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Abstract: Double-sided Inductor–Capacitor–Capacitor (LCC) or hybrid compensation network is
often used in the traditional methods to realize load-independent output in wireless power transfer;
however, these methods require the changes of operating frequency or compensation network, and
the adoption of more switches and components, resulting in the reduction in the reliability of the
system. In this article, a single switch topology using a switched capacitor was proposed, which can
realize load-independent output characteristics by only switching the branch once, characterized
by the strength of fewer components, simple control, and high reliability. The analysis of this
topology and the accurate parameter design method were given, and the sensitivity analysis was
also carried out. Finally, a 180 W wireless charging prototype with 60 V/3 A was built using the
proposed topology, which confirmed the accuracy of model analysis and the practical feasibility of
the proposed strategies.

Keywords: load-independent output; single switch; higher-order harmonics; wireless power transfer

1. Introduction

Wireless power transfer (WPT) is a method used for transferring power by coupling
the magnetic fields of the transmitting and receiving coils. It is characterized by multiple
inherent strengths, e.g., security, convenience, reliability, electrical isolation, low cost,
no need for bulky wires and heavy connectors, and the ability to be applied in extreme
environments and special applications. These merits make WPT increasingly widely
recognized and studied. According to different principles, WPT can be classified into three
forms, i.e., magnetic field coupling power transfer, electric field coupling power transfer,
and microwave wireless power transfer. Nowadays, magnetic field coupling power transfer
is popular in electrical vehicle (EV) wireless charging, aerospace and ocean exploration,
household appliances, and so on [1,2].

Currently, in the medium to high power applications of WPT, full-bridge inverter
topology is generally adopted [3]. The scheme of the full-bridge inverter circuit is mature;
however, the inverter consists of four switches, which leads to the disadvantages of large
volume and heavy weight, complex control, poor reliability, and difficulty to realize zero
voltage switching (ZVS) [4,5]. Single switch circuit, e.g., Class E circuit, is widely adopted in
the field of low-power WPT because of its merits of fewer components, simple control, and
zero voltage switching, but the conventional Class E topology can be utilized only in low-
power situations due to high voltage stress [6–8]. In [9], the author reveals a reconfigurable
Class E topology-based wireless power transmitter of 6.78 MHz. This proposed topology
in [9] enjoys the benefits of charging different types of multi-components while remaining
very high efficiency; however, the transmission power of 39 W greatly limits the application
of the Class E circuit.
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In this paper, a hybrid topology of the Class E circuit, which can realize bidirectional
excitation, is proposed. The proposed topology can transmit energy to the load no matter
whether the switch is on or off, which improves the utilization of the power source. In
addition, the power transmission level is increased from several hundreds of watts to
thousands of watts, thus greatly improving the power transmission capacity of the cir-
cuit. Moreover, this novel topology achieves load-independent output characteristics by
switching the branch only once. It is of significance to realize load-independent output
to extend the life span of batteries in wireless battery-charging applications [10]. Nowa-
days, load-independent output in a WPT system is usually achieved by the addition of a
double-sided Inductor–Capacitor–Capacitor (LCC) compensation network to a full-bridge
inverter topology [11–13]. In [14], the authors recommend a double-sided LCC compen-
sation network for the WPT system, as well as a tuning approach for it. The resonant
frequency of the circuit in [14] is unaffected by both the coupling coefficient between coils
and the load conditions. In low to mid-power applications, however, it necessitates more
passive components, resulting in bigger system sizes, more resonant loops, and worse
efficiency. Furthermore, as the switching frequency of the circuit must be altered when
the system is switched between constant current (CC) and constant voltage (CV) modes,
its stability has reduced. Authors presented two hybrid circuits for electric vehicle charge
in [15], employing either SS (Series–Series) and PS (Parallel–Series) compensation or SP
(Series–Parallel) and PP (Parallel–Parallel) compensation. Although this method is avail-
able to convert between CC and CV modes without modifying the operating frequency, the
circuit topology is complicated since there are three switching switches. In addition, the
new resonant loop modified the previous compensation circuit; therefore, it is important to
find a simple topology structure to realize CC and CV output at a fixed switching frequency.
In [16], a full-bridge circuit and a primary reconfiguration of the compensation network
are used, and the CC and CV modes can be implemented by switching only once, but
more passive devices are used, which is not suitable for applications with small transmitter
reflection impedance.

This novel Class E topology presented in this paper has a Series/Capacitor–Inductor–
Capacitor (S/CLC) structure, which reduces the number of passive components. In addi-
tion, to transition between CC and CV mode, only one switch is required, with no changes
to the compensation network. Compared with full-bridge topology, this presented Class E
topology has the strength of high stability, small volume, and light weight, simple structure,
and control. In addition, it is simple to achieve ZVS and there are no issues with shoot-
through [17,18]. Moreover, this output power is no longer limited to a few watts; instead, it
can reach hundreds of watts, thereby expanding its range of application in medium power.

