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Abstract: The perception of motion direction is essential for the survival of visual animals. Despite
various theoretical and biophysical investigations that have been conducted to elucidate directional
selectivity at the neural level, the systemic mechanism of motion direction detection remains elu-
sive. Here, we develop an artificial visual system (AVS) based on the core computation of the
Hassenstein–Reichardt correlator (HRC) model for global motion direction detection. With reference
to the biological investigations of Drosophila, we first describe a local motion-sensitive, directionally
detective neuron that only responds to ON motion signals with high pattern contrast in a particular
direction. Then, we use the full-neurons scheme motion direction detection mechanism to detect the
global motion direction based on our previous research. The mechanism enables our AVS to detect
multiple directions in a two-dimensional view, and the global motion direction is inferred from the
outputs of all local motion-sensitive directionally detective neurons. To verify the reliability of our
AVS, we conduct a series of experiments and compare its performance with the time-considered con-
volution neural network (CNN) and the EfficientNetB0 under the same conditions. The experimental
results demonstrated that our system is reliable in detecting the direction of motion, and among the
three models, our AVS has better motion direction detection capabilities.

Keywords: direction-selective neuron; motion direction detection; HRC; CNN; EfficientNetB0

1. Introduction

For numerous animals, vision plays a critical role in receiving information from the
outside world [1]. In recent decades, scientists have discovered separate visual processing
systems in different species of animals, and each system is dedicated to processing its own
interesting features [2–4]. Among these functional processing systems, motion perception is
considered the most basic visual capability because of its widespread presence in the visual
system, ranging from vertebrates to invertebrates [5]. Research on motion perception can
be dated back to 1894, when Exner first presented a drawing of motion detection neural net-
works [6]. In 1912, Wertheimer introduced the Phi phenomenon and revealed that motion
can be seen in two stationary flashes [7]. The discovery that optic nerve fibers’ activities
can be recorded by the discharge of impulses makes it possible for biologists to conduct
research on single ganglion cells [8–11]. After the observation of many retinal ganglion
cells in the receptive field with light-specific responses [12,13], neurons that respond to
movement in a direction-selective way have been observed in both the mammalian retina
(direction-selective ganglion cells, DSGCs) and the insect optic lobe (lobula plate tangential
cells, LPTCs) [14,15].

In order to understand the mechanism underlying signal processing in direction-
selective neurons (DSNs), scientists have proposed a variety of computational models [16–20].
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These models are summarized by Borst and Egelhaaf and have been divided into two main
categories: correlation-type models and gradient-type models [21,22]. The gradient-type
models, which originated from the computer vision, calculate motion through the spatial
and the temporal gradient of the moving image. In contrast to the gradient-type model, the
biological motion detectors correlate the brightness values measured at two adjacent image
points with each other after one of them has been filtered in time. In 1956, Hassenstein and
Reichardt proposed the first biologically based correlation-type model, the so-called HRC
model [16]. The HRC model is considered the modern theoretical framework for motion
direction detection because it encourages people to understand the selectivity of motion
direction from the perspective of neural computations [23,24]. As advances in techniques
develop, more details about DSNs’ neuronal circuits have been investigated [25–36]. Now,
we have evidence to believe that motion detection in flies can be computed by preferred
direction enhancement, and the direction selectivity underlying the fly’s neural circuits can
be well-explained by the HRC models [37].

