaptic neuron ISI over time and similarly
shows loss in the pattern recognition capabilities of the network as the fraction of failed
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neurons increases. Note that in the plotting of these data, some points are obscured by oth-
ers because they are layered in order of set number. Thus, for the 25% Afferents Dead case
in Figure 12a, set 5 actually does stop firing, but sets 1–3 do not (they are mostly obscured
by the purple points of Set 4). However, the number of true positives and false positives
recognized by the network in Figure 12b shows that death of certain sets of neurons have
more detrimental consequences than others. Specifically, sets 2 and 5 in the 15% death case
are very nearly unaffected and exhibit a high true positive rate and low false positives.
These two sets for the 15% death case do not have different proportions of death between
the participating and non-participating populations. Figure 12c,d shows the random neu-
ron death times and the distribution of dead participating and non-participating afferents
in each of the five sets in each case, respectively.
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Figure 12. (a) Post-synaptic neuron ISI over time. As the percentage of dead neurons increases
the network loses the pattern recognition capabilities. (b) The number of true positive and false
positives recognized by the network. In general, the network stops recognizing the pattern and the
post-synaptic neuron eventually stops firing as the percentage of failed neurons increases. (c) Time
of failure of all afferents occurring randomly between 30 s and 60 s into the simulation. (d) The
distribution of dead participating and non-participating afferents in each of the five sets in each case.

Unlike in Figure 11, where instantaneous afferent death completely disabled the
network, in Figure 12, a few sets were able to recover, even in the case of high percentage of
neuron failure. Figure 12b demonstrates that at 10% neuron death, the network responded
well for set 3 and set 4. Even at 25% neuron death, sets 2 and 4 were not significantly affected.
On the other hand, in Figure 11b, the network did not perform well in case of any of the
simulated sets with failure percentages of 10% or more. Overall, the network performed
better when the afferents failed gradually as compared to instantaneous death. Although
the number of simulations carried out here is not large enough to draw conclusions about
the fraction of cases in which the network restores itself (or the extent of that restoration),
that will be explored in more extensive future studies. Complementary studies will also be
undertaken to determine the exact cause for the dramatic differences in pattern recognition
outcomes between sets where the same percentages of neurons failed.

4. Conclusions

This paper discusses the pattern learning ability of a memristor-based electronic
spiking neural network as the afferents in the network fail/die due to external factors such
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as radiation exposure, other standard mechanisms such as device or circuit degradation, or
other unforeseen events. The general network structure is that of a feed-forward perception
with 100 pre-synaptic neurons all connected to a post-synaptic LIF neuron via memristive
synapses. The STDP learning rule is implemented using biphasic pulses generated by
neurons. The simulations were designed to observe the effect on the learning ability of
the network for three cases when selectively only participating neurons are affected, non-
participating neurons are disabled, or random/non-selective neuron death occurs after the
network is trained, which takes approximately 30 s. In the case of simultaneous neuron
failure, network learning ability is least affected when only non-participating afferents
are disabled. On the other hand, when random/non-selective neuron death occurs in the
network, pattern recognition ability degrades rapidly as 10% (10) of the total afferents
are disabled and the network becomes unstable at 5% (5) neuron death. The study also
simulates the case when neuron death occurs randomly (instead of simultaneously at 30 s)
between 30 s and 60 s of learning. The comparison shows that the network’s learning
ability is not as seriously deteriorated in the case of gradual neuron death. In some of these
cases, the network was still able to recognize the pattern remarkably well, even at 25%
neuron failure.

The results of this study show that afferents that do not participate in the pattern still
contribute to improving the learning ability of the network, even when partial learning
is completed. This emphasizes the importance of non-participating neurons during the
learning process. In addition, instantaneous neuron death will degrade the network’s
pattern recognition capability more than gradual neuron death. However, all cases show
that the networks do have some capability to recover and relearn the patterns when
undergoing continuous training.