2. Analysis of a Novel Class-E Topology
2.1. Topology of Main Circuit

To solve the above problems, a novel Class E topology and S/CLC compensation
network are presented, as shown in Figure 1. The transmitter circuit is a basic Class E
topology; the receiver circuit adopts a CLC compensation network and a bridge rectifier
topology, which requires no change of operating frequency and compensation network,
and only needs to switch the branch once to achieve load-independent output. In addition,
it enables ZVS to meet the need for mid-power and small power applications.

This proposed topology consists of an inverter unit, a magnetically coupled structure,
and a high-frequency rectifier. Among them, the Class E unit is composed of L1, Q, C1,
which transforms the input DC power into high-frequency AC power. The magnetically
coupled structure is composed of Lp, Cp, Ls, Cs1, Cs2, Cs3, S, and L2, which transmits power
from the transmitting circuit to the receiving circuit through a magnetic field. In the case
that the switch S is closed, the receiving side capacitors are Cs1, Cs2; the system works in
CC mode; when the switch S is on, the receiving side capacitors are a combination of Cs1
and Cs3 in parallel, and the system works in CV mode. The switch S is not a high-frequency
switch, so it only needs to be switched once in the process of charging the battery. The high-
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frequency rectifier is a full-bridge rectifier, composed of four diodes, that can transform the
high-frequency AC power to DC power and supply the load.

Electronics 2022, 11, 1400 3 of 11 
 

 

and Cs3 in parallel, and the system works in CV mode. The switch S is not a high-frequency 
switch, so it only needs to be switched once in the process of charging the battery. The 
high-frequency rectifier is a full-bridge rectifier, composed of four diodes, that can trans-
form the high-frequency AC power to DC power and supply the load. 

M

Udc

Cs1

Lp Ls
R

D1 D2

D4D3

L1

C2

Cp

Q

S

C1

Cs2

L2

Magnetic couplerClass E Inverter 
 Rectifier 

Cs3

 
Figure 1. The presented novel Class E topology. 

Figure 2 shows the working process waveform of the Class E inverter using Saber 
simulation. Here ugs, refers to voltage through the gate source of the switch Q; uds stands 
for voltage across the drain source of the switch Q; iLp and iLs represent the current in the 
transmitting and receiving coil, respectively, uCs1 and uCs2 are the voltage waveform on 
capacitor C1 and C2; uL1 and iL1 denote the voltage and current waveforms on inductor L1, 
respectively. 

0

0
ugs/V

uds/V

iLp/A
0

0 iLs/A

uL1/V

iL1/A

0

0

uCs1/V

uCs2/V

0

0
 

Figure 2. The working process waveform of inverter unit. 

From Figure 2, it can be seen that when uds goes to zero, therefore, the switch S ex-
hibits the zero-voltage switching characteristic. 

2.2. Constant Current Output Mode 
As shown in Figure 3, a T-type equivalent network is used to analyze the magneti-

cally coupled structure of the Class E topology. 

Figure 1. The presented novel Class E topology.

Figure 2 shows the working process waveform of the Class E inverter using Saber
simulation. Here ugs, refers to voltage through the gate source of the switch Q; uds stands
for voltage across the drain source of the switch Q; iLp and iLs represent the current
in the transmitting and receiving coil, respectively, uCs1 and uCs2 are the voltage wave-
form on capacitor C1 and C2; uL1 and iL1 denote the voltage and current waveforms on
inductor L1, respectively.
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Figure 2. The working process waveform of inverter unit.

From Figure 2, it can be seen that when uds goes to zero, therefore, the switch S exhibits
the zero-voltage switching characteristic.

2.2. Constant Current Output Mode

As shown in Figure 3, a T-type equivalent network is used to analyze the magnetically
coupled structure of the Class E topology.
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As can be seen from Figure 3, the primary inductor Lp is decomposed into Lp1 and
Lp2, respectively. Cp compensates for the partial inductance of the transmitting coil Lp1, so
that the T1 network can achieve the voltage source to the voltage source (V–V) transforma-
tion [19]. Cs refers to the secondary compensation capacitor and its value is subject to the
state of the switch S. On the other hand, uin is expressed as a sine wave input voltage, the
load is approximated as a pure resistance Req, the output voltage before rectification is Uo,
and the output current is Io. Due to the fact that capacitor C1 is in parallel with the voltage
uin, it does not affect CC and CV of the compensation network. Capacitor C1 only affects
the ZVS characteristics of the system.