Although direction selectivity in visual pathways has been researched in recent
decades, the exact mechanism of global motion direction detection has remained a puz-
zle [31,38]. To settle this issue, we propose an artificial visual system (AVS) to further
understand the detecting mechanism of motion direction. First, we assume that the mo-
tion can be observed in two time-continuous stationary images. Based on the research of
Adelson and Bergen [39], we build our dataset with a sufficiently high sampling frequency
so that the step size of the object’s movement is fixed. Then, we cite the concept of simple
cells [40] and propose a local motion-sensitive directionally detective neuron to detect
motion in a particular direction. In our previous works, we have conducted research on the
motion direction detection mechanism and the orientation detection mechanism, which may
exist in the biological visual system [41–46]. In studies of mammalian motion vision, we
relied on the dendritic computation of direction-selective ganglion cells and Barlow’s retina
inhibitory scheme in direction-selective ganglion cells, respectively, to successfully detect
the global motion direction using the multi-neurons scheme scanning mechanism [41,42].
In this paper, we build our neurons to respond to the ON motion signals with a high pattern
contrast. The proposed neuron, based on the core computation of the HRC model, detects
the motion direction with two spatiotemporally separated photoreceptors. Furthermore,
the proposed neuron can be easily extended to two-dimensional multi-direction detections;
for simplicity, eight neurons were employed to detect eight potential directions of motion.
Finally, we used the full-neurons scheme motion direction detection mechanism to detect
the global direction of motion. Inspired by the fly’s visual system, we assume that each light
spot in the visual field can provide signals to an array of local motion-sensitive directionally
detective neurons and introduce the activation strength to obtain the global direction of
motion. Similar to the way LPTCs sum signals from medulla columns and generate a
wide-field response [33], we summed the activated number of neurons that detect the
same direction and mark the maximum value as the global motion direction. To verify the
reliability of our AVS, we conducted a series of experiments. The experimental results show
that our AVS not only detects the global motion direction regardless of sizes and shapes, but
also performs well in noisy situations. Moreover, we compare the system’s performance
with the time-considered CNN and the EfficientNetB0 under the same conditions. The
detection results show that our AVS not only beats the CNN and the EfficientNetB0 on
motion direction detection in learning costs, but also in noise resistance.

2. Materials and Methods

The fly’s nervous system, because it has far fewer neurons than the mammalian
nervous system, has always been the focus of research on vision [29]. In this section, we
introduce our AVS with reference to biophysical investigations of Drosophila.
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2.1. Hassenstein–Reichardt Correlator Model

The HRC model was first proposed by analyzing the optomotor behavior of the
Chlorophanus viridis beetle [16]. It consists of two mirror-symmetrical subunits, and each
subunit has its own preferred direction (Figure 1a) [21–24]. In 2010, Borst and his laboratory
members set a tethered fly in the center of a striped drum and observed the existence of
optomotor responses in both directions by rotating the striped drum in opposite ways [29].
Such experimental results have been supported by other research [47–51], providing evi-
dence that the HRC model is a qualified computational model to explain motion detection
in Drosophila.
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Figure 1. (a) Schematic of the HRC model. (b) Schematic of the rightwards motion detector of the
HRC model. (c) Process of the rightward motion detector in detecting its preferred direction (left) and
null direction (right). In its preferred direction, the activation signal caused by the light spot at time T
(yellow) will be delayed until time T + ∆T and then multiply with the activation signal caused by the
light spot at time T + ∆T (red); thus, the rightward motion detector will respond (pink). Conversely,
the rightwards motion detector will evoke no response in its null direction detection because the
signal from the receptor at time T has not been temporally delayed.

Theoretically, the HRC model is an excitatory scheme of biologically based computa-
tional models [37]. In its most basic form, the HRC model receives inputs from two spatially
separated positions, one of which has been temporally delayed [52]. Figure 1b shows a
rightward motion detector of the HRC model. The detector will respond to a rightward
shift but will evoke no response in a leftward shift. For further explanation, in Figure 1c,
we use a yellow dot to indicate the light spot’s position at time T and a red dot to indicate
that light spot’s position at time T + ∆T. If we mathematically define the value of signals
in the rightward motion detector as 1, the computation in its preferred direction will be
1 × 1 = 1. Therefore, the rightward motion detector will evoke a response. However, the
detector will fail to evoke any responses in detecting the stimuli moving in its null direction
because the calculation in it is 0 × 1 = 0.