Author Contributions: Conceptualization, S.G.; Formal analysis, S.G.; Investigation, S.G.; Project
administration, K.D.C.; Software, R.C.I.; Writing—review and editing, R.C.I. and B.R.E. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Defense Threat Reduction Agency (DTRA) grant HDTRA1-
17-1-0036.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morrison, J.H.; Hof, P.R. Life and death of neurons in the aging brain. Science 1997, 278, 412–419. [CrossRef]
2. Barrett, D.G.T.; Denève, S.; Machens, C.K. Optimal compensation for neuron loss. eLife 2016, 5, e12454. [CrossRef] [PubMed]
3. Castelli, V.; Benedetti, E.; Antonosante, A.; Catanesi, M.; Pitari, G.; Ippoliti, R.; Cimini, A.; d’Angelo, M. Neuronal cells

rearrangement during aging and neurodegenerative disease: Metabolism, oxidative stress and organelles dynamic. Front. Mol.
Neurosci. 2019, 12, 132. [CrossRef] [PubMed]

4. Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive
alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol. 1991, 30, 572–580.
[CrossRef]

5. Li, N.; Daie, K.; Svoboda, K.; Druckmann, S. Robust neuronal dynamics in premotor cortex during motor planning. Nature 2016,
532, 459–464. [CrossRef] [PubMed]

6. Leary, M.C.; Saver, J.L. Annual Incidence of First Silent Stroke in the United States: A Preliminary Estimate. Cerebrovasc. Dis. 2003,
16, 280–285. [CrossRef]

7. Büchel, J.; Zendrikov, D.; Solinas, S.; Indiveri, G.; Muir, D.R. Supervised training of spiking neural networks for robust deployment
on mixed-signal neuromorphic processors. Sci. Rep. 2021, 11, 23376. [CrossRef]

8. Alemi, A.; Denève, S.; Machens, C.K.; Slotine, J.J. Learning nonlinear dynamics in efficient, balanced spiking networks using
local plasticity rules. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, New Orleans, LA, USA,
2–7 February 2018; pp. 588–595.

9. Keys, A.S.; Adams, J.H.; Cressler, J.D.; Darty, R.C.; Johnson, M.A.; Patrick, M.C. High-performance, radiation-hardened electronics
for space and lunar environments. AIP Conf. Proc. 2008, 969, 749–756. [CrossRef]

10. Dodd, P.E.; Shaneyfelt, M.R.; Schwank, J.R.; Felix, J.A. Current and future challenges in radiation effects on CMOS electronics.
IEEE Trans. Nucl. Sci. 2010, 57, 1747–1763. [CrossRef]

11. Burghard, R.A.; Gwyn, C.W. Radiation failure modes in CMOS integrated circuits. IEEE Trans. Nucl. Sci. 1973, 20, 300–306.
[CrossRef]

http://doi.org/10.1126/science.278.5337.412
http://doi.org/10.7554/eLife.12454
http://www.ncbi.nlm.nih.gov/pubmed/27935480
http://doi.org/10.3389/fnmol.2019.00132
http://www.ncbi.nlm.nih.gov/pubmed/31191244
http://doi.org/10.1002/ana.410300410
http://doi.org/10.1038/nature17643
http://www.ncbi.nlm.nih.gov/pubmed/27074502
http://doi.org/10.1159/000071128
http://doi.org/10.1038/s41598-021-02779-x
http://doi.org/10.1063/1.2845040
http://doi.org/10.1109/TNS.2010.2042613
http://doi.org/10.1109/TNS.1973.4327411


Electronics 2022, 11, 1392 13 of 13

12. Paccagnella, A.; Cester, A.; Cellere, G. Ionizing radiation effects on MOSFET thin and ultra-thin gate oxides. In Proceedings of the
Technical Digest—International Electron Devices Meeting, IEDM, San Francisco, CA, USA, 13–15 December 2004; pp. 473–476.