It is assumed that the system realizes CC output only at the frequency f. Moreover, in
cases where the transmitting coil compensation capacitor Cp and inductor Lp1 are resonant
at this frequency, the total impedance of Cp and Lp1 becomes zero. According to Thévenin’s
and Norton’s theorem, the T1 network shown in Figure 3 could be equivalent to an inductor,
given in Figure 4a. In case the equivalent inductor Ls −M2/Lp2, Cs1 and L2 resonate at f,
the structure shown in Figure 4b can be obtained.
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It is shown in Figure 4b that the magnetically coupled structure is equivalent to a
constant current source in series with capacitor Cs2 and equivalent resistance Req. In other
words, the CC output mode is achieved. According to the previous analysis, the circuit
needs to meet the following requirements to realize constant current output: ωLp1 = 1

ωCp

ω
(

Ls − M2

Lp2

)
− 1

ωCs1 = −ωL2
(1)

where ω = 2πf. Through the aforementioned analysis, at the switching frequency of f, the
calculation of the compensation network output current can be expressed:

·
Io =

jωCs1
·

UinM
Lp2 −ω2Cs1

(
LsLp2 −M2

) (2)

From (2), it can be seen that the compensation network output current of the CC mode
is subject to the voltage Uin, inductor M, Ls, Lp2, and capacitor Cs1. Where Lp2 can be
separated from the inductor Lp; therefore, this design approach significantly enhances the
design freedom of the system.
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2.3. Constant Voltage Output Mode

At the CV output mode, the secondary compensation capacitor Cs is the combination
of Cs1 and Cs3 in parallel, i.e., the switch S is turned on. As seen in Figure 4a, If the
inductor Ls −M2/Lp2, L2 and Cs1 are combined in parallel to resonate with Cs2 at switching
frequency f, an equivalent circuit can be given as shown in Figure 5.
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Figure 5 shows that the magnetically coupled structure is equivalent to a constant
voltage in series with equivalent resistance Req; therefore, the voltage across Req is depen-
dent on the value of resistance, which achieved constant current output. According to the
previous analysis, the circuit needs to meet the following requirements to realize constant
voltage output: 

Cs = Cs1 + Cs3(
jωL0 +

1
jωCs

)
//jωL2 +

1
jωCs2

= 0
L0 = Ls −M2/Lp2

(3)

where ω = 2πf. Through the aforementioned analysis, at the switching frequency of f, the
calculation of the compensation network output voltage can be expressed:

·
Uo =

·
UinMω2L2Cs

ω2CsLp2(L0 + L2)− Lp2
(4)

From (3), the expression of the compensation capacitor Cs2 can be reformulated as:

Cs2 =
1−ω2Cs(L0 + L2)

ω2L2(1−ω2L0Cs)
(5)

3. Parameter Analysis

The AC output current and voltage are rectified using a full-bridge diode rectifier; the
current Ib and voltage Ub can be obtained as follows:{

Ib = 2
π Io

Ub = π
4 Uo

(6)

To simplify the calculation, the variables α, β, and k are introduced, which can be
expressed as: 

Lp2 = αLp
k = M√

LpLs

Cs1 = βCs

(7)

Substituting (2), (4), and (7) into (6), expressing ω with α, β, and k can be obtained as:

ω =
2Ub IbLpα2(1− β)

Uin
2k2CsLsβ

(8)

For the application of 48 V, 20 AH battery, the proposed Class E topology is designed
with the parameters of 100 V input voltage and 60 V/3 A output voltage and current, and
the parameters of the whole system may be calculated according to the above analysis.
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Given a set of transmitting coil and receiving coil, for example, Lp = 20 µH, Ls = 30 µH.
From Figure 6, the switching frequency f versus the coupling coefficient k for different α
and β can be derived.
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From Figure 6, it may be observed that for a certain switching frequency, the required
value of α becomes larger, and the value of β becomes smaller with the increase in the cou-
pling coefficient; however, the maximum value of α is 1; therefore, the system parameters
are limited by f and k. The higher the f, the smaller the feasible range of k. At given f and k,
the coefficients α and β can be determined from Figure 6.

To show the relationship between parameters α, β, and frequency f, a three-dimensional
image was created, as shown in Figure 7.
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All parameters of the topology can be calculated by analyzing the above figures and
formulas; therefore, the parameters of the novel Class E topology and its compensation
network are calculated as illustrated in Table 1.

Sensitivity analysis of the topology was performed in order to verify the sensitivity of
the system at this parameter. The variation of CV-mode normalized output voltage and
CC-mode normalized output current with Cs, α and L2 normalization parameter is shown
in Figure 8. It is obvious that the change of Cs is sensitive to the output current. At the
same time, the value of L2 is not sensitive to the variation of constant voltage output.



Electronics 2022, 11, 1400 7 of 11

Table 1. Class E topology parameter.