2.2. Local Motion-Sensitive Directionally Detective Neurons

In a fly’s visual system, LPTCs serve as directionally selective neurons that produce a
wide-field response [47]. They depolarize when motion appears in their preferred direction
and hyperpolarize when objects move in the null direction. However, LPTCs do not
compute the local motion direction themselves. This raises the question of which neuron
can functionally compute the local motion signals upstream to LPTCs. Leveraging advances
in techniques, two main types of columnar cells, which detect local motion direction in
the fly’s visual system, have been identified [53]. They are T4 neurons that respond to
ON-edge signals in the L1 pathway and T5 neurons that respond to OFF-edge signals in
the L2 pathway. Either T4 or T5 comprise four main subtypes, and each subtype of T4
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or T5 forms neuronal circuits, which output signaling a specific direction. Although the
inhibitory inputs (e.g., signals from Mi4 and C3) and the inhibitory cell type (lobula plate
intrinsic cells) have been found in fly motion pathways [33,54–57], we still have evidence
to believe that local motion detection in Drosophila’s ON-edge motion pathway is mainly
computed by preferred direction enhancement, which can be well-explained by the core
computation of the HRC model (signals from Mi1 and Tm3 are two primary excitatory
inputs to T4; blocking them will lead the T4 nearly losing responses to ON edges) [34,51].

Considering the findings that the fly’s motion pathways seem to take achromatic inputs
and either the L1 pathway or L2 pathway is sufficient to drive the optomotor response
at high pattern contrast, in this paper, we design a local motion-sensitive directionally
detective neuron with a 3 × 3 local receptive field and make them respond to ON motion
signals with high pattern contrast based on the core computation of the HRC model (shown
in Figure 2a). Mathematically, we assign the value of 1 to the signals and the value of 0
to the background. Figure 2b shows the rightward local motion-sensitive directionally
detective neuron. We use notations X(i, j, T) to indicate the signal from the centrally located
photoreceptor P(i, j) at time T, and X(i+1, j, T+∆T) denotes the signal from its right-side
photoreceptor P(i+1, j) at time T + ∆T. The activation result YR(i, j) of the rightwards local
motion-sensitive directionally detective neuron can be expressed by the following equation:

YR(i, j)= X(i, j, T)·X(i+1, j, T+∆T) (1)
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Figure 2. (a) The theoretical structure of the rightwards local motion-sensitive directionally detective
neuron. (b) Schematic of 0◦-detective neuron. The rightwards local motion-sensitive directionally
detective neuron will respond when both the photoreceptor P(i, j) at time T and the photoreceptor
P(i, j+1) at time T + ∆T. (c) Schematic of eight local motion-sensitive directionally detective neurons.

If—and only if—the activation result of YR(i, j) is 1, the rightwards local motion-
sensitive directionally detective neuron located at P(i, j) will be activated.

Moreover, we extend our proposed neurons to two-dimensional multi-direction de-
tections. Based on the concept of local receptive field [13], we employ 8 local motion-
sensitive directionally detective neurons for detecting 8 directions, respectively. As shown
in Figure 2c, they are 0◦-detective neuron (Rightward, R), 45◦-detective neuron (Upper
Rightward, UR), 90◦-detective neuron (Upward, U), 135◦-detective neuron (Upper Left-
ward, UL), 180◦-detective neuron (Leftward, L), 225◦-detective neuron (Lower Leftward,
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LL), 270◦-detective neuron (Downward, D), and 315◦-detective neuron (Lower Rightward,
LR). The equations of extended neurons’ activation results can be expressed as follows:

YUR(i, j) = X(i, j, T)·X(i+1, j+1, T+∆T) (2)

YU(i, j) = X(i, j, T)·X(i, j+1, T+∆T) (3)

YUL(i, j) = X(i, j, T)·X(i−1, j+1, T+∆T) (4)

YL(i, j) = X(i, j, T)·X(i−1, j, T+∆T) (5)

YLL(i, j) = X(i, j, T)·X(i−1, j−1, T+∆T) (6)

YD(i, j) = X(i, j, T)·X(i, j−1, T+∆T) (7)

YLR(i, j) = X(i, j, T)·X(i+1, j−1, T+∆T) (8)

2.3. AVS for Global Motion Direction Detection

With the development of biological science, neuronal circuits of the fruit fly Drosophila
melanogaster have been well-studied [32,37]. We now know that the visual processing in
Drosophila begins in the optic lobe, and the principal regions of the optic lobe are four
neuropils (the lamina, medulla, lobula, and lobula plate) [51]. Here, we demonstrate
the main processes of ON-edge motion signals detected by Drosophila. When ON-edge
motion signals appear, the photoreceptor neurons (R1–R6) in the retinal ommatidia will first
generate visual signals and transmit them to lamina monopolar cells in the first neuropil
(the lamina). Then, medulla columnar neurons (e.g., Mi1 and Tm3) receive signals from
the lamina neurons and project inputs to the dendritic arbors of T4 in the M10 layer of
the second neuropil (medulla). Finally, LPTCs receive signals from T4 cells, summed to
generate wide-field motion responses. Remarkably, a single dendritic arbor of T4 cells can
sample from different positions of the visual field via medullary columns [35].