13. Tong, W.M.; Yang, J.J.; Kuekes, P.J.; Stewart, D.R.; Williams, R.S.; DeIonno, E.; King, E.E.; Witczak, S.C.; Looper, M.D.; Osborn, J.V.
Radiation hardness of TiO2 memristive junctions. IEEE Trans. Nucl. Sci. 2010, 57, 1640–1643. [CrossRef]

14. Deionno, E.; Looper, M.D.; Osborn, J.V.; Barnaby, H.J.; Tong, W.M. Radiation effects studies on thin film TiO2 memristor devices.
IEEE Aerosp. Conf. Proc. 2013, 15, 1–8. [CrossRef]

15. Marinella, M.J.; Dalton, S.M.; Mickel, P.R.; Dodd, P.E.D.; Shaneyfelt, M.R.; Bielejec, E.; Vizkelethy, G.; Kotula, P.G. Initial
Assessment of the Effects of Radiation on the Electrical Characteristics of Memristive Memories. Nucl. Sci. IEEE Trans. 2012, 59,
2987–2994. [CrossRef]

16. Barnaby, H.J.; Malley, S.; Land, M.; Charnicki, S.; Kathuria, A.; Wilkens, B.; Deionno, E.; Tong, W.M. Impact of alpha particles on
the electrical characteristics of TiO2 memristors. IEEE Trans. Nucl. Sci. 2011, 58, 2838–2844. [CrossRef]

17. Kheradpisheh, S.R.; Ganjtabesh, M.; Thorpe, S.J.; Masquelier, T. STDP-based spiking deep convolutional neural networks for
object recognition. Neural Netw. 2018, 99, 56–67. [CrossRef] [PubMed]

18. Dahl, S.G.; Ivans, R.C.; Cantley, K.D. Learning Behavior of Memristor-Based Neuromorphic Circuits in the Presence of Radiation.
In Proceedings of the International Conference on Neuromorphic Systems—ICONS ’19 (under Rev.), Knoxville, TN, USA, 23–25
July 2019.

19. Dahl, S.G.; Ivans, R.C.; Cantley, K.D. Radiation Effect on Learning Behavior in Memristor-Based Neuromorphic Circuit. In
Proceedings of the 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE, Dallas, TX,
USA, 4–7 August 2019; Volume 2019, pp. 53–56.

20. Gandharava Dahl, S.; Ivans, R.C.; Cantley, K.D. Effects of memristive synapse radiation interactions on learning in spiking neural
networks. SN Appl. Sci. 2021, 3, 555. [CrossRef]

21. Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature 2008, 453, 80–83. [CrossRef]
[PubMed]

22. Adhikari, S.P.; Yang, C.; Kim, H.; Chua, L.O. Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural
Netw. Learn. Syst. 2012, 23, 1426–1435. [CrossRef]

23. Cantley, K.D.; Subramaniam, A.; Stiegler, H.J.; Chapman, R.A.; Vogel, E.M. Hebbian learning in spiking neural networks with
nanocrystalline silicon TFTs and memristive synapses. IEEE Trans. Nanotechnol. 2011, 10, 1066–1073. [CrossRef]

24. Cantley, K.D.; Subramaniam, A.; Stiegler, H.J.; Chapman, R.A.; Vogel, E.M. Neural learning circuits utilizing nano-crystalline
silicon transistors and memristors. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 565–573. [CrossRef] [PubMed]

25. Mcdonald, N.R.; Pino, R.E.; Member, S.; Wysocki, B.T.; Rozwood, P.J. Analysis of dynamic linear and non-linear memristor device
models for emerging neuromorphic computing hardware design. In Proceedings of the 2010 International Joint Conference on
Neural Networks (IJCNN), Barcelona, Spain, 18–23 July 2010.