Parameter Description Value

f frequency 100 kHz
Udc Input DC voltage 100 V
Ub Output voltage 60 V
Ib Output current 3 A
LP Transmitting coil inductance 20 µH
LS Receiving coil inductance 30 µH
M Mutual inductance 6.12 µH
α Scale factor 0.61
β Scale factor 0.5

Cp
Primary compensation

capacitor 324.7 nF

Cs
Compensation capacitor in CV

mode 98 nF

Cs1
Compensation capacitor in CC

mode 49 nF

Cs2
Secondary compensation

capacitor 768 n

L1 Primary side inductance 16 µH
L2 Secondary side inductance 24.5 µH
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As seen in Figure 10, both modes achieved ZVS, and the blocking voltage of the 
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form of output voltage and current as the power turns from full-power to half-power and 
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4. Experiment Results

To verify the correctness of the above analysis and the feasibility of the proposed
topology, a 180 W wireless charging prototype with 60 V/3 A was built using the proposed
topology, as shown in Figure 9. The prototype is composed of an inverter unit, a transmit-
ting coil, a receiving coil, and a rectifier marked as 1–4 in turn. Figure 10a,b present the uds
and ugs in both CC mode and CV mode.
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Figure 10. The uds and ugs in CC and CV mode. (a) CC mode; (b) CV mode.

As seen in Figure 10, both modes achieved ZVS, and the blocking voltage of the switch
in CC mode is smaller than that of CV mode by 25 V. Figure 11a,b show the waveform of
output voltage and current as the power turns from full-power to half-power and then
back to full-power in two modes, respectively.
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Finally, the curve of efficiency from the DC power source to the resistive load pro-
cessed can be seen in Figure 14. It can be seen from the results that the max efficiency of 
CC mode is 89.5% and that of CV mode is 90.3%. Efficiency increases when the mode 
switches, which is because the output power will increase when it changes from CC mode 
to CV mode. 

Figure 11. Waveform of output voltage and current. (a) Load 20 Ω-10 Ω-20 Ω changes in CC mode;
(b) load 20 Ω-40 Ω-20 Ω changes in CV mode.

As shown in Figure 11, with the change of the load, iL in CC mode remains at 3 A, and
uL in CV mode is kept at 60 V. The CC and CV output characteristic is well achieved.

Figure 12 shows the dynamic performance of the system at the load of 20 Ω. The
output voltage and current change relatively swiftly when the system switches from CC
mode to CV mode, and the dynamic response is fast.
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The measured and theoretical output voltage and current at different loads are shown
in Figure 13.
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Finally, the curve of efficiency from the DC power source to the resistive load processed
can be seen in Figure 14. It can be seen from the results that the max efficiency of CC mode
is 89.5% and that of CV mode is 90.3%. Efficiency increases when the mode switches, which
is because the output power will increase when it changes from CC mode to CV mode.
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simpler method is adopted to achieve CC and CV output. 
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in this paper can transmit higher power and realize the load-independent output charac-
teristics only by switching the branch once, characterized by the strength of fewer com-
ponents, simple control, and high reliability. The topology parameters were designed in 
detail. To improve the design freedom, the compensation method of manually separating 
the transmitting coils is used, which can also be applied to other WPT systems. Moreover, 
the relationship between the system parameters and the sensitivity of the topology was 
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The operating performances of this paper were compared with the WPT system using
Class E topology, which is shown in Table 2.
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Table 2. Comparison of WPT system using Class E topology.

Topology Frequency Output Power Efficiency CC/CV

Proposed 100 kHz 180 W 90.3% Yes
[6] 6.78 MHz 30 W 80% Yes
[9] 6.78 MHz 39.7 W 81.4% No
[20] 1 MHz 3 W 79.6% No
[21] 1 MHz 27.8 W 74.7% No
[22] 13.56 MHz 25.6 W 73.4% No

It is clear from Table 2 that Class E topology is mainly applied in MHz-frequency and
low-power applications of WPT. The work detailed in this paper expands its application
range and achieves higher output power and efficiency. In addition, compared with [4], a
simpler method is adopted to achieve CC and CV output.

5. Conclusions

In this paper, a novel hybrid Class E topology with load-independent output was pro-
posed. Compared to the traditional Class E topology, this hybrid topology presented in this
paper can transmit higher power and realize the load-independent output characteristics
only by switching the branch once, characterized by the strength of fewer components,
simple control, and high reliability. The topology parameters were designed in detail.
To improve the design freedom, the compensation method of manually separating the
transmitting coils is used, which can also be applied to other WPT systems. Moreover,
the relationship between the system parameters and the sensitivity of the topology was
analyzed. Finally, a 180 W wireless charging prototype with 60 V/3 A was built using the
proposed topology; the experimental results showed perfect agreement with the theoretical
analysis and confirmed the feasibility of our novel approach.
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agreed to the published version of the manuscript.
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