Inspired by biophysical investigations of Drosophila, we propose an artificial visual
system using the full-neurons scheme motion direction detection mechanism. First, we
hypothesize that each light spot in the visual field can be received by different local
motion-sensitive directionally detective neurons. In this paper, we assume that each light
spot at time T can be received by 8 local motion-sensitive directionally detective neurons.
Second, we design our local motion-sensitive directionally detective neurons with the
core computation of the HRC model. Each local motion-sensitive directionally detective
neuron will be activated when it receives the signal from the photoreceptor located in its
preferred direction at time T + ∆T. Third, we sum the number of the activated neurons
with the same preferred direction and regard it as the activation strength in that direction.
The AVS will give the detection result based on the maximum value of activation strength
in eight directions. For a visual field of size M × N region, we use P(m, n) to denote the
photoreceptor located at the m-th row and n-th column (1 ≤ m ≤ M, 1 ≤ n ≤ N). The
process of the AVS for global motion direction detection can be expressed as follows:

ZR =
M

∑
m=1

N

∑
n=1

YR(m, n) (9)

ZUR =
M

∑
m=1

N

∑
n=1

YUR(m, n) (10)

ZU =
M

∑
m=1

N

∑
n=1

YU(m, n) (11)

ZUL =
M

∑
m=1

N

∑
n=1

YUL(m, n) (12)
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ZL =
M

∑
m=1

N

∑
n=1

YL(m, n) (13)

ZLL =
M

∑
m=1

N

∑
n=1

YLL(m, n) (14)

ZD =
M

∑
m=1

N

∑
n=1

YD(m, n) (15)

ZLR =
M

∑
m=1

N

∑
n=1

YLR(m, n) (16)

Out = max{ZR, ZUR, ZU, ZUL, ZL, ZLL, ZD, ZLR} (17)

Figure 3 shows the detection process of the AVS for a 1-pixel object. We use notations
P(1, 1), P(1, 2), P(1, 3), . . . , P(5, 5) to indicate the positions of photoreceptors in the visual
field, so the detection process in Figure 3 can be described as follows. Firstly, the light spot
at time T (yellow dot) is received by the centrally located photoreceptor P(3, 3) of the 5 × 5
visual field. Secondly, the outputs of each photoreceptor are sent to 8 local motion-sensitive
directionally detective neurons, which will be delayed until time T + ∆T, and received
by the center point of each local motion-sensitive directionally detective neuron’s 3 × 3
local receptive field. Thirdly, each local motion-sensitive directionally detective neuron
will detect whether there exists a signal from the photoreceptor located in its preferred
direction at time T + ∆T (orange dot center, blue dots surrounding it). In this flowchart, the
photoreceptor located at P(3, 3) receives the light signal at time T, and P(3, 4) receives the
signal at time T + ∆T (red dot), so the 0◦-detective neuron is activated (pink dot). Finally,
the AVS gives the detection result based on the maximum value of activation strength
in eight directions. Since the 0◦-detective neuron located at P(3, 3) is the only activated
neuron during this detection, the global motion direction of this 1-pixel object is rightward.
A more complex process of the AVS for a 3-pixel object is presented in Figure 4. During
this detection, a total of 5 local motion-sensitive directionally detective neurons have been
activated. They are 0◦-detective neuron and 45◦-detective neuron located at P(3, 2), 45◦-
detective neuron located at P(4, 2), 45◦-detective neuron, and 90◦-detective neuron located at
P(4, 3). As the 45◦-detective neurons achieve the maximum value of the activation strength,
the global motion direction of this 3-pixel object is upper rightward.
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3. Results and Discussion

To validate the reliability of our AVS, we conduct a series of experiments with a
background size of 32 × 32, 1,024-pixel datasets. The objects in all experiments have
random sizes ranging from 1 to 128 pixels, and their shapes and positions are set to
arbitrary.