26. Prodromakis, T.; Boon Pin, P.; Papavassiliou, C.; Toumazou, C. A Versatile Memristor Model With Nonlinear Dopant Kinetics.
IEEE Trans. Electron Devices 2011, 58, 3099–3105. [CrossRef]

27. Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E.; Rogers, S. A memristor device model. IEEE Electron Device Lett. 2011, 32,
1436–1438. [CrossRef]

28. Joglekar, Y.N.; Wolf, S.J. The elusive memristor: Properties of basic electrical circuits. Eur. J. Phys. 2009, 30, 661–675. [CrossRef]
29. Dahl, S.G.; Ivans, R.; Cantley, K.D. Modeling Memristor Radiation Interaction Events and the Effect on Neuromorphic Learning

Circuits. In Proceedings of the International Conference on Neuromorphic Systems—ICONS ’18, Knoxville, TN, USA, 23–26 July
2018; pp. 1–8. [CrossRef]

30. Dutta, S.; Kumar, V.; Shukla, A.; Mohapatra, N.R.; Ganguly, U. Leaky Integrate and Fire Neuron by Charge-Discharge Dynamics
in Floating-Body MOSFET. Sci. Rep. 2017, 7, 8257. [CrossRef] [PubMed]

31. Rozenberg, M.J.; Schneegans, O.; Stoliar, P. An ultra-compact leaky-integrate-and-fire model for building spiking neural networks.
Sci. Rep. 2019, 9, 11123. [CrossRef] [PubMed]

32. Wu, X.; Saxena, V.; Zhu, K.; Balagopal, S. A CMOS Spiking Neuron for Brain-Inspired Neural Networks with Resistive Synapses
and in Situ Learning. IEEE Trans. Circuits Syst. II Express Briefs 2015, 62, 1088–1092. [CrossRef]

33. Cantley, K.D.; Ivans, R.C.; Subramaniam, A.; Vogel, E.M. Spatio-temporal pattern recognition in neural circuits with memory-
transistor-driven memristive synapses. In Proceedings of the International Joint Conference on Neural Networks, Anchorage,
AK, USA, 14–19 May 2017; Volume 2017, pp. 4633–4640. [CrossRef]

34. Wozniak, S.; Tuma, T.; Pantazi, A.; Eleftheriou, E. Learning spatio-temporal patterns in the presence of input noise using
phase-change memristors. In Proceedings of the IEEE International Symposium on Circuits and Systems, Montreal, QC, Canada,
23–25 May 2016; Volume 2016, pp. 365–368. [CrossRef]

http://doi.org/10.1109/TNS.2010.2045768
http://doi.org/10.1109/AERO.2013.6497378
http://doi.org/10.1109/TNS.2012.2224377
http://doi.org/10.1109/TNS.2011.2168827
http://doi.org/10.1016/j.neunet.2017.12.005
http://www.ncbi.nlm.nih.gov/pubmed/29328958
http://doi.org/10.1007/s42452-021-04553-0
http://doi.org/10.1038/nature06932
http://www.ncbi.nlm.nih.gov/pubmed/18451858
http://doi.org/10.1109/TNNLS.2012.2204770
http://doi.org/10.1109/TNANO.2011.2105887
http://doi.org/10.1109/TNNLS.2012.2184801
http://www.ncbi.nlm.nih.gov/pubmed/24805040
http://doi.org/10.1109/TED.2011.2158004
http://doi.org/10.1109/LED.2011.2163292
http://doi.org/10.1088/0143-0807/30/4/001
http://doi.org/10.1145/3229884.3229885
http://doi.org/10.1038/s41598-017-07418-y
http://www.ncbi.nlm.nih.gov/pubmed/28811481
http://doi.org/10.1038/s41598-019-47348-5
http://www.ncbi.nlm.nih.gov/pubmed/31366958
http://doi.org/10.1109/TCSII.2015.2456372
http://doi.org/10.1109/IJCNN.2017.7966444
http://doi.org/10.1109/ISCAS.2016.7527246

	Introduction 
	Simulation Methods 
	Neural Network Topology 
	Memristor Modeling 
	Post-Synaptic Neuron Design 

	Results and Analysis 
	No Neuron Death (Control Case) 
	Neuron Death Setup 
	Neuron Death Simulations 

	Conclusions 
	References