In the first series of experiments, we test our AVS within the background with no noise.
The dataset has a total of 192,000 images (each object has 24,000 images), and the detection
results are presented in Table 1. The activation plots of the AVS for a 16-pixel object
motion direction detection within the background with no noise are shown in Figure 5.
The activation numbers of eight local motion-sensitive directionally detective neurons are:
0◦-detective neurons 5, 45◦-detective neurons 5, 90◦-detective neurons 9, 135◦-detective
neurons 16, 180◦-detective neurons 8, 225◦-detective neurons 7, 270◦-detective neurons 6,
and 315◦-detective neurons 5. Thus, the global direction of this 16-pixel object’s motion is
upper leftward.

Table 1. Detection results of the AVS within the background with no noise.

Model 1 2 4 8 16 32 64 128

AVS 100% 100% 100% 100% 100% 100% 100% 100%
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In the second series of experiments, we test our AVS within the background with
1% to 10% separated noises. The dataset has a total of 192,000 images (each object has
24,000 images), and the detection results are presented in Table 2. The reason why the
separated noises have no effect on the detection results is because the noise remains
stationary between the time T and the time T + ∆T. Therefore, no local motion-sensitive
directionally detective neurons have been activated by the noises. Figure 6 shows an
example of the activation plots of the AVS for a 32-pixel object motion direction detection
within the background with 10% separated noises. The activation numbers of eight local
motion-sensitive directionally detective neurons are: 0◦-detective neurons 17, 45◦-detective
neurons 14, 90◦-detective neurons 15, 135◦-detective neurons 14, 180◦-detective neurons 15,
225◦-detective neurons 18, 270◦-detective neurons 32, and 315◦-detective neurons 18. Thus,
the global direction of this 32-pixel object’s motion is downward.

Table 2. Detection results of the AVS within the background with separated noises.

Noises 1 2 4 8 16 32 64 128

1% 100% 100% 100% 100% 100% 100% 100% 100%
2% 100% 100% 100% 100% 100% 100% 100% 100%
5% 100% 100% 100% 100% 100% 100% 100% 100%

10% 100% 100% 100% 100% 100% 100% 100% 100%

In the third series of experiments, we test our AVS within the background with
1% to 10% connected noises. The dataset has a total of 192,000 images (each object has
24,000 images), and the detection results are presented in Table 3. Through observation, it
can be found that the connected noises do have impacts on the detection results, especially
when the object’s size is small. However, as the size of the object increases, the detection
results will return to high accuracy. The activation plots of the AVS for a 64-pixel object
motion direction detection within the background with 2% connected noises have been
presented in Figure 7, and the error activations due to noise are represented by the purple
dots. The activation numbers of eight local motion-sensitive directionally detective neurons
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are: 0◦-detective neurons 33, 45◦-detective neurons 31, 90◦-detective neurons 35, 135◦-
detective neurons 38, 180◦-detective neurons 43, 225◦-detective neurons 64, 270◦-detective
neurons 41, and 315◦-detective neurons 34. Thus, the global direction of this 64-pixel
object’s motion is Lower Leftward.
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Table 3. Detection results of the AVS within the background with connected noises.

Noises 1 2 4 8 16 32 64 128

1% 81.6% 96.0% 99.8% 100% 100% 100% 100% 100%
2% 56.7% 84.0% 97.9% 99.9% 100% 100% 100% 100%
5% 36.6% 52.1% 75.0% 95.1% 99.8% 100% 100% 100%

10% 30.7% 37.8% 52.3% 74.1% 94.5% 99.8% 100% 100%

In the last series of experiments, we compare the performance of the AVS, the time-
considered CNN, and the EfficientNetB0. In recent research, convolutional architectures
performed well in tasking audio synthesis, and convolutional networks are regarded
as the natural starting point for sequence modeling tasks [58]. Therefore, we propose
a time-considered CNN train it for the task of detecting the global direction of motion.
The time-considered CNN is made up of eight convolution kernels (3 × 3), eight feature
maps (32 × 32), and eight outputs. The structure of the time-considered CNN is shown
in Figure 8. At first, we used the dataset with no noise in the background and randomly
picked 3000 images out of 24,000 images from each size of the object’s dataset to form a
new dataset. Then, we picked 15,000 images in the new dataset for training the CNN and
the EfficientNetB0 and then used 5000 of the remaining images to form the test dataset.
Finally, we saved the CNN and the EfficientNetB0 when the training accuracy reached
100% and compared their performances with the proposed AVS. The accuracy rates on the
test dataset are: AVS 100%, the time-considered CNN 63.6%, and the EfficientNetB0 100%.
Furthermore, we performed a comparison of the three models in detecting the dataset with
separated noises and the dataset with connected noises. These detection results are shown
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in Tables 4–7, respectively. We can easily observe from these tables that our AVS has better
performance than the time-considered CNN and the EfficientNetB0. Furthermore, since
our AVS cites the spatial structure of the basic form of the HRC model, the requirements on
the dataset are almost none, while the CNN and the EfficientNetB0 need a large amount of
data for training.
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Table 4. Detection results of the time-considered CNN within the background with separated noises.

Noises 1 2 4 8 16 32 64 128

1% 14.8% 19.7% 20.0% 25.4% 36.0% 55.6% 78.6% 95.0%
2% 13.8% 14.7% 16.1% 18.4% 23.9% 36.7% 58.2% 86.9%
5% 12.9% 13.5% 13.7% 14.4% 16.9% 21.3% 28.2% 55.8%

10% 12.7% 12.9% 13.3% 13.5% 15.6% 18.6% 21.1% 37.8%
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Table 5. Detection results of the time-considered CNN within the background with connected noises.

Noises 1 2 4 8 16 32 64 128

1% 15.2% 17.4% 20.3% 25.7% 36.4% 55.9% 79.9% 95.1%
2% 13.6% 14.7% 15.8% 18.8% 23.9% 37.2% 62.1% 88.9%
5% 12.9% 13.4% 14.1% 15.0% 16.5% 20.8% 33.8% 65.7%

10% 12.7% 13.0% 13.4% 13.9% 15.3% 17.9% 25.3% 50.6%

Table 6. Detection results of the EfficientNetB0 within the background with separated noises.

Noises 1 2 4 8 16 32 64 128

1% 29.3% 36.9% 43.8% 50.1% 58.4% 64.8% 69.9% 81.5%
2% 15.0% 18.4% 22.1% 28.4% 37.2% 43.9% 52.2% 66.8%
5% 14.0% 14.5% 15.7% 17.2% 22.6% 29.8% 42.2% 58.0%

10% 12.9% 11.9% 12.1% 12.7% 15.2% 18.9% 23.6% 30.5%

Table 7. Detection results of the EfficientNetB0 within the background with connected noises.

Noises 1 2 4 8 16 32 64 128

1% 27.8% 34.2% 43.0% 51.2% 58.6% 63.1% 72.5% 82.8%
2% 15.4% 18.2% 22.2% 30.8% 36.0% 42.7% 52.4% 66.1%
5% 13.8% 14.1% 13.4% 16.9% 20.4% 28.2% 38.8% 55.4%

10% 13.3% 13.0% 14.1% 17.4% 20.3% 26.4% 33.0% 39.9%

4. Conclusions

In this paper, we proposed an artificial visual system using the full-neurons scheme
motion direction detection mechanism to detect the global direction of motion. With
reference to the ON-edge motion pathway in flies, we assumed that each light spot in the
visual field can be received by eight local motion-sensitive directionally detective neurons.
The detection in each local motion-sensitive directionally detective neuron is based on
the core computation of the HRC model, and the global motion direction is inferred from
the maximum value of activation strength in eight directions. Through three different
types of experiments, we demonstrated that the proposed AVS not only has a great motion
direction detection ability, but also has good resistance to noises. Additionally, through
comparison of our AVS with the time-considered CNN and the EfficientNetB0, we verified
the possibility of the proposed AVS as an engineering application. Although our AVS is
still in the early stages of design, it already exhibits three notable advantages: learning
costs, noise resistance, and structural extensibility. With the application of neurons with
different functions in our designed AVS, the AVS can be used for more complex detection
tasks. For example, in subsequent experiments, we initially confirmed that the application
of the horizontal cells concept will allow our AVS to detect the direction of motion in
grayscale images. We will continue to explore our artificial visual system in conjunction
with investigations from biological research.
